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Complex adaptive learning 
cortical neural network systems 
for solving time‑fractional 
difference equations with bursting 
and mixed‑mode oscillation 
behaviours
Yu‑Ming Chu 1, Saima Rashid 2,3*, Taher Alzahrani 4, Hisham Alhulayyil 4, Hatoon Alsagri 4 & 
Shafiq ur Rehman 4

Complex networks have been programmed to mimic the input and output functions in multiple 
biophysical algorithms of cortical neurons at spiking resolution. Prior research has demonstrated that 
the ineffectual features of membranes can be taken into account by discrete fractional commensurate, 
non‑commensurate and variable‑order patterns, which may generate multiple kinds of memory‑
dependent behaviour. Firing structures involving regular resonator chattering, fast, chaotic spiking 
and chaotic bursts play important roles in cortical nerve cell insights and execution. Yet, it is unclear 
how extensively the behaviour of discrete fractional‑order excited mechanisms can modify firing cell 
attributes. It is illustrated that the discrete fractional behaviour of the Izhikevich neuron framework 
can generate an assortment of resonances for cortical activity via the aforesaid scheme. We analyze 
the bifurcation using fragmenting periodic solutions to demonstrate the evolution of periods in the 
framework’s behaviour. We investigate various bursting trends both conceptually and computationally 
with the fractional difference equation. Additionally, the consequences of an excitable and inhibited 
Izhikevich neuron network (INN) utilizing a regulated factor set exhibit distinctive dynamic actions 
depending on fractional exponents regulating over extended exchanges. Ultimately, dynamic 
controllers for stabilizing and synchronizing the suggested framework are shown. This special spiking 
activity and other properties of the fractional‑order model are caused by the memory trace that 
emerges from the fractional‑order dynamics and integrates all the past activities of the neuron. Our 
results suggest that the complex dynamics of spiking and bursting can be the result of the long‑term 
dependence and interaction of intracellular and extracellular ionic currents.

Firing neuronal cell frameworks are arithmetic quantifications of nerve cell properties implemented for 
describing physiological behaviours. Numerous initiatives have been rendered for modelling neuronal activity 
 prospectively1,2. Actually, the overarching objective of the supplied neuron framework is to resemble neurological 
collaborative behaviours in an interactive setting. Plenty of research in neural networks (NNs) is underway to 
investigate their intricate behaviours involving  synchronization3,4. The capability of the representation to display 
the typical behaviour of neuronal activity and its productiveness are actually the criteria employed for distin-
guishing among various  NNs5. Hodgkin and Huxley’s (HH) chaotic formulae were initially used to demonstrate 
how the neurons electrical activity is associated with the propagation of voltages within the cellular membrane 
of the squid’s enormous  arteries6. Multiple simplified versions of the HH framework that include the FitzHugh-
Nagumo approach have subsequently been implemented. The absorbed and shoot systems constitute two of the 
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increasingly frequently utilized frameworks for clarifying the characteristics of enormous neuronal  systems7. 
These mathematical simulations are important for comprehending the functioning of a nervous framework; 
nonetheless, the biological process is  excluded5. The Izhikevich neuron network (INN) system is a two-variable 
system that is extensively used in NN modelling. This framework attempts to replicate the majority of identified 
spikes in neurons in the cortex. The positive aspect of the INN system is that it examines physiological ideas, 
analogous to the HH approach, and is technically efficient, identical to the unified and bursting  models8.

Recently, the essential theoretical and accurate estimation provided by fractional-order (FO)  patterns9–11 of 
activated mechanisms to scientific neuron algorithms may serve an essential part in the effective acquisition and 
transmission of neurological facts. It can generate a variety of memory-dependent neurological procedures over 
numerous time  frames12,13. The neurons located in the NN generate multiple spiking-bursting procedures for 
analyzing data and exchanging signals. For studying the temporal fluctuations of cell power, the generalization of 
integer-order systems is better suited and more productive. Brain neurons are responsible for memory. Because 
of the memory impact, FO dynamical structures can be implemented in this particular instance. Memory influ-
ence may additionally be utilized in an additional manner by permitting the implications of electromagnetic 
radiation and  fields14–16. However, the INN model is a simple model that generates several types of neuronal 
responses. It is bio-physically plausible and computationally efficient. The system consists of two variables with 
FO dynamics. Although we mostly used the same FO for both variables, one can use different FOs that can vary 
on the interval (0, 1]. For fractional order close to 1, there was an attempt to implement FO-INN  model17, but 
the article was a short report without significant results nor details.

Xi et al.18 suggested the finite-time robust control of uncertain FO Hopfield NNs via sliding mode control. The 
relevant articles mentioned above indicate the substantial popularity of using a Caputo-type fractional difference 
 operator19 in the modeling of complex systems via time discreteness. Because DFC has numerous benefits over 
classical calculus, we need to employ it for investigating NN  architectures20,21. For a pair of explanations, the 
modeling of NNs with fractional exponents can be utilized for studying neurons in biology. Initially, by boosting 
a level of liberation, the FO improves mechanism  efficiency20,21. The memory and heridatory characteristics of 
several scientific models can be described using the variable-order (VO) fractional operators and their non-
stationary power-law kernel. As a consequence, VO discrete fractional calculus (VODF) was available as an 
intriguing option for supplying an efficient computational scheme for precisely characterizing multifaceted natu-
ral mechanisms and  procedures22. Following that, VO-FDEs have captured growing interest owing to their appro-
priateness in modeling a wide range of occurrences, such as anomalous  diffusion23,24, viscosity  mechanisms25,26, 
 automation27, chemical  engineering28, and numerous additional areas of science and  technology29,30.

In 1993, Samko and  Ross31 suggested the idea of VO integral and differential, in addition to certain funda-
mental features. Lorenzo and  Hartley32 summarized the VO fractional operator study outcomes and subsequently 
examined the terminology of VO fractional operators in multiple configurations. Following that, some innova-
tive, essential and significant implementations of the capabilities of the VO-FDE frameworks were additionally 
investigated in Refs.33–39.

Following the aforesaid propensity, we aim to investigate and analyse the neurological firing and exploding 
processes of the DFO-INN model for an extensive variety of DFOs, such as commensurate, non-commensurate 
and variable-order DFOs. It also provides a classical framework that assists with productive data analysis, stimula-
tion apprehension and frequency-independent transitions of oscillating neural activity. Furthermore, the evolu-
tion in blasting position and spiking rate is examined using DFO modifications. It generates broad spikes and 
explosions by differing merely in the DFOs, while the rest of the factors stay steady. These different types of oscil-
lation patterns can be produced by varying only the DFOs while all other parameters are fixed. Thus, the spiking 
and bursting dynamics that may be generated by systematic variations of several parameters can be controlled by 
the single parameter, i.e., the β . Decreasing the FO transforms the response of the random network of DFO-INN 
model from random to scale free pattern where a few neurons control the whole network. Consequently, FOs 
can control the various neuronal activation forms produced in a continuous-time INN system by deliberately 
altering multiple settings. Both stabilization and bifurcating assessments have been described for analyzing the 
structure and interactions of the DFO-INN model. Furthermore, reactions of an ensemble of DFO-INN (excit-
ability and inhibitory) are studied to demonstrate the integrated interactions of the NNs at different FOs. The 
stabilization of the DFO-INN model is additionally fascinating to us. Another significant component of the INN 
model is synchronization, which is a technique that uses adaptive controlling variables to compel a slave system 
to maintain a similar track as a master. Additionally, we suggested an amalgamated synchronization tactic for 
the suggested DFO-INN model, in which the master is concurrently synchronized to a single slave framework. 
Our results suggest that the complex dynamics of spiking and bursting patterns controlled by several parameters 
can be the result of the long-term dependence and interaction of intracellular and extracellular ionic currents.

The remaining content of the article is structured as follows: The preliminary reports on the DFC and related 
postulates are presented in Section "Preliminaries on DFC". In Section "INN model and its FO formulation", 
we investigate the framework’s configuration in detail along with its biophysical mechanism. Section "Qualita-
tive analysis of DFO-INN system" consists of fundamental dynamic features using quantitative and qualitative 
evaluations. Furthermore, we suggested adapted controllers in Section "Controlling dynamics of DFO-INN 
system" for stabilizing and synchronizing the chaotic pathways of the identified DFO-INN system. Ultimately, 
Section "Conclusion" presents the general paper’s final analysis.

Preliminaries on DFC
Before we begin discussing chaotic DFC applications with stability and synchronization, we need to initially 
review certain of the relevant concepts. Within this section, it is necessary to  refer13 to c�β

̟̥(ξ) the β-Caputo 
type delta difference of a mapping ̥ (ξ) : N̟ �→ R using N̟ =

{

̟ ,̟ + 1,̟ + 2, ...
}

, described as
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where β ∈ N is the FO, ξ ∈ N̟+n−β and n = ⌈β⌉ + 1. The βth fractional sum of �n

u̥(ξ) in (2.1) is described 
analogously  to40,41 as

alongside ξ ∈ N̟+β , β > 0 . The falling factor ξ (β) established as a consequence of the Gamma function is 
denoted by the symbol Ŵ as

The results that adhere serve as a framework for the computational approach and stability evaluation that we 
must perform throughout the research whenever interacting with the suggested DFO mechanisms.

Theorem 2.1 Reference42

Assume that there is a FO difference formula

the corresponding discrete integral the formula is as follows:

where

Theorem 2.2 Reference43

Assume that the unsteady state of the linear DFO framework

where ̥ (ξ) =
(

̥1(ξ), ...,̥n(ξ)
)T

, β ∈ (0, 1], ℧ ∈ Rn×n and for all ξ ∈ N̟+1−β is asymptotically stable if

∀ the eigenvalues ς of ℧.

INN model and its FO formulation
The electric-power interactions associated with a specific capacitance were calculated as C dUβ

dξβ
= ℑ, where U , C 

and R denote the electrostatic electric current, cellular capacitors and cell obstruction whiles β ∈ (0, 1) is the 
fractional factor. The FO differential  formulation10 is able to be implemented for determining the FO structure 
of the inactive cell electrical energy relationship. Previous research demonstrated that a FO conductive concept 
might be suitable for describing and investigating the functioning of inactive cell  patterns44. Furthermore, frac-
tional-order interactions are applicable to specify long-term memory implications attributed to neural plasticity 
and specific cell stimulation, insulator impact, and radioactive  implications44. In the present research, we antici-
pate the DFO interactions of the Izhikevich  system8,45 and show how cell power at different commensurate and 
incommensurate affects the features of NNs over numerous time frames. Initially, we supply an executive sum-
mary regarding the DFO Izhikevich simulation and describe the neurological features of cellular rises. We 
investigate the barely noticeable fluctuations and surge development that characterize launching procedures. In 
conclusion, we look at the properties of an ensemble of DFO NNs.

In 2003,  Izhikevich8 contemplated an INN that is capable of multiple kinds of cortical-in-nature neuronal 
cell spikes and collapses. It makes neurological sense as HH patterns while being practically productive as 

(2.1)

c�β
̟̥(ξ) =�−(n−β)

̟ �n
̥(ξ)

=
1

Ŵ(n− β)

ξ−(n−β)
∑

u=̟

(ξ − u − 1)(n−β−1)�n
̥(u),

(2.2)�−β
̟ ̥(ξ) =

1

Ŵ(β)

ξ=β
∑

u=0

(ξ − u − 1)(β−1)
̥(u),

(2.3)ξ (β) =
Ŵ(ξ + 1)

Ŵ(ξ + 1− β)
.

(2.4)
{

c�
β
̟χ(ξ) = �

(

ξ + β − 1,χ(ξ + β − 1)
)

,
�℘χ(̟) = χ℘ , n = ⌈β⌉ + 1, ℘ = 0, 1, ..., n− 1

(2.5)χ(ξ) = χ0(ξ)+
1

Ŵ(β)

ξ−β
∑

u=̟+n−β

(ξ − u − 1)(β−1)�
(

u + β − 1,χ(u + β − 1)
)

, ξ ∈ N̟+n,

(2.6)χ0(ξ) =
n−1
∑

℘=0

(ξ −̟)(℘)

Ŵ(℘ + 1)
�℘χ(̟).

(2.7)c�β
̟̥(ξ) = ℧̥(ξ + β − 1),

(2.8)ς ∈
{

ϑ ∈ C : |ϑ | <
(

2 cos
| argϑ − π |

2− β

)β

and | argϑ | > βπ/2
}
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integrate-and-fire neurons in general. The continuous-time FO Izhikevich approach, which relies on the classical 
Izhikevich framework, is illustrated by a couple of system parameters x(t1) and y(ξ) as follows:

where the FO residing in the range β ∈ (0, 1) . Take into account a framework via proportional to FO. At β = 1 , 
the framework diminishes to the classical Izhikevich approach. The membrane power is represented by the 
structure’s component x , and the reactivation component y determines the stimulation of K+ and suppression 
of Na+ electrostatic berries. The bursting trends are modulated by FO fluctuations in electrostatic  flows46. When 
the cellular power attains maximum numbers, xℓ℘ , both of the components listed below evolve into

At this point, xℓ℘ = 30(mU) is implemented. Also, σ , η, ψ and ν are devoid of dimension variables. The equilib-
rium possibilities are between 70 and 60 mU , depending on the value of η . The value of σ denotes the duration of 
the restoration factor, y . The value of η represents the responsiveness of the recuperating mechanism factor y to 
barely noticeable oscillations in the cellular power, x . The data points ψ and ν represent the after spike restored 
values of x and y resulting from promptly high-threshold K+ transmit insulators and reluctantly high-threshold 
Na+ and K+ insulators, as well as various appropriate setting selections that influence multiple kinds of launching 
structures that frequently appear in  neocortical47 and thalamic neuronal  cells48. The differences in setting are 
taken into account as described in the  studies8,49.

The initial values are taken to be x = −63 and y = ηx8,49. It should be noted that simply by differing in such 
undefined settings, distinctive launching features of traditional Izhikevich nerve cells (that is, consistently explod-
ing, chattering and exploding) could be accomplished. Multiple varieties of spikes and overflowing variations are 
frequently identified in neocortical cells in neurological systems for inside cells  files47,48, as well as excitement 
neural activity by  Izhikevich8,49. We evaluate an identical strategy of spike-bursting procedures for several DFOs.

Qualitative analysis of DFO‑INN system
In this section, the behaviour of the DF-INN framework (3.1) via cortical neurons will be investigated in the 
following situations: commensurate order, incommensurate order and VO. These tests will be carried out employ-
ing a variety of numerical modelling techniques, including exhibit phase profiles, bifurcation schematics, and 
maximum Lyapunov exponent ( ζmax ) predictions. The Jacobian matrix  strategy50 will be used to figure out the 
ζmax of the attracted components of the DF-INN framework (3.1).

Commensurate DFO‑INN system
In this subsection, we are going to study the evolution of the DFO-INN framework. We will go over the features 
of the suggested commensurate DF-INN framework (4.1). It deserves to be taken into account that a collection 
of formulae with commensurate order is a set of formulae obtained via similar inquiries. Given that, we shall 
subsequently offer a quantifiable equation generated by Theorem 2.1 in the following manner:

where x(n) and y(n) are the system’s indications and have certain factors σ , η, ψ and ν . Considering the system 
information in two data sets:

Set (B1 ) (σ , η,ψ , ν) = (0.2, 2,−55, 4) and ℑ ≥ 3,
Set (B2 ) (σ , η,ψ , ν) = (0.02, 0.2,−56,−16) and ℑ ≥ −105 . It has been demonstrated that the DFO-INN 

system (4.1) has chaotic patterns. The first-order difference of the DFO-INN system, (4.1) can be expressed as

The DFO-INN model (4.3) tends to be obtained by employing the Caputo-like delta difference described in (2.1) 
which serves as the initial value problem. The fractional difference form of (3.1) is

for β ∈ (0, 1] and ξ ∈ N̟+1−β . It is worth noting that the FOs of both fractional differences in (4.3) are alike, 
resulting in the phenomenon known as a commensurate mechanism.

In view of Theorem 2.1, we find

(3.1)
{

Dβx(ξ) = 0.04x2 − y + 5x + 140+ ℑ,
Dβy(ξ) = σ(ηx − y),

(3.2)xℓ℘ ≤ x =⇒
{

x ← ψ ,
y ← y + ν.

(4.1)
{

x(n+ 1) = 0.04x2(n)− y(n)+ 5x(n)+ 140+ ℑ,
y(n+ 1) = σ

(

ηx(n)− y(n)
)

,

(4.2)
{

�x(n) = 0.04x2(n)− y(n)+ 5x(n)+ 140+ ℑ− x(n),
�y(n) = σ

(

ηx(n)− y(n)
)

− y(n).

(4.3)

{

c�
β
̟ x(ξ) = 0.04x2(ξ − 1+ β)− y(ξ − 1+ β)+ 5x(ξ − 1+ β)+ 140+ ℑ− x(ξ − 1+ β),

c�
β
̟ y(n) = σ

(

ηx(ξ − 1+ β)− y(ξ − 1+ β)
)

− y(ξ − 1+ β),
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where (ξ−u−1)(β−1)

Ŵ(β)
 symbolizes the discrete kernel, which is defined as

and for ̟ = 0 produce the following scheme

In order to assess the framework’s stablization, we need to identify the fixed points (x∗, y∗) . For 
this, we can do by comparing the right-hand side equal to 0, resulting in ηx( − 1) = y( − 1) and 
0.04x2( − 1)− y( − 1)+ 5x( − 1)+ 140+ ℑ = 0 . Assume that E = (x∗, y∗) is the fixed point, then the 
Jacobian matrix at E can be expressed as

Ta k e  a  g l a n c e  a t  t h e  p a r a m e t e r i z e d  s e t  (  B1  )  h a v i n g  ℑ = 10.  M o r e o v e r, 
E1 = −60.0± 12.2474489ι, E2 = −12.0± 2.4495ι, the eigenvalues that represent the two fixed points are 
ς1 = 0.19910+ 0.9837ι and ς2 = −0.0191− 0.0039ι in regard to E1 and ς1, ς2 via appreciation to E2 . In such a 
p ar t i c u l ar  i ns t anc e ,  t he  s te a dy  s t ate s  are  a s y mptot i c a l ly  s t ab l e  i f  t he y  f u l f i l l 
β < 2

π
min
ι

∣

∣ arg(ςι)
∣

∣ ≈ (2.7422/π) ≈ 0.8730. The framework has a pair of real  steady states 
E1 = (−17.89999,−36.0001) and E1 = (−57.00467, − 115.0001) using ℑ = 98 at component establish in set 
( B2 ). The eigenvalues that represent both fixed points are ς1 = 3.4657 and ς2 = −0.0908 for E1 signifies the saddle 
node and ς1, ς2 = 0.11990± 0.54689ι for E2 (that is, an unsteady concentrate), indicating that it is asymptotically 
steady when β < 2

π
min
ι

∣

∣ arg(ςι)
∣

∣ ≈ 0.8656. The computational findings at setting set ( B2 ) confirm the afore-
mentioned stabilization the requirements of the actual stable state approach to E2.

As previously stated, DFC incorporates the significant benefit of infinite collective memory. This is readily 
apparent in (4.7), in which the outcome x(n) is dependent on all preceding information x(0), ..., x(n− 1). Obvi-
ously, this is not the situation regarding the classical sense of framework (4.1). Utilizing the numerical data (4.7), 
a Matlab activity was developed.

We can calculate the neuron activities of the commensurate DFO-INN (4.1) model for β = 0.9 by display-
ing the result (x(n), y(n)) in the x − y plane, as shown in Fig. 1. The ICs (x(0), y(0))8,49 and bifurcation factors 
were determined for ℑ < 4. The bifurcation visualization incorporating a crucial value is shown in Fig. 2a,b and 
the ζmax as a function determined by applying the Jacobian methodology is shown in Fig. 2c. These scenarios 
affirm the presence of chaos and reinforce prior findings in the available research. When the energy stimula-
tion is ℑ < 4 , the commensurate DFO INN system exhibits no spikes in or brimming behaviour at the setting 
that initiates ( B1 ), At ℑ = 3, the steady stats are (x∗, y∗) = (−65,−13) and (55, 11). The associated eigenvalues 
are (i) ς1, ς2 = (−0.1740,−0.0460) and (0.5935, 0.0135), respectively. The primary erroneously neutral state 
approach in the aforementioned setting is a steady node and the next one is a saddle point, that is, unsteady. At 
this point, suppose ℑ = 4, and there is a single fixed point (x∗, y∗) = (−60,−12) with associated eigenvalues 
ς1, ς2 = (0.18, 0). In the following, we concentrate on ICs and Set ( B1 ) and vary the DFO in the range (0, 1). We 
developed the DFO-INN model for 6000 points and calculated the outcome (x(n), y(n)) in the x − y plane for 
the FOs 0.99,  0.96, 0.94, 0.91, 0.89 and 0.70. As shown in Fig. 3, the enticement changes as frequently as the FO 
changes. In the context of every scenario, the process space settles on a restricted attractant. We observe that as 
being β falls, the outcome addresses a certain amount of highlights as long as the smallest amount of variations 
n0 thereafter frequently deviates infinitely. As an illustration, n0 = 1854 when β = 0.70 (see Figure 3(f)). The 
mathematical results shown in Fig. 3a–k show that the computed result (x(n), y(n)) is dependent upon the FO.

Furthermore, we employ bifurcation illustrations that include the significant factor to learn additional 
information regarding the behaviour of the DFO-INN system (4.7). We fluctuate in measures of �ξ = 0.005 
across the range [0, 2] and pick ICs according  to8,49 and ℑ = 3.5. Fig. 4 depicts the bifurcation schematics for 
0.99,  0.96, 0.94, 0.91, 0.89 and 0.70. When β = 1 , the DFO-INN (4.7) demonstrates a changing pattern depicted 
in Fig. 1a, that, appropriately, corresponds to the normative bifurcation lead described in the scientific literature. 
The map connects to an individual fixed point in the interval 3 < ℑ < 4 Then, as 3.5 < ℑ ≤ 4.5 , non-hyperbolic 
equilibrium methods are inherently unstable. Compact fluctuations may result in a specific bifurcation linked 
with the non-hyperbolic states, which can lead to the phenomenon fluctuating from rigidity, vanishing, or being 
separated from numerous fixed points. Whenever the electrical power stimulus data, ℑ , raises from 3 to 4, the 
two steady states proceed towards the others, interact, and annihilate. It experiences a saddle node bifurcation, 

(4.4)



























x(ξ) = x(̟)+ 1
Ŵ(β)

ξ−β
�

u=̟

(ξ − u − 1)(β−1)
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�
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(ξ − u − 1)(β−1)
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in which a junction point and a stable component address adjacent ones, merge into an isolated fixed point, and 
then disintegrate as ℑ > 4 and it operates in every FO to a completely constructed chaotic system, as shown in 
Fig. 4. The explosion variations of the DFO-INN model with various FOs, as well as the classical case interac-
tions for ℑ ≥ 4 , are investigated.

As demonstrated by Fig. 4, the FO influences the bifurcation plot’s broadening transform in addition to the 
time frame of the erratic region. The bifurcation illustration for β = 0.96 corresponds to the pertinent numeri-
cal illustration, with the exception of an insignificant improvement in the range in which chaotic behaviour is 
noticed. Now, the DFO-INN system (4.7) generates a variety of bursting procedures based on FO modifications 
at constant electrical stimulation. Thanks to a preset inserted current ℑ = 4 , the DFO-INN system generates 
instinctively exploding at β = 0.94 , chattering at β = 0.89 and regularly exploding at β = 0.70 in deeper inter-
spike duration (see Figure 4). When we minimize the DFOs more significantly, the explosion time frame expands, 
resulting in spiked oscillations such as ( for β = 0.99 , it generates (a) no spiking; for β = 0.96 , it generates (b) 
small spiking; for β = 0.94 , it generates (c) the network started producing cortical-like asynchronous dynamics; 
for β = 0.91 , it generates (d) firing activity pattern; for β = 0.89 , it generates (e) synchronized firings disappear; 
for β = 0.70 , it generates (f) synchronized firings, respectively).

As we lessen β (while the other factors remain constant), we identify that DFO-INN system generates mutter-
ing at β = 0.99 and subsequently deviates out of the integer form framework that uses a stable current stimulation 
ℑ = 10 , the orbit no longer passes to a fixed point. Indeed, as n rises, the pattern of motion turns limitless (see 
Fig. 5). The range within which chaos can be detected differs significantly within the bifurcation diagrams of the 
classical and DFO-INN systems. Therefore, the FO model results in distinctive fluctuations. When the fractional 
order is reduced to 0.95, it generates hybrid form fluctuations.

As β diminishes, the time frame appears a bit shorter. The ζmax of the DFO-INN derived from the fractional 
Jacobian procedure described  in50 is shown in Figure 5 (a). The following diagram was produced employing the 
identical former factors and ICs as before, including β = 0.99 and ordinary exploding. In this case, the DFO-
INN model generates deeper brimming via a further exploded time frame. The stimulation structure shifts to 
more prolonged exploding, with a boost throughout both the stage of activity (that is, promptly exploding and 
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Figure 1.  The commensurate DFO-INN system (4.1) generates (a) tonic spiking pattern, (b) bursting pattern 
(c) chattering behaviour when β = 0.90.
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bursting) as well as the inactive stage. The outcome is perfectly consistent regarding the analogous bifurcation 
layout. Furthermore, as the FO decreases, the oscillatory trends transform concerning exploding to swiftly spikes 
in at β = 0.5 (see Fig. 5b,c). Through the energy stimulation ℑ = 12 , the DFO-INN framework controls from 
chattering to overflowing as FOs decline, producing deeper exploding regarding more frequently inter-spike in 
the specified time frame and then swiftly spiked as FOs minimize more deeply. Figure 1 depicts the contends of 
the DFO-INN with 3000 iterations when set B1 and β = 0.90 are assumed.

Noncommensurate DFO‑INN system
The behaviour of the FO-INN model with non-commensurate FO parameters is investigated in this subsection. 
The practise of employing distinguished FOs for every formula of the framework is referred to as the non-
commensurate order system. The representation of the non-commensurate DFO-INN can be viewed as

The quantitative framework of the incommensurate DFO-INN system (4.8) can be written according to the 
Theorem 2.1:

Currently, we examine the settings set ( B2 ), which has different inserted energy stimulation, ℑ , when the struc-
ture’s inherited factors in the context of Andronov-Hopf bifurcation produce a restriction process from a steady 
state solution in a self-governing evolving technique whenever the steady state modifies its degree of stability via 
the combination of entirely fictitious eigenvalues. These representations are clearly distinct, implying that changes 

(4.8)

{

c�
β1
̟ x(ξ) = 0.04x2(r − 1+ β1)− y(r − 1+ β1)+ 5x(r − 1+ β1)+ 140+ ℑ, r ∈ N̟−β1+1

c�
β2
̟ y(n) = σ

(

ηx(r − 1+ β2)− y(r − 1+ β2)
)

, r ∈ N̟−β2+1.

(4.9)
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Figure 2.  The commensurate DFO-INN system (4.7) generates the NN actions for the set ( B1 ), when β = 0.90 
and ℑ < 4 in this case the neurons in the network do not produce any spiking activity.
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in FOs β1 and β2 have an effect on the statuses of the incommensurate DFO-INN system (4.9). It denotes the 
immediate conception or demise of a recurring approach coming from equilibrium when a system’s prevailing 
value traverses a critical threshold. As a result, a bifurcating Hopf is feasible and appears in mechanisms via a 
scale greater than or equal to two. Take into account the DFO-INN system (4.9) containing the prevalent setting 
ℑ , where the state of balance point E = (x∗, y∗) is dependent on ℑ . Assume the Jacobian matrix’s eigenvalues, 
J  , with respect to the fixed point E become ς(ℑ), ς̃ (ℑ) = φ1(ℑ)± ιφ2(ℑ) . Assume that the subsequent influ-
ences have been fulfilled for a specific significant level ℑ , clarify that ℑ = ℑ0. For example, for (β1,β2) = (1, 0.9) , 
we have evidence that the structure’s contends transform from erratic to recurring as the energy estimation ℑ 
increases. The chaotic region is apparent for all (β1,β2) = (0.9, 0.3) , excluding a restricted area when ℑ nears 
10, whereas for (β1,β2) = (0.5, 1) , when the value of ℑ improves and towards ℑ = −104 , the incommensurate 

(a) β = 0.99 (b) β = 0.96 (c) β = 0.94

(d) β = 0.91 (e) β = 0.89 (f) β = 0.70

(g) β = 0.99 (h) β = 0.96 (i) β = 0.94

(j) β = 0.91 (k) β = 0.89 (l) β = 0.70

Figure 3.  Phase illustrations of the commensurate DFO-INN system (4.7) generate various kinds of spikes in, 
inherently overflowing chattering behaviour for different FOs, including system parameters set B1.
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DFO-INN system (4.9) demonstrates regular regions alongside oscillatory circular orbits. In addition, we examine 
the two additional situations to provide an improved illustrative of the impact of incommensurate DFO-INN 
system’s practises (4.9): 

(A1):   At the significant threshold of ℑ adjacent to the equilibrium point E , the matrix J  possesses a straight-
forward set of entirely fictitious eigenvalues, which shows that at ℑ = ℑ0, φ1 = 0 and φ2 = ω �= 0 referred 
to constitute the non-hyperbolicity criteria. Then the result is a uniform spectrum using a steady state 
at the threshold of ℑ and exclusively fictional eigenvalues that fluctuate efficiently as ℑ changes.

(A2):   When dφ1(ℑ)dℑ

∣

∣

∣

ℑ=ℑ0

= ν �= 0 referred to for being the transversality state to the network endures a Hopf 
bifurcation.

Consider that the characteristic polynomial has two exclusively complex factors for apply-
ing the Hopf bifurcation assessment to the evaluation. The steady state solution is the result that 
includes the formulations y = ηx  and 0.04x2 + (5− η)x + 140+ ℑ = 0. Then the steady state 
is x∗ = −3±

√
−0.16ℑ − 13.4/0.08 and y∗ = 2x∗. Thus, the characteristic equation reduces to 

g1(ς ,ℑ) = ς2 + (σ − 0.08x∗ − 5)ς + (ση − 5σ − 0.08σx∗) = 0; after plugging the values of σ and η, we 
have g1(ς ,ℑ) = ς2 + (4.8+ 0, 08x∗)ς − (0.016x∗ + 0.6) = 0 and ς(ℑ), ς̃ (ℑ) = φ1(ℑ)± ιφ2(ℑ), where 
φ1(ℑ) = −0.5(σ − 0.08x∗ − 5) and φ2(ℑ) = 0.5

√

(σ − 0.08x∗ − 5)2 + 4ση + 20σ + 0.32σx∗. We change FO 
β1 from 0 to 1 using an increment size of �β1 = 0.005 . Figures 6(a-c) demonstrate the bifurcation and their 
associated ζmax for (β1,β2) = (1, 0.7) with ℑ = ℑ0 = −100. According to Fig. 6, the configuration of the incom-
mensurate DFO-INN (4.9) exhibits chaos behaviour for lesser determines of β1 , as confirmed by ζmax , as shown 
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Figure 5.  The ζmax response of the DFO-INN model (4.7) for DFO β = 0.5 with a set of parameters stated 
under assumptions ( B1 ) and current stimuli ℑ = 12..
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in Fig. 6(b). For the DFO β1 = 1 , the ζmax illustrated in Fig. 6c alternates between the two extremes. The findings 
indicate the emergence of a chaotic region with recurring views.

To demonstrate the bifurcation requirement, we must determine ℑ = ℑ0 , which corresponds to the sig-
nificant threshold of bifurcation and is capable of being generated whenever �(ℑ) = 4.8+ 0.08x∗ = 0 employ-
ing the opposite sign of the steady state x∗ . The quantity is changed to ℑ = ℑ0 = −103 , which means that at 
that level, the resulting differentiation of φ1(ℑ) and the steady factor of g1(ς ,ℑ0) are nonzero. The structure 
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Figure 6.  Bifurcation, chaos and ζmax behaviour of the neural activities for non-commensurate DFO-INN 
system (4.9) generate various kinds of spiking and bursting patterns for various current stimuli ℑ using 
parametric sets ( B1 ) and ( B2 ) such as (a) small spiking; (b) synchronized firings; the network started producing 
cortical-like asynchronous dynamics; (c) occasional events of synchronized firings, respectively.
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encompasses a pair of exclusively imaginary eigenvalues at this point in time. Thanks to ℑ = 107 , the steady state 
(x∗, y∗) = (62.64358, 124.78821) is a steady prioritize because the eigenvalues are ς1, ς2 = (−0.02321± 0.61269ι) . 
The newly generated equilibrium approach (x∗, y∗) = (−63,−124) via ℑ = 105 includes exclusively fictitious 
eigenvalues ς1, ς2 = ±0.6731ι . The equilibrium approach turns unpredictable when we improve the electrical 
stimulation ℑ = −104. A bifurcation happens when a stable outcome eliminates its rigidity when the intricate 
conjugate eigenvalues traverse the multifaceted plane’s fictitious axes. The bifurcation and its ζmax are depicted 
in Fig. 6d–f to investigate the fluctuating behaviours of the incommensurate DFO-INN (4.9) when β2 is a con-
figurable FO. These outcomes can be achieved by differing β2 in the interval (0, 1] and via incommensurate FOs 
β1 = 0.9. We comprehend that whenever the β2 is inadequate, pathways get steady. When β2 expands, chaotic 
practises have been observed where the values of ζmax are non-negative, and insignificant recurring regions can 
be observed at which the information of ζmax are negative. Furthermore, as ζmax evolves bigger and closer to 1, 
the ζmax information varies from non-negative to negative, implying that the progressions of the incommensurate 
DFO-INN system (4.9) transition from inefficient to periodic. We are able to examine the exploding processes 
of the DFO-INN system (4.9). For ℑ ≤ −107, the DFO-INN framework alongside setting set ( B2 ) generates no 
spiked exertion when (β1,β2) = (1, 0.578) (see Fig. 6g–i). It demonstrates inconsistent oscillations with explicitly 
point spikes whenever the energy stimulation is simply increased to ℑ = −105. With increasing ℑ , it changes to 
a rapid spike in operation, which we revealed via ℑ = −80 and the additional factors set to their standard setting 
when (β1,β2) = (0.542, 0.578) (see Fig. 6j–l).

The data set has become anchored; therefore, we exclusively fluctuate the FO, employing the unchanged 
energy stimulation. The incommensurate DFO framework exhibits distinctive spiking behaviours for dis-
tinct FOs according to the inserted electricity, ℑ . The prior part discusses the asymptotic robustness of 
steady-state approaches. In addition to ℑ = −107 , the DFO mechanism’s stable state approach transforms 
into asymptotically steady for β2 < 1 . Assume ℑ = −101 and the asymptotic consistency for a single of 
the accurate equilibria turns into 0.8120. Fig. 7a–h depicts multiple kinds of resonances when the FOs are 
(β1,β2) = (1, 0.89), (1, 0.77), (1, 0.64), (1, 0.55), (1, 0.44), (1, 0.31), (1, 0.25), (1, 0.21) . The incommensurate 
DFO system generates erratic spikes in behaviour. In view of (β1,β2) = (0.83, 0.95) , simply smaller than one, 
the DFO-INN (4.9) communicates inconsistent sparking. When both FOs reduce to 0.80, it transforms to spiked 
via barely noticeable fluctuations and yields little spikes (see Fig. 7i–t). In accordance with the aforementioned 
outcomes, modifications in the incommensurate FOs possess an impact on the fluctuating characteristics of a 
DFO-INN model with spiking and bursting activities. Additionally, it indicates that an incommensurate DFO 
could correctly serve the structure’s behaviours, which is reinforced by the phase depictions of the condition 
components of the incommensurate DFO (4.9) (see Fig. 7).

Variable DFO
The objective of this subsection is to investigate the intricate behaviour of the DFO-INN in the context of DFVO 
significance. The framework of the DFVO-INN system is denoted as

where β(r) ∈ (0, 1] is the DFVO. The DFVO-INN model (4.10) and its numerical system were constructed from 
Theorem 2.1 in the manner that follows:

In the present moment, we examined the reactions of a system of 1000 independently connected DFVO-INN 
spikes using various fluctuating trends. For analysing the consequences of DFVO interactions, the system’s 
procedures for various FOs during a particular value definition are examined. The present study considers an 
identical type of interconnected system that Izhikevich proposed when he developed the classical integer-order 
 model8. The proportion of excitable neurons that inhibit is thought to be 4:1 (80% excitable and 20% hindering 
neuronal cells). We anticipate employing an analytical framework for developing and simulating a collection 
of DFVO spikes in NN. Analogous to cortical-in-nature neural networks, it adapts with collaborative interac-
tions and consistent fluctuations. Aside from synapse interactions, every nerve cell in the NN receives unsteady 
feedback stimulation.

Take into account the DFVO β(r) = 1
1+exp(−r) network with parameter set ( B1 ) (see Fig. 8a–c). When 

β(r) = tanh(r + 1), then the system exhibits cortical-like asynchronously tempo (see Fig. 8d–f). The intense 
black robust vertical stripes show that there are actually sporadic synchronized sacking activities (also referred 
to as alpha regularity ranges)8. When the DFVO is changed to β(r) = 970−3 cos(r/10)

100  , the system’s spiked sequence 
remains identical in terms of distinctive spike structure (see Fig. 8g–i). Nevertheless, the entire structure is spon-
taneously interrelated as neuronal cells self-organize into celebrations and develop steady, collaborative interac-
tions. When the DFVO changes to β(r) = 1− cos2 r/2 , certain nerve cells in the structure possess greater firing 
rates than others (see Fig. 8j–l). As the DFVO approaches 1, the processes alter. The succession of terminating 
behaviours is controlled by approximately fifty percent of the NNs. The synaptic activity vitality within NNs still 
remains unchanged. As a result, the DFVO patterns modify the spontaneous procedures of the unpredictability 
ensemble of NNs according to the reaction of the scale-free connection.

(4.10)
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Figure  8 illustrates the evolution of the complemented structure when the settings are changed to 
σ = 0.1, η = 0.2, ψ = 65 and ν = 8 . When β(r) = 1 , the system exhibits cortical-like instantaneous behav-
iour. This occurs because the influence of the memory on the cell power and the recuperation factor is fragile 
for β(r) < 1. The deep black vertical stripes indicate that synchronized explosions occur at certain moments 
(more commonly referred to as alpha regularity ranges). Gamma patterns are the additional regularity variations. 
When the DFVFO is β(r) = 8−sin(πr)

10  , the system’s behaviour transforms. The synchronized behaviour vanishes 
(see Fig. 8m–o). The system’s behaviour diminishes, while certain NNs in the system possess more activity than 
others. When the fractional order is β(r) = 1+ exp(−r) , the process entirely shifts The neuronal behaviour 
structure is controlled by a few neurons in general. The remaining neuronal cells in the cellular structure show 
no spiked processes. The spiked trend and raster-based sketch closely resemble the scale-free NN. Additionally, 
when contrasting the findings of the commensurate DF-INN system (4.9) illustrated in Fig. 8 and the outcomes 
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Figure 7.  Time evolution and NN activities for incommensurate DFO-INN systems (4.9) for various DFOs and 
current stimuli ℑ..
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Figure 8.  Bifurcation, chaos and ζmax behaviour of the neural activities for DFVO-INN system (4.10) generate 
various kinds of spiking and bursting patterns for various current stimuli ℑ using parametric sets ( B1 ) and ( B2 ) 
such as (a) small spiking; (b) synchronized firings; the network started producing cortical-like asynchronous 
dynamics; (c) occasional events of synchronized firings; (d) synchronized activity starts disappearing, 
respectively.
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of the incommensurate DF-INN system (4.7) displayed in Fig. 6 the illustrations are unambiguously distinct, 
indicating that the DFVO influences the dynamical features of the DFVO-INN model (4.9).

Controlling dynamics of DFO‑INN system
Stabilization of DFO‑INN system
Here, the formulation of control procedures that accomplish equilibrium is a crucial component in the research 
of chaotic frameworks, whether over a discrete or continuous period of time. In the following subsections, we 
will suggest three separate unpredictable control principles for stabilizing the formerly provided DF-INN system. 
Whenever we describe stabilization, we indicate incorporating an entirely novel dynamic value η(ξ) to equalize 
all of the technique’s assertions and figuring an efficient responsive equation for such parameters that brings the 
mechanism stipulated to zero in a reasonable amount of time.

Theorem 5.1 Assume that the FO-INN model (3.1) can be controlled using the one-dimensional control principle 
as follows:

Proof The time-dependent regulate component ηx(ξ) is used in the regulated FO-INN, which can be determined 
by

Plugging the suggested control principle (5.1) into (5.2) produces the straightforward structure

As previously stated, the goal is to demonstrate that the zero equilibrium of (5.3) is asymptotically stable, which 
indicates that the network’s stipulates coincide with zero over time. The linearization technique, outlined in 
Theorem 2.2, is capable of helping set up asynchronous reliability. The error mechanism can be produced in the 
concise form provided by

produces ℧ =
(

0.2 − 1
0.4 − 0.2

)

 with ℑ = −104. Clearly, it indicates that eigenvalues ς1 and ς2 of matrix ℧ fulfill 
∣

∣ arg(ς1)
∣

∣ = π > β π
2  and |ςι| <

(

2 cos
| arg ςι−π |

2−β

)β

 for ι = 1, 2 . According to Theorem 2.2, the zero findings of 
(5.3) is asymptotically stable, and thus the structure is stabilized.   �

The outcome of Theorem 5.1 are displayed in Fig. 9a–c for ℑ = −104 and set of parameters ( B1 ). Evidently, 
the regulated mechanism’s declarations merge to zero, as well as the chaotic aspect of the framework, which is 
removed.
Synchronization of INN system
An additional intriguing feature, besides the stabilization of DFO- INN, is the synchronization of one chaotic 
structure with another. The incorporation of an assortment of controlling factors into the regulated chaotic 
framework and continually modifying the control mechanisms so that the clarifies develop synchronized is 
referred to as synchronization.

In this section, we will attempt to synchronize a slave DFO framework composed of an amalgamation of the 
master FO INN system (3.1). The master system will be denoted by the subscript m for convenience. The master 
system is of the following design:

Introducing the slave system as:

The synchronization regulators are operators C1 and C2 . The synchronization oversight for r ∈ N̟−1+β is 
expressed as

(5.1)ηx(ξ) =
1

2
x(ξ)− 0.04x2 + y − 5x − 140− ℑ.

(5.2)

{

c�
β
̟ x(ξ) = 0.04x2(ξ − 1+ β)− y(ξ − 1+ β)+ 5x(ξ − 1+ β)+ 140+ ℑ− x(ξ − 1+ β+)+ ηx(ξ − 1+ β),

c�
β
̟ y(n) = σ

(

ηx(ξ − 1+ β)− y(ξ − 1+ β)
)

− y(ξ − 1+ β).

(5.3)

{

c�
β
̟ x(ξ) = 1

2x(ξ − 1+ β)− y(ξ − 1+ β),
c�

β
̟ y(n) = σ

(

ηx(ξ − 1+ β)− y(ξ − 1+ β)
)

− y(ξ − 1+ β).

(5.4)c�β
̟

(

x1(ξ), x2(ξ)
)

= ℧
(

x1(ξ), x2(ξ)
)T

(5.5)

{

c�
β
̟ xm(ξ) = 0.04x2

m
(ξ − 1+ β)− ym(ξ − 1+ β)+ 5xm(ξ − 1+ β)+ 140+ ℑ− xm(ξ − 1+ β),

c�
β2
̟ ym(ξ) = σ

(

ηxm(ξ − 1+ β2)− ym(ξ − 1+ β2)
)

− ym(ξ − 1+ β).

(5.6)







c�
β
̟ xu(ξ) = 0.04x2

m
(ξ − 1+ β)− yu(ξ − 1+ β)+ 5xu(ξ − 1+ β)+ 140+ ℑ− xu(ξ − 1+ β)

+C1(ξ − 1+ β),
c�

β2
̟ yu(ξ) = σ

�

ηxu(ξ − 1+ β2)− yu(ξ − 1+ β2)
�

− yu(ξ − 1+ β + C2(ξ − 1+ β)).
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The master (5.5) and slave (5.6) systems have been reported to be synchronized if lim
r  →∞

|υ (r)| = 0, for  = 1, 2. 
The subsequent results outlines the proposed regulation law for achieving framework synchronization.

Theorem 5.2 Consider the system

where ℓ− 1 ∈ (−1, 2̟ − 1),  = 1. Then the systems defined in (5.5) and (5.6) are synchronized.

Proof By means of (2.1) and using the error approach stated in (5.7), we have

Plugging the control mechanism (5.8) into (5.9), we have

where

(5.7)
υ1(r) = xu(r)− xm(r),

υ2(r) = xs2(r)− xm2(r).

(5.8)
C1(r − 1+ β) = 0.04

(

x2u(r − 1+ φ)− x2
m
(r − 1+ β)

)

−
(

yu(r − 1+ β)− ym(r − 1+ β)
)

+ 5
(

xu(r − 1+ β)− xm(r − 1+ β)
)

− ℓ1υ1(r),

(5.9)
c�β

̟υ1(r) = 0.04
(

x2u(r − 1+ φ)− x2
m
(r − 1+ β)

)

−
(

yu(r − 1+ β)− ym(r − 1+ β)
)

+ 5
(

xu(r − 1+ β)− xm(r − 1+ β)
)

+ C1(r − 1+ β).
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Figure 9.  The stabilized depictions of the controlled DFO-INN model (5.3) for set of parameters ( B1 ) and 
current stimuli ℑ = −104..
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Since ς1 = 1.2 and ς2 = −1.6 indicate the eigenvalues of ℧, it is obvious that the eigenvalues ςι. ι = 1, 2 meets 
the requirements of Theorem 2.2, the DFO-INN master framework (5.5) and slave model (5.6) are synchronously 
robust.   �

Mathematical modelling employing MATLAB is used to validate this outcome. We select ℑ = 4 and the ICs 
stated  in8,49 with ǫ1(0) = −0.01. The temporal progression of contends of the fractional oversight mechanism 
(5.8) dependent on manipulation rules (5.9) is depicted in Fig. 10. It is unambiguous that the deviations are 
approaching zero, indicating that the synchronization addressed previously is productive.

Conclusion
In this work, we demonstrated the INN model in the frame of a Caputo-type fractional difference operator. The 
DFO in the context of commensurate and incommensurate FOs, which serves as the model’s critical parameter, 
can generate a wealth of bursting and spiking behaviors in the DFO-INN model. The model exhibits inherent 
bursting oscillations when the fractional order is reduced from 1 (integer-order). As the DFO is reduced further, 
the oscillations change to irregular spiking or mixed modes. A broad assortment of burst lengths are observed in 
bursting oscillations when the fractional order diminishes from 1 to increasingly lower values. The model exhibits 
rapid spiking at significantly smaller FO and VO levels, respectively. The DFOs and injected stimulus current 
determine the regime of bursting and spiking oscillations. All other parameters remain unchanged, and only the 
DFO needs to change to shift between regimes. The VO model generates distinct spiking and burst-like oscilla-
tions in a sequential manner when other parameters are changed. Additionally, despite any sort of modification 
input, the model generates spike frequency adaptation that arises from fractional dynamics. The reinforcement 
mechanism of the memory is responsible for these different oscillations, the spike frequency adaptation, and the 
entirely experience-dependent spiking behaviors. The stabilization approaches are one-dimensional in nature, 
which means that we simply need to adapt and control one of the model’s indicators to ensure that all sets tend to 
zero. The system’s convergence process is predicted employing DFO fixed point theory. Furthermore, we suggest 
an amalgamated synchronization tactic in which the DFO-INN serves as the master and the slave is an amalgam 
of the fractional INN. Additionally, the linear modelling approach is used to determine oversight convergence. 
Analytical findings are included throughout the work to corroborate its results and validate the practicability 
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Figure 10.  Time-dependent graphs for the fractional error system (5.9) and current stimuli ℑ = 4..
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of the laws suggested. The transition declares of multiple rhythm themes, involving the halting state, are being 
summarized employing specific fixed parameter distinguishes that correspond to various DFOs β ∈ (0, 1].

Furthermore, our findings imply that the basic structure of fractional differences provides an overall descrip-
tion of neuronal responses. It is being discovered that FO interactions can be advantageous, if not potent, in the 
modelling and implementation of contemporary  issues35. For a futuristic viewpoint, intracellular Gaussian white 
noise, random interactions for nervous framework currents, and external magnetic induction include regular 
spiking, chattering, thalamocortical, period-doubling spiking, resonator spiking and chaotic spiking and features 
of different-designed NNs connected with brain illnesses using DFO interactions will be examined. As a result, 
more research is essential to explore the attributes of biophysically feasible neuronal cell frameworks and network 
functioning using Mittag-Leffler kernel behaviour.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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