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Prediction of osteoporosis 
in patients with rheumatoid 
arthritis using machine learning
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Osteoporosis is a serious health concern in patients with rheumatoid arthritis (RA). Machine learning 
(ML) models have been increasingly incorporated into various clinical practices, including disease 
classification, risk prediction, and treatment response. However, only a few studies have focused on 
predicting osteoporosis using ML in patients with RA. We aimed to develop an ML model to predict 
osteoporosis using a representative Korean RA cohort database. The KORean Observational study 
Network for Arthritis (KORONA) database, established by the Clinical Research Center for RA in Korea, 
was used in this study. Among the 5077 patients registered in KORONA, 2374 patients were included 
in this study. Four representative ML algorithms were used for the prediction: logistic regression 
(LR), random forest, XGBoost (XGB), and LightGBM. The accuracy, F1 score, and area under the curve 
(AUC) of each model were measured. The LR model achieved the highest AUC value at 0.750, while the 
XGB model achieved the highest accuracy at 0.682. Body mass index, age, menopause, waist and hip 
circumferences, RA surgery, and monthly income were risk factors of osteoporosis. In conclusion, ML 
algorithms are a useful option for screening for osteoporosis in patients with RA.

Osteoporosis is a serious health problem in patients with rheumatoid arthritis (RA). The prevalence of osteopo-
rosis in patients with RA is approximately two times higher than that in the general  population1. A cohort study 
reported that osteoporosis was present in approximately 30% of patients with RA, whereas the proportion of age- 
and sex-matched controls with osteoporosis was 17%2. Bone fragility in RA results from complex mechanisms, 
such as inflammatory cytokine production, osteoclast activation, and use of glucocorticoids for RA treatment. 
Therefore, it is crucial to detect osteoporosis in patients with RA to prevent osteoporotic fractures. Bone mineral 
density (BMD) measurement using dual-energy X-ray absorptiometry (DXA) is a standard diagnostic tool for 
osteoporosis. However, a significant number of patients with RA do not undergo a BMD measurement test in 
clinical practice. According to the Consortium of Rheumatology Researchers of North America registry, only 11% 
of patients underwent DXA during the first year of follow-up3. It would be thus useful to predict osteoporosis 
in patients with RA who are at high risk. Recently, machine learning (ML) algorithms have been extensively 
applied to various clinical practices, including disease classification, risk prediction, and treatment response. 
Although studies on the prediction of osteoporosis or fractures using ML models in the general population have 
been conducted, those on patients with RA are lacking. Therefore, we aimed to develop an ML model to predict 
osteoporosis using a representative Korean RA cohort database. This study aimed to predict osteoporosis in 
patients with RA using clinical data. The contributions of our paper are summarized as follows:

• Our study is the first to investigate osteoporosis prediction models in patients with RA.
• We apply the four representative ML algorithms and show that their prediction performance is comparable 

to previous studies on the general population, confirming the effectiveness of ML for osteoporosis prediction 
in patients with RA.

• By considering 83 features and their importance, we found new predictive factors like socioeconomic status, 
including monthly income and education, which have not been considered well before.
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Methods
Data source and participants
The data used in this study were obtained from the KORean Observational study Network for Arthritis 
(KORONA) database established by the Clinical Research Center for RA in  Korea4. KORONA includes a cohort 
of patients with RA recruited between July 2009 and Mar 2012. Individuals with RA who fulfilled the 1987 
American College of Rheumatology classification criteria for RA and who were older than 18 years were enrolled 
at 23 centers in South Korea. A total of 5077 patients (4327 women, 750 men) were registered at baseline and 
underwent annual follow-up evaluations. All participants were provided informed consent prior to enrollment 
in the study. Among them, 1758 patients who had never undergone DXA were excluded. The dataset consisted 
of clinical information at initial enrollment as well as annual follow-up data for 5 years. Missing values of con-
tinuous features for each patient were replaced with their mean values across all follow-up data, and missing 
values of categorical features for each patient were replaced with their most frequent values across all follow-up 
data. When there was no most frequent value, that patient’s data was excluded. After this preprocessing, the 
total number of patients considered in the study was 2374 (Fig. 1), of which 2118 patient records were imputed.

BMD measurement
BMD measurements were conducted using the Hologic QDR (Waltham, MA, USA) and GE Lunar Prodigy 
(Madison, WI, USA) systems in accordance with the standard scan and positioning protocols of the manufac-
turers. Osteoporosis was defined as an L-spine total or hip total value of − 2.5 or less, in accordance with the 
World Health Organization (WHO)  classifications5. We classified patients with RA into osteoporosis and control 
groups based on their BMD values.

Feature selection
In the KORONA database, there are over 1000 features. Principal component analysis (PCA) was performed to 
prevent multicollinearity. PCA was performed by grouping continuous features with correlations of  ≥ 0.7. The 
distribution of some representative variables obtained by PCA is shown in Supplementary Fig. 1. Continuous 
variables were normalized using min–max normalization. Finally, 83 features were selected for the development 
of the prediction models. A list of selected features is presented in Supplementary Table S1.

Model development
Prediction was performed using four representative ML algorithms: logistic regression (LR), random forest 
(RF)6, XGBoost (XGB)7, and LightGBM (LGBM)8. LR is a model that uses regression to predict the probability 
of data falling into a category and classifies it as belonging to a more likely category. We used LR as the baseline 
method. RF is a bagging-based ensemble model composed of multiple decision trees and uses the most com-
mon value among the predicted values made by those decision trees as the final prediction. RF is robust and 
interpretable, and generally avoids overfitting, but is computationally expensive. XGB is an ensemble algorithm 
based on gradient boosting that uses a combination of multiple decision trees. It is faster than existing boosting 
models because it enables parallel learning on a general boosting model that combines multiple models. It is 
also generally more efficient than RF, though it tends to be more prone to overfitting. LGBM uses a leaf-centered 
tree-splitting method instead of the general balanced tree-splitting method used in gradient boosting machine 
models. It is typically faster and more memory-efficient than XGB. However, it is more susceptible to overfitting 
and can be harder to interpret.

For hyperparameter tuning, we employed GridSearchCV for LR and RandomizedSearchCV for RF, XGB, 
and LGBM, using fivefold cross-validation9. Specifically, the dataset was randomly partitioned into five subsets 
for each hyperparameter combination and model. In each iteration, one subset was used for testing while the 

Figure 1.  Flow diagram of study population.
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remaining four as the training set. Each model underwent five evaluations, each time utilizing a different subset 
as the test set. The average result from the five iterations was then used as the final performance for that particular 
hyperparameter combination. Finally, we selected the optimal hyperparameter combination for each model and 
re-evaluated their performance using another fivefold cross-validation for comparison.

We tuned the following hyperparameters. For the LR model, the regularization intensity (C) was adjusted. For 
the RF model, max_depth (maximum tree depth), n_estimators (number of decision trees), min_samples_split 
(minimum number of samples required to split a node), and min_samples_leaf (minimum number of samples 
required to form a leaf note) were adjusted. For the XGB model, eta (learning rate), gamma (minimum loss 
reduction necessary to create additional partitions at the leaf nodes of the tree), max_depth, subsample (sub-
sample ratio of training instances), and colsample_bytree (subsample ratio of columns for building each tree) 
were adjusted. For the LGBM model, learning rate, max_depth, subsample, and colsample_bytree were adjusted.

The accuracy, F1 score, and area under the receiver operating characteristic (ROC) curve (AUC) of each 
model were measured using fivefold cross-validation as mentioned above. The AUC was primarily used to com-
pensate for the limitations of the accuracy when class distributions were different. The F1 score is the harmonic 
mean of precision and recall and is often used when the class distribution is imbalanced.

Statistical analysis
Continuous and categorical variables are presented as mean ± standard deviation and number (%), respectively. 
Baseline characteristics between the two groups were compared using Student’s t-test for continuous variables and 
the chi-square test for categorical variables. Statistical significance was defined as a p-value of < 0.05. The default 
value of 0.5 was used for the threshold of the F1 score. Statistical analyses were performed using Python 3.8.8.

Ethical consideration
This study was conducted in compliance with the World Medical Association Declaration of Helsinki and 
approved by the Ethical Review Board of the Kangwon National University Hospital (IRB approval No. 
KNUH-2022-03-021).

Results
Demographic and clinical features
Baseline clinical characteristics of both groups are shown in Table 1. Compared with the control group, the 
proportion of women and age were higher, BMI was lower, and previous fracture history was higher in the 
osteoporosis group. The proportion of current smokers and drinkers was higher in the control group. There was 
no statistically significant difference in oral glucocorticoid use between the two groups.

Model evaluation
The AUC, accuracy, and F1 score of each model were measured using fivefold cross-validation after selecting an 
optimal hyperparameter combination for each model using either GridSearchCV or RandomizedSearchCV. The 
performance of each model in predicting osteoporosis using 83 clinical features is shown in Table 2, with 95% 

Table 1.  Baseline characteristics for the control and osteoporosis groups. Values denote number (%) or 
mean ± standard deviation unless stated otherwise.

Variables Control (N = 1151) Osteoporosis (N = 1223) P value

Female sex 1024 (89) 1146 (94)  < 0.05

Age (years) 54.81 ± 1.05 62.45 ± 0.9  < 0.05

Body mass index (kg/m2) 23.09 ± 0.29 22.09 ± 0.2  < 0.05

Previous fracture 117 (10) 243 (20)  < 0.05

Family history of RA 98 (9) 108 (9) 0.84

Current smoking 85 (7) 51 (4)  < 0.05

Current drinking 221 (19) 193 (12)  < 0.05

Oral glucocorticoid use 837 (73) 921 (75) 0.16

Table 2.  Performance of each prediction model using fivefold cross-validation, with 95% confidence intervals 
for the AUC.

Model AUC Accuracy F1 score

Logistic regression 0.750 (0.717–0.783) 0.681 0.700

Random forest 0.747 (0.715–0.781) 0.681 0.705

XGBoost 0.749 (0.72–0.779) 0.682 0.700

LightGBM 0.744 (0.715–0.772) 0.678 0.693
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confidence intervals for the AUC. The AUC was highest in the LR model at 0.750, the accuracy was highest in 
the XGB model at 0.682, and the F1 score was highest in the RF model at 0.70, although the difference between 
the models was not significant. Figure 2 shows the ROC curve for each ML model.

Intraclass correlation coefficient (ICC)
We also calculated the  ICC10 to see the prediction consistency between the ML models for each patient. We 
considered the ML models as a fixed set of raters, their prediction probabilities as ratings, and the patients as 
targets. The ICC value ranges from 0 to 1, with values between 0.75 and 0.9 indicating good reliability and values 
greater than 0.90 indicating excellent  reliability10. Figure 3 shows the prediction probabilities of each ML model 
for a sample of 30 out of 2374 patients, together with the ICC (3,1) value of 0.909 (95% CI 0.904–0.915), which 
indicates that the ML models are highly consistent and reliable.

Feature importance of each model
The feature importance of each model was calculated based on the fold with the highest AUC among the five 
folds used for cross-validation. The LR model was not considered because it was solely used as a benchmark 
to evaluate the efficacy of tree-based prediction models and did not fully resolve the issue of multicollinearity 
among the input features. The 20 most important features of the XGB model are shown in Fig. 4. The top 20 most 
important features of the other models are shown in Supplementary Figs. 2 and 3.

Discussion
We developed and evaluated ML models to predict osteoporosis risk in patients with RA. Osteoporotic fracture 
is a serious health issue in patients with RA. A British study showed that the relative risk (RR) of hip fracture 
of patients with RA was 2.0 (95% CI 1.8–2.3) and that of vertebral fracture was 2.4 (95% CI 2.0–2.8)11. These 

Figure 2.  Receiver operating characteristic (ROC) curves for the prediction models.

Figure 3.  Intraclass correlation of part of the dataset using ICC (3, 1).
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fragility fractures impair quality of life and increase healthcare costs and mortality rates. Korean national health 
claims data reported that the incidence of osteoporotic fractures is higher in patients with RA than in the gen-
eral population over 3 years (17.4% vs. 11.6%), and the standardized mortality rate was 1.4 times higher in men 
and 1.3 times in  women12. However, timely screening and appropriate management of osteoporosis remain 
inadequate in clinical practice. A retrospective study from the USA reported that only 30% of female patients 
with RA underwent DXA during 4.4  years13. A French study showed that DXA was performed in 21.6% of 1008 
patients with RA, and approximately 12% of patients received osteoporosis  medication14. A large observational 
study from the USA of 11,669 patients with RA followed from 2003 to 2014 revealed that approximately 50% of 
patients who required treatment did not receive medication for  osteoporosis15. Identification of osteoporosis in 
high-risk patients with RA is an important issue in clinical practice.

Many researchers have focused on developing osteoporosis prediction tools using ML for the general popula-
tion. Table 3 shows the characteristics and results of studies on osteoporosis prediction in the general population. 
The AUC scores in these studies ranged between 0.710 and 0.854. The AUC score in our study was 0.750, which 
is a relatively good performance compared with other studies. Other studies reported that the best performing 
models were artificial neural networks, XGB, RF, and multilayer perception models. Our results showed that 
the LR model had the best performance, whereas the other models showed similar performances. To the best 
of our knowledge, no studies have been conducted on the prediction of osteoporosis in patients with RA until 
now. Recently, one study investigated the prediction of fractures with ML in elderly patients with RA. Chen 
et al.16 reported an ML model to predict the risk of fractures in patients with elderly-onset RA. They collected 

Figure 4.  Top 20 features derived from the XGBoost model.

Table 3.  Key studies on the osteoporosis prediction using machine learning. ANN Artificial neural network; 
LR Logistic regression, MLP Multi-layer perceptron, RF Random forest, XGB XGBoost.

Study Number of patients Number of selected features Best performance model Best performance (AUC)

Shim et al.20 1792 9 ANN 0.743

Erjiang et al.21 13,577 30 XGB 0.833

Yang et al.22 5982 16/19 RF 0.843/0.811

Wang et al.23 1419 18 ANN 0.762

Iliou et al.24 3426 2 MLP 0.710

Park et al.19 3309 20 XGB 0.730/0.790

Bui et al.25 1951 15 RF 0.854

Our study 2374 83 RL 0.750
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data from 487 elderly patients with RA and developed various ML models for fracture risk. The AUC of each 
model was 0.713–0.872.

In RA, conventional risk factors for osteoporosis include female sex, smoking, old age, low BMI, menopause, 
diabetes, thyroid disorders, lack of physical activity, and glucocorticoid  use17. Lee et al.18 investigated risk factors 
for osteoporosis using a traditional statistical technique and the same database used in our study, the KORONA 
registry. In Lee et al.’s study, the number of patients with osteoporosis (n = 619) was smaller than that in our 
study (n = 1223) as enrolled patients were limited to postmenopausal women and men over 50 years old. The 
clinical characteristics were quite different between Lee et al.’s study and the present study. For example, in our 
study, the proportion of current smokers and drinkers was higher in the control group as this group included 
more male patients. We intended to develop a prediction model regardless of sex; therefore, we included both 
male and female patients. Lee et al. reported that older age, lower BMI, longer disease duration, higher cumula-
tive glucocorticoid dose, and higher health assessment questionnaire scores were independent risk factors of 
 osteoporosis18. However, our ML model suggested new features such as monthly income, education, surgical 
history, and marital status as predictive factors of osteoporosis. Interestingly, socioeconomic status, including 
monthly income and education, was selected as a predictive factor in addition to previously well-known con-
ventional predictors. Another Korean study that developed an ML model using National Health and Nutrition 
Examination data showed that monthly income was an important predictive factor of  osteoporosis19. Table 4 
shows a comparison of the top 10 ranked features from other studies and our study. In most studies, age and BMI 
were identified as the highest-ranked predictive features. Menopause, bisphosphonates, and estrogen use were 
also ranked high. In addition to conventional risk factors, features including alkaline phosphatase, cholesterol, 
uric acid, and blood pressure are important for prediction. These findings provide new insights into the predic-
tion of osteoporosis in clinical practice.

Our study had several strengths. First, we developed a prediction model for patients with RA who have not 
`been covered in previous research. The performance of our model was comparable to that of previous studies on 
the general population. Second, our study used 83 clinical features for the development of the prediction models, 
which is much greater than the number of features used in other studies. We selected these features from more 
than 1000 features using PCA to avoid multicollinearity problems. However, our study has the following limita-
tions. First, there was no separate dataset to validate this model. We could not find any RA patient cohort dataset 
that included BMD results. However, the KORONA data were collected from 23 separate hospitals in Korea, and 
heterogeneity existed in the dataset. Second, we could not develop a fracture-prediction model. Although clinical 
information on fractures was available, the number of fracture events was too small to create a prediction model.

In conclusion, we applied representative ML algorithms to predict osteoporosis using clinical data from 
patients with RA. By comparing with previous studies, we observed a comparable performance. ML methods 
have the potential to support practitioners in the detection of osteoporosis in patients with RA.

Data availability
Raw data were generated by the Clinical Research Center for RA in Korea. The data supporting the findings of 
this study are available from the corresponding authors upon request.

Code availability
The code for experiments is available at https:// github. com/ knu- plml/ RA- osteo poros is- ml- predi ction.
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