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Co‑enrichment of cancer‑associated 
bacterial taxa is correlated 
with immune cell infiltrates 
in esophageal tumor tissue
K. L. Greathouse 1,2,7*, J. K. Stone 3,7, A. J. Vargas 4, A. Choudhury 1, R. N. Padgett 5, 
J. R. White 6, A. Jung 1 & C. C. Harris 3

Esophageal carcinoma (ESCA) is a leading cause of cancer‑related death worldwide, and certain 
oral and intestinal pathogens have been associated with cancer development and progression. We 
asked if esophageal microbiomes had shared alterations that could provide novel biomarkers for 
ESCA risk. We extracted DNA from tumor and non‑tumor tissue of 212 patients in the NCI‑MD case 
control study and sequenced the 16S rRNA gene (V3‑4), with TCGA ESCA RNA‑seq (n = 172) and WGS 
(n = 123) non‑human reads used as validation. We identified four taxa, Campylobacter, Prevotella, 
Streptococcus, and Fusobacterium as highly enriched in esophageal cancer across all cohorts. Using 
SparCC, we discovered that Fusobacterium and Prevotella were also co‑enriched across all cohorts. 
We then analyzed immune cell infiltration to determine if these dysbiotic taxa were associated with 
immune signatures. Using xCell to obtain predicted immune infiltrates, we identified a depletion of 
megakaryocyte‑erythroid progenitor (MEP) cells in tumors with presence of any of the four taxa, along 
with enrichment of platelets in tumors with Campylobactor or Fusobacterium. Taken together, our 
results suggest that intratumoral presence of these co‑occurring bacterial genera may confer tumor 
promoting immune alterations that allow disease progression in esophageal cancer.

Esophageal carcinoma (ESCA) is a rapidly increasing malignancy, with global rates increasing nearly 50% from 
2012 to 2019 (Surveillance, Epidemiology, and End Results (SEER), National Cancer Institute). ESCA is pre-
dominantly classified as adenocarcinoma (EAC) and squamous cell carcinoma (ESCC), which show striking 
disparities. EAC is more common in men, younger patients, and Western countries while ESCC is more common 
in women, older patients, and African and Asian  countries1,2. Development of ESCA also varies by histology, 
with EAC linked to a pro-inflammatory condition called Barrett’s esophagus and ESCC linked to environmental 
factors, including obesity and smoking, and for both somatic mutations such as TP533–6.

These risk factors are also known to play a role in modulating the gastrointestinal  microbiome7. Several studies 
have demonstrated community and taxonomic alterations of the esophageal microbiome in ESCA  patients8–10, 
showing a transition from Gram-positive dominated to a Gram-negative dominated microbiota before devel-
opment of EAC. In vivo studies indicate that microbiome changes occur during the development of ESCA that 
correlate with changes in gene expression in the esophageal epithelium, including multiple microbial sensing 
pathways (e.g. toll-like receptors) that influence immune signaling and immune cell recruitment  patterns11,12. 
These data suggest that alterations within the microbiome, or dysbiosis, may result in chronic inflammation and 
contribute to the development of ESCA.

To better understand how microbial dysbiosis and its interplay with the immune system contributions to 
ESCA development, we analyzed the microbiome of three datasets from the National Cancer Institute-Mar-
yland (NCI-MD) case control study, The Cancer Genome Atlas (TCGA) RNA sequencing (RNA-seq) and 
whole genome sequencing (WGS) datasets. We compared taxonomic abundance between non-tumor adja-
cent and tumor tissues and identified four genera, Campylobacter, Fusobacterium, Prevotella, and Streptococcus, 
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co-enriched in each dataset. Further examination of clinicopathological factors such as gender, race, smoking 
status, and histology revealed no association with the above four taxa. However, taxa association with immune 
cell abundance suggested platelet differentiation was increased in tumors with high taxa abundance. These data 
suggest certain opportunistic pathogenic taxa may promote esophageal cancer development by altering the 
immune microenvironment.

Results
To better understand the microbial and immune system contributions to ESCA development, we comprehen-
sively evaluated the esophageal tissue microbiome and inferred immune cell infiltration in patients with ESCA 
in two cohorts, NCI-MD and TCGA, with latter divided into WGS and RNA-seq, which results in three datasets. 
We extracted DNA from patients enrolled in the NCI-MD case control study from the Baltimore, Maryland area 
(118 non-tumor tissues, 94 tumors; 45 NT-T pairs) for 16S V3-4 sequencing as previously  described13. Briefly, 
sequence reads were filtered for length (> 200bp) and max error rate (0.5%), and submitted for high-resolution 
taxonomic assignment (Resphera Insight) to assess taxa abundance. After QC, 154 samples were used for analysis. 
TCGA ESCA RNA-seq data (11 non-tumor tissue, 162 tumors; 11 NT-T pairs) and whole genome sequencing 
(WGS) (61 non-tumor tissue, 62 tumors; 61 NT-T pairs) data were downloaded (GDC Data Portal, NCI) as 
validation cohorts (Fig. 1A, Tables S1-S3). Stringent quality control measures were applied on both data sets 
(Methods).

First, we sought to determine if any differences existed in the microbiome between ESCA tumor and non-
tumor adjacent tissues. No differences in alpha or beta diversity were seen for the NCI-MD cohort, however alpha 
diversity decreased significantly in TCGA RNA-seq tumor samples but increased significantly in TCGA WGS 
tumor samples (Figure S1). Because tobacco smoking is a key risk-factor for developing esophageal  cancer14, we 
asked if smoking status or other key ESCA risk factors were associated with alpha diversity. Interestingly, none of 
these clinicopathological factors (gender, histology, race, smoking status, or stage) showed significant difference 
in taxa abundance across all three cohorts (Figure S2).

Examination of the most abundant taxa in the NCI-MD cohort, independent of tissue type, identified Strepto-
coccus, Pseudomonas, Prevotella, Veillonella, Lactobacillus, Stenotrophomonas, Fusobacterium, and Acinetobacter. 
One (Pseudomonas) and six (Streptococcus, Pseudomonas, Prevotella, Veillonella, Lactobacillus, and Fusobacte-
rium) of these taxa were also highly abundant in TCGA RNA-seq and WGS cohorts, respectively (Fig. 1). We 
then performed a statistical concordance analysis (Methods, Table S4), which identified four common taxa across 
all cohorts: Campylobacter, Fusobacterium, Prevotella, and Streptococcus as enriched in ESCA (Fig. 2). All four 
taxa were enriched in tumors in at least two of three cohorts (Table S4). Additionally, given that TP53 is one of 
the most frequently mutated genes in  ESCA4,6, we investigated TP53 mutation status in the TCGA cohort (WGS 
and RNA-seq) and found no relationship with abundance of these four taxa (Figure S3).

Comparison of EAC versus ESCC revealed no significant differences in abundance of the four above taxa in 
any cohort (Figure S4) and expansion to include all taxa returned no differences after Benjamini–Hochberg cor-
rection. To determine if any relationship existed with microbial function, apart from community structure, we 
investigated the inferred metabolic profile of the ESCA microbiome using PICRUSt, but did not identify any asso-
ciations with ESCA between tumor vs non-tumor tissue, overall or stratified by the four taxa (data not shown).

Having observed Fusobacterium was one of the most enriched taxa in ESCA tissue, we assessed whether this 
genus is co-abundant with specific taxa in ESCA. Specifically, Prevotella, and Streptococcus are often found in 
oral biofilms alongside Fusobacterium nucleatum where the two genera rely on F. nucleatum binding to salivary 
protein anchors (e.g. Statherin) and sharing nutrients to  grow15. Furthermore, Fusobacterium and Prevotella 
have been previously described as co-enriched in  ESCA9,16; therefore we asked if any of our four enriched taxa 
(Campylobacter, Fusobacterium, Prevotella, and Streptococcus) were co-enriched in the same tumors or were asso-
ciated with other taxa. As most microbiome data is often sparse, correlation coefficients calculated by Pearson or 
Spearman methods are prone to spurious and false-positive  relationships17 within such community  networks18–20, 
so we used SparCC to compensate for the sparsity inherent to 16S-based  studies21. We calculated co-enrichment 
for each of the three datasets. Overall, TCGA (RNA-seq and WGS) results were highly concordant (Table S5), 
and showed a consistent co-enrichment of certain taxa, with Fusobacterium and Prevotella co-enriched across 
all cohorts (Fig. 3A–C, Figure S5). These two taxa were also enriched with Leptotrichia and Veillonella, consist-
ent with prior reports in colorectal  cancer22,23. The NCI-MD cohort beta diversity suggested that Streptococcus-
enriched samples were divergent from those with Campylobacter, Fusobacterium, and Prevotella (Figure S1E). 
We confirmed a negative co-enrichment between Streptococcus and Campylobacter and Fusobacterium in this 
cohort (Fig. 3A). Given this negative association, we used our TCGA WGS data to investigate species-level dif-
ferences, and found a significant enrichment in S. oralis, F. nucleatum, P. denticola and P. intermedia in tumors as 
compared to non-tumors (Figure S6). Regardless of cohort, we found these four taxa were negatively associated 
with Acinetobacter, Brevundimonas, Klebsiella, Pseudomonas, and Xanthomonas (Fig. 3A–C). These data indicate 
that co-occurrence of Fusobacterium and Prevotella are a common feature of ESCA and may be important in 
ESCA pathology.

Since Fusobacterium spp. have demonstrated effects on gene expression changes within tumor epithelial and 
immune cells, we predicted immune cell infiltration from NCI-MD and TCGA RNA-seq data using the decon-
volution algorithm  xCell24, and then compared their abundances with our four co-enriched taxa. We identified a 
depletion of megakaryocyte-erythroid progenitor (MEP) cells in tumors with presence of any of the four bacteria 
(Fig. 4A,B), which was significant in the RNA-seq TCGA dataset (p < 0.001) (Figure S7-S8). Furthermore, we 
found a modest enrichment of platelets in tumors with Campylobactor or Fusobacterium (p < 0.06) (Fig. 4A,B, 
Figure S9). These data suggest that intratumoral presence of these bacterial genera results in loss of MEPs by 
promoting their terminal differentiation to platelets.
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Figure 1.  Identification of microbial signatures in esophageal cancer. (A) Bacterial abundance within the 
NCI-MD case control study calculated from 16S V3-4 amplification. ESCA adj. indicates non-tumor adjacent 
tissue. (Panel) Total number of patients used in this study from three cohorts: NCI-MD case control study, 
TCGA RNA-seq, and TCGA whole genome seq (WGS). (B) Bacterial abundance within TCGA WGS, 
determined by quantification of non-human aligned reads. (C) Bacterial abundance within TCGA RNA-seq, 
determined by quantification of non-human aligned reads. A 1% cutoff was applied to all taxa as the minimal 
average (across samples) for plotting.
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Discussion
Globally rising rates of ESCA suggest that potentially novel drivers are partially responsible, however identifi-
cation of these factors remains a significant problem in diagnosis and treatment. In this study we asked if the 
microbiome, a known driver of various GI  malignancies25, was altered in ESCA in comparison to non-tumor 
adjacent esophageal tissue. We found enrichment of the taxa Campylobacter, Fusobacterium, Prevotella, and 
Streptococcus in tumor tissue. These findings are consistent with other studies examining the ESCA  microbiome8, 
although our study is the first to report the co-enrichment of all four taxa in the same cohorts. Additionally, as 
these taxa exist within a community, abundance changes in one taxon are associated with changes in others, 
and we found consistent co-enrichment networks with the above four taxa common across cohorts, including 
associations of Fusobacterium, Prevotella, Leptotrichia, and Veillonella. Interestingly, these taxa may also invoke 
terminal differentiation of MEPs into platelets within the tumor microenvironment. Streptococcus spp. induce 
platelet activation and secretion through FcγRIIA  signaling26. Lipopolysaccharide, the major outer membrane 
component in Gram-negative microbes such as Campylobacter, Fusobacterium, and Prevotella, also activate 
platelets through TLR4 signaling and induces proinflammatory cytokine  secretion26–28. This suggests that the 
intratumoral presence of these bacteria may result in MEP to platelet differentiation. Expanded platelet counts 
are known to play a role in esophageal cancer development and  metastasis29. Platelet-derived growth factor A 
(PDGFA) increases proliferation and invasion of multiple cancer types and high expression is a poor prognostic 
factor in  ESCA30. Platelets may also promote metastasis through increasing interactions between primary tumor 
and endothelial cells, as occurs in colorectal  cancer30,31, suggesting these taxa may contribute to increased platelet 
counts and poorer ESCA prognosis.

A common finding among several cancers of the GI tract, from oral squamous cell carcinoma to colorectal 
cancer, is the enrichment of Fusobacterium spp., including Fusobacterium nucleatum32. This species in par-
ticular has been shown in many studies to be not only enriched in the tumor but also in adjacent  biofilms33. 

Figure 2.  Four taxa are enriched in esophageal cancer across cohorts. Abundance of (A) Fusobacterium, 
(B) Campylobacter, (C) Prevotella, and (D) Streptococcus within NCI-MD case control study calculated from 
16S V3-4 amplification. Abundance of the above four taxa within TCGA WGS and RNA-seq, determined by 
quantification of non-human aligned reads. Violin plots indicate relative abundance of each of the four taxa; % 
is the number of tumors with taxa present (ratio is number of samples with taxa present over number of total 
samples). Co-association was determined by statistical concordance analysis (Methods).*Statistical concordance 
analysis is located in Table S4.
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Figure 3.  Fusobacterium and Prevotella are consistently co-associated across cohorts. (A) Taxa co-enrichment 
networks within the NCI-MD case control study. Taxa abundance was permuted through SparCC with 100 
iterations, and correlation coefficients were filtered for X < − 0.2 and X > 0.2. Gold edges indicate positive 
coefficients demonstrating co-enrichment while blue edges indicate negative coefficients demonstrating 
exclusion. Edge thickness represents normalized coefficient values. (B) Taxa co-enrichment networks within 
TCGA RNA-seq. (C) Taxa co-enrichment networks within TCGA WGS. Networks for (B) and (C) were filtered 
for correlation coefficients X < − 0.3 and X > 0.3, otherwise networks were constructed as described for (A).
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Fusobacterium is known to be an important bridging species during dysbiosis development, by colonizing early 
and allowing other taxa, including Streptococcus, to form links to additional species to create and establish 
 biofilms32. Biofilms are seen in multiple cancer types, including oral and colon, and create opportunities for the 
growth of more virulent or pathogenic strains of certain Gram-negative  microbes11,33. This increased virulence 

St
rep

toc
oc
cu
s

Pr
ev
ote
lla

Fu
so
ba
cte
riu
m

Ca
mp
ylo
ba
cte
r

MEP
Eosinophils
Memory B−cells
Hepatocytes
Neurons
CMP
GMP
Osteoblast
Erythrocytes
MPP
Chondrocytes
Preadipocytes
aDC
mv Endothelial cells
Macrophages M2
iDC
Adipocytes
Th2 cells
Mesangial cells
Smooth muscle
pro B−cells
Mast cells
Monocytes
Neutrophils
HSC
ly Endothelial cells
Macrophages M1
Macrophages
Myocytes
Fibroblasts
DC
Endothelial cells
Megakaryocytes
NKT
Pericytes
Skeletal muscle
Platelets
pDC
CD8+ T−cells
CD8+ naive T−cells
Basophils
CD4+ naive T−cells
CD4+ Tem
CD8+ Tem
Melanocytes
CLP
Class−switched memory B−cells
Keratinocytes
Sebocytes
naive B−cells
Epithelial cells
Plasma cells
NK cells
CD4+ T−cells
CD4+ Tcm
CD4+ memory T−cells
CD8+ Tcm
Tgd cells
B−cells
Tregs
cDC
Th1 cells
Astrocytes
MSC

−0.4 −0.2 0 0.2 0.4

Spearman r

Ca
mp
ylo
ba
cte
r

St
rep

toc
oc
cu
s

Pr
ev
ote
lla

Fu
so
ba
cte
riu
m

Th1 cells
MEP
Osteoblast
MSC
Melanocytes
CMP
GMP
CD4+ Tem
Plasma cells
Epithelial cells
CD8+ naive T−cells
mv Endothelial cells
pro B−cells
Class−switched memory B−cells
Neurons
cDC
Platelets
DC
pDC
Chondrocytes
CD4+ T−cells
B−cells
CD4+ memory T−cells
iDC
CD4+ naive T−cells
Tregs
Tgd cells
Astrocytes
NK cells
Adipocytes
NKT
Mast cells
ly Endothelial cells
Skeletal muscle
Endothelial cells
Monocytes
Megakaryocytes
CD8+ Tem
Erythrocytes
MPP
CD4+ Tcm
CLP
Sebocytes
Neutrophils
Pericytes
Fibroblasts
Myocytes
aDC
Basophils
Mesangial cells
Memory B−cells
Hepatocytes
Preadipocytes
CD8+ T−cells
Th2 cells
Smooth muscle
Macrophages
Macrophages M1
naive B−cells
CD8+ Tcm
Macrophages M2
HSC
Eosinophils
Keratinocytes

−0.3 −0.2 −0.1 0 0.1 0.2

Spearman r

TCGA RNA-seq
A B

NCI-MD

Figure 4.  Megakaryocyte–erythroid progenitor cells are depleted in tumors with high carriage of ESCA-
enriched taxa. (A) RNA-sequencing was performed on NCI-MD patients (n = 23; non-tumor = 13, tumor = 10) 
and samples were analyzed for predicted cell infiltration using xCell (citation). Cell infiltrates and taxa 
abundance were correlated using Spearman’s coefficient. (B) Correlation of xCell predicted cell infiltration in 
TCGA RNA-seq patients with taxa abundance. *Statistical significance analysis in Fig. S7-8.
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allows for the attachment of Fusobacteria and other oral and GI enriched microbes to adhere to sugar molecules 
and proteins on the surface of epithelial and immune  cells34,35. These attachments create opportunities for inva-
sion of Fusobacterium and Porphyromonas spp. to invade epithelial cells, promote inflammatory cell signals, and 
enhance epithelial cell motility to promote extraversion and  metastasis36. However, it is important to recognize 
that more than one pathogen, like F. nucleatum, is likely required to initiate or promote cancer development or 
 metastasis37. Thus, the coordinate efforts between bridging species such as F. nucleatum, and others like those 
we found co-enriched in ESCA tumors, can create the opportunity for other pathogens to work together to 
promote cancer.

These findings suggest that therapeutic anti-cancer strategies targeting one genus or species are likely to fail 
as other associated taxa may offset the loss of those taxa. Instead, it is likely a multi-targeted strategy, based on 
presence of intratumoral taxa, for modulating microbial dysbiosis is required to improve treatment and patient 
outcome. Further research is needed, however, to better understand the mechanisms driving enrichment of these 
taxa and immune cells in ESCA and other cancers.

Methods
University of Maryland (UMD) esophageal samples: collection and DNA extraction
DNA was extracted from 212 esophageal tissue samples, one plain water control (Mo Bio Laboratories, Inc, Carls-
bad, CA, USA), one water control (Mo Bio Laboratories, Inc, Carlsbad, CA, USA) that was carried through the 
DNA extraction process, and one mock community (BEI resources, Manassas, VA, USA). Esophageal tissue was 
collected at the University of Maryland Medical Center (Baltimore, MD, USA) under an IRB-approved collec-
tion protocol (OH98CN027/ FWA00005897, National Institutes of Health Institutional Review Board) where all 
surgical subjects gave informed, written consent prior to collection, and all procedures were performed in accord-
ance with the Declaration of  Helsinki31,32. The study was approved by National Institutes of Health Institutional 
Review Board. Samples were flash-frozen and stored at − 80 °C until DNA extraction. Tumor stage, histology, 
and Barrett’s Esophagus status were determined from the pathology report. All work areas were cleaned with 70% 
ethanol and 10% bleach prior to DNA extraction. DNA extraction was carried out by lysing the microbes in fresh 
frozen tissue samples using Yeast Cell Lysis Buffer (Epicentre, Madison, WI, USA) and bead beating. Proteinase 
K and RNAse A were added to the samples to remove proteins and RNA, and to enrich for DNA. Samples were 
processed through gDNA column (Invitrogen, Carlsbad, CA, USA) and eluted in certified DNA- and RNA-free 
water (Mo Bio Laboratories, Inc, Carlsbad, CA, USA)25.

University of Maryland (UMD) esophageal samples: PCR amplification and MiSeq sequencing
PCR amplification of the V3-4 region of the 16S rRNA gene in each sample was completed at three different 
dilutions of genomic DNA (1×, 10× and 100×), and the PCR reaction with the highest yield was carried forth 
to sequencing as previously  described27. This process is designed to overcome the inhibitory effect of a large 
amount of human DNA in esophageal tissue samples. Paired-end DNA sequencing of the amplicons from all 
samples and both variable regions were completed in the same run on a MiSeq machine (M04141, Illumina, San 
Diego, CA, USA) using the 2 × 300 base pair chemistry (Reagent barcode: MS3917443-600V3) and 50 unique 
sample barcodes. All dilutions, PCR amplification and sequencing were completed at the University of Minnesota 
Genomics Center (Minneapolis, MN, USA).

16S rRNA Sequence analysis
Raw read pairs from the MiSeq platform were trimmed for quality using  Trimmomatic38 with a target final 
error rate of 0.5%, and merged into consensus fragments with  FLASH39. High-quality unmerged forward reads 
(≥ 200bp after trimming) were also included for downstream analysis to increase sample coverage. PhiX spike-in 
fragments were detected using  BLASTN40 and removed. Sequences associated with PCR chimeras were iden-
tified using  UCLUST41 and filtered. Human genome contaminant identification was performed by aligning 
sequences against hg19 using  Bowtie242, and mitochondria and chloroplast removal utilized assignments by 
the RDP  classifier43. Of the 212 original samples extracted and sequenced, 154 remained after performing the 
above filtering and contamination steps. Barrett’s esophagus samples were removed from downstream analysis 
due to low quality reads, leaving only 5 samples remaining, which was too few for analysis. Passing 16S rRNA 
gene sequences were assigned a high-resolution taxonomic lineage using Resphera Insight, a custom 16S rRNA 
bioinformatics pipeline that utilizes both the SILVA and Greengenes databases for  alignment33,44. This analysis 
utilized a data processing, checking and exploration 9-step process as described in https:// great house lab. github. 
io/ esoph- micro- cancer- workfl ow/ data_ proce ssing_ nci_ umd. html.

To filter out contaminant organisms associated with DNA extraction kit reagents and other sources, we 
first reviewed negative controls / blank samples prepared with original tissue samples, and developed a set of 
dominant indicator contaminant species including Bradyrhizobium spp., Propionibacterium_acnes, Agrobacte-
rium_tumefaciens, Delftia spp. and Ralstonia spp. We then performed a correlation analysis between all species/
OTUs and these indicator species. Any species/OTU with a nonparametric Spearman correlation ≥ 0.25 was 
then considered to be a contaminant and was removed; however 10 species/OTUs with known human body 
site associations were retained including: Faecalibacterium prausnitzii, Prevotella copri, Collinsella aerofaciens, 
Lactobacillus rhamnosus, Prevotella nigrescens, Prevotella disiens, and Finegoldia magna. To filter very low fre-
quency contaminants, we further removed all members associated with a set of genera known to be contami-
nants from prior  literature45: Bradyrhizobium, Ralstonia, Delftia, Agrobacterium, Janthinobacterium, Halomonas, 
Methylobacterium, Aquamicrobium, Diaphorobacter, Herbaspirillum, and Variovorax. After contaminant removal, 
samples were normalized through rarefaction to 500 sequences per sample. Alpha and beta-diversity analysis 
performed with  QIIME46.

https://greathouselab.github.io/esoph-micro-cancer-workflow/data_processing_nci_umd.html
https://greathouselab.github.io/esoph-micro-cancer-workflow/data_processing_nci_umd.html
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Processing of The Cancer Genome Atlas (TCGA) samples
RNA-seq and WGS bam files reflecting cancer and non-cancer samples from esophageal carcinoma patients 
available from TCGA were identified using the Genomic Data Commons (GDC) portal and downloaded using 
the GDC data transfer client (http:// portal. gdc. cancer. gov/; Link: https:// nam02. safel inks. prote ction. outlo ok. 
com/? url= https% 3A% 2F% 2Fwww. ncbi. nlm. nih. gov% 2Fgeo% 2Fque ry% 2Facc. cgi% 3Facc% 3DGSE 23430 4& 
data= 05% 7C01% 7CLei gh_ Great house% 40bay lor. edu% 7C9b7 1dac5 157d4 6f4d9 9008d bae42 459d% 7C22d 2fb35 
256a4 59bbc f4dc2 3d42d c0a4% 7C0% 7C0% 7C638 29537 18823 27356% 7CUnk nown% 7CTWF pbGZs b3d8e yJWIj 
oiMC4 wLjAw MDAiL CJQIj oiV2l uMzIi LCJBT iI6Ik 1haWw iLCJX VCI6M n0% 3D% 7C3000% 7C% 7C% 7C& sdata= 
GBWGh A7Ntp pWJL7 UcfC5 M0x3JM% 2B3Z9 Tei7n L1fzT 6eM% 3D& reser ved=0 Token (password)—ctcham-
kodpurjqf). Barrett’s esophagus status, tumor stage, gender, race and survival information were also retrieved 
when available from the GDC.

Quality control and identification of microbial DNA
Unmapped sequences from the raw RNA-seq and WGS bam files were converted to FASTQ format using 
 Samtools47 and trimmed for quality with  Trimmomatic38 to remove error-prone reads. Additionally, in order to 
remove unmapped spliced transcripts and other poorly aligning sequences, we performed a local alignment to 
the human reference (hg19) using  Bowtie242. Clean sequences passing all filters were assigned to a taxonomic 
lineage using Pathoscope (v1.0)48,49. To filter out contaminant organisms associated with DNA extraction kit 
reagents and other laboratory sources, we developed a set of 10 dominant indicator contaminant species including 
members of Bradyrhizobium, Propionibacterium, Pseudomonas, and Arthrobacter. We then performed analysis 
between all species/OTUs and these indicator species across WGS tumor, WGS normal and RNA-seq samples. 
Any species detected in at least 58 of RNA-seq samples, or 55 of WGS tumor or 55 of WGS normal samples was 
often found to show a strong Spearman correlation with one or more of the indicator contaminant species, and 
were thus assigned putative contaminant status. We further removed all species associated with a set of higher 
taxa known to be contaminants from published  literature45 or that were also highly recurrent across most samples 
including members of Pseudomonadales, Comamonadaceae, Rhizobiales, Burkholderiales, Paenibacillaceae, 
Propionibacterium acnes, Escherichia, and Bacillaceae.

Integration of 16S rRNA and TCGA microbial profiles
In order to provide a direct comparison between the 16S rRNA and TCGA WGS/RNA-seq microbial profiles, 
we first performed a concordance study at the species level across all technologies. Manual examination of the 
WGS/RNA-seq and 16S rRNA data revealed that some species in WGS previously determined to be contami-
nant were more likely to reflect true oral and upper respiratory tract species (such as Rothia mucilaginosa and 
Streptococcus mitis). Therefore, we revisited the contaminant removal process for our data integration of 16S 
rRNA WGS / RNA-seq data, and rescued species that were present in the 16S rRNA contaminant-free dataset, 
or those reported in a second esophageal tissue 16S rRNA study by Gall et al.50. This effort confirmed consistent 
taxonomic profiles for joint interpretation across genomic data types.

Inferred microbial metabolism
The input files were a FASTA file of representative sequences and a BIOM table of the abundance of each ASV 
across each sample from the NCI-MD cohort. The steps of the pipeline used were (1) sequence placement, (2) 
hidden-state prediction of genomes, (3) metagenome prediction, and (4) pathway-level predictions. The follow-
ing pipeline was followed to perform this analysis: https:// github. com/ picru st/ picru st2/ wiki/ Full- pipel ine- script

Statistical methods
Statistical comparisons were performed in R (cran.r-project.org). To establish associations of specific microbial 
members with tumor status, we utilized Generalized linear fixed effects models (GLMs) and Generalized linear 
mixed effects models (GLMMs) in which patient membership was considered a fixed effect, or random effect, 
respectively. The Mann–Whitney test for differential abundance was applied per each genomic data type inde-
pendent as a supplement to GLM analyses. Fisher’s exact test was applied to evaluate differential frequencies of 
positive vs negative status for each microbial member in the integrated analysis. Generalized linear models – taxon 
% abundance modeled by Tumor / Normal status (fixed effect) and Patient ID (fixed effect) (stratified by genomic 
data type). Generalized linear mixed effects models – taxon % abundance modeled by Tumor / Normal status 
(fixed effect) and Patient ID (random effect) (stratified by genomic data type). Fisher’s exact test for positive 
status (stratified by genomic data type). Comparisons to adjust for the blood-derived normal samples in TCGA 
were also applied. Creation of heatmaps – cases were subset to only those without Barrett’s Esophagus with EAC. 
OTUs below a minimum threshold of average relative abundance were removed (e.g., an average of 1% relative 
abundance). The heatmaps plot the individual tissues along the X-axis and the genus abundance along the Y-axis 
after filtering for the minimum threshold of relative abundance, with cell shading based on the individual genus 
relative abundances. The scale of shading was adjusted for each data source due to differences in average relative 
abundance. Hierarchical clustering of tissues and genera was performed using the hclust(.) function in R with 
default method complete-linkage. Code to replicate the heatmaps is available in our code repository under the 
file “Fig. 1_heatmaps.R”. Heatmaps were generated using the pheatmap package (v1.0.12). All analyses for the 
main figures are located at https:// github. com/ Great house Lab/ esoph- micro- cancer- workfl ow

http://portal.gdc.cancer.gov/
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fgeo%2Fquery%2Facc.cgi%3Facc%3DGSE234304&data=05%7C01%7CLeigh_Greathouse%40baylor.edu%7C9b71dac5157d46f4d99008dbae42459d%7C22d2fb35256a459bbcf4dc23d42dc0a4%7C0%7C0%7C638295371882327356%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=GBWGhA7NtppWJL7UcfC5M0x3JM%2B3Z9Tei7nL1fzT6eM%3D&reserved=0
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fgeo%2Fquery%2Facc.cgi%3Facc%3DGSE234304&data=05%7C01%7CLeigh_Greathouse%40baylor.edu%7C9b71dac5157d46f4d99008dbae42459d%7C22d2fb35256a459bbcf4dc23d42dc0a4%7C0%7C0%7C638295371882327356%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=GBWGhA7NtppWJL7UcfC5M0x3JM%2B3Z9Tei7nL1fzT6eM%3D&reserved=0
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fgeo%2Fquery%2Facc.cgi%3Facc%3DGSE234304&data=05%7C01%7CLeigh_Greathouse%40baylor.edu%7C9b71dac5157d46f4d99008dbae42459d%7C22d2fb35256a459bbcf4dc23d42dc0a4%7C0%7C0%7C638295371882327356%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=GBWGhA7NtppWJL7UcfC5M0x3JM%2B3Z9Tei7nL1fzT6eM%3D&reserved=0
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fgeo%2Fquery%2Facc.cgi%3Facc%3DGSE234304&data=05%7C01%7CLeigh_Greathouse%40baylor.edu%7C9b71dac5157d46f4d99008dbae42459d%7C22d2fb35256a459bbcf4dc23d42dc0a4%7C0%7C0%7C638295371882327356%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=GBWGhA7NtppWJL7UcfC5M0x3JM%2B3Z9Tei7nL1fzT6eM%3D&reserved=0
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fgeo%2Fquery%2Facc.cgi%3Facc%3DGSE234304&data=05%7C01%7CLeigh_Greathouse%40baylor.edu%7C9b71dac5157d46f4d99008dbae42459d%7C22d2fb35256a459bbcf4dc23d42dc0a4%7C0%7C0%7C638295371882327356%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=GBWGhA7NtppWJL7UcfC5M0x3JM%2B3Z9Tei7nL1fzT6eM%3D&reserved=0
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fgeo%2Fquery%2Facc.cgi%3Facc%3DGSE234304&data=05%7C01%7CLeigh_Greathouse%40baylor.edu%7C9b71dac5157d46f4d99008dbae42459d%7C22d2fb35256a459bbcf4dc23d42dc0a4%7C0%7C0%7C638295371882327356%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=GBWGhA7NtppWJL7UcfC5M0x3JM%2B3Z9Tei7nL1fzT6eM%3D&reserved=0
https://github.com/picrust/picrust2/wiki/Full-pipeline-script
https://github.com/GreathouseLab/esoph-micro-cancer-workflow
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RNA‑sequencing and immune infiltration
Total RNA was extracted from fresh-frozen esophageal tissues using TRIzol. RNA quality was validated by 
Agilent TapeStation and samples with RIN value ≥ 7.0 were selected for sequencing. Samples were sequenced on 
the DNBseq platform with 2 × 100 bp paired-end sequencing. Reads were aligned to the human genome (hg38) 
using HISAT and  bowtie224,42,51. xCell was used to predict immune cell infiltration in each  sample24 and predicted 
infiltrates were correlated with microbial abundance by the Spearman method.

Microbial co‑abundance networks
For each cohort, taxa co-occurrence was calculated using SparCC with 100 iterations and default correlation 
method (not Pearson or Spearman)18. Correlation coefficients were filtered for X < − 0.2 and X > 0.2 (NCI-MD) 
or X < − 0.3 and X > 0.3 (TCGA). Networks were generated using Cytoscape v3.9.1.

Data availability
All de-identified data and code used to conduct analyses and generate figures for this manuscript are available 
from TCGA or at https:// github. com/ Great house Lab/ esoph- micro- cancer- workfl ow. All sequences generated 
during this study are deposited under the GEO accession #GSE234304. Any protocols will be made available at 
the request of the researcher by contacting Dr. Leigh Greathouse.
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