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Distant entanglement via photon 
hopping in a coupled cavity 
magnomechanical system
Amjad Sohail 1, Jia‑Xin Peng 2, Abdelkader Hidki 3, Mohammad Khalid 4,5,6 & S. K. Singh 7*

We theoretically propose a scheme to generate distant bipartite entanglement between various 
subsystems in coupled magnomechanical systems where both the microwave cavities are coupled 
through single photon hopping coupling strength Γ. Each cavity contains a magnon mode and phonon 
mode and this gives six excitation modes in our model Hamiltonian which are cavity-1 photons, 
cavity-2 photons, magnon and phonon in cavity-1, and magnon and phonon in cavity-2. We found 
that significant bipartite entanglement exists between indirectly coupled subsystems in coupled 
microwave cavities for an appropriate set of parameters regime. Moreover, we also obtain suitable 
cavity and magnon detuning parameters for a significant distant bipartite entanglement in different 
bipartitions. In addition, it can be seen that a single photon hopping parameter significantly affects 
both the degree as well as the transfer of quantum entanglement between various bipartitions. 
Hence, our present study related to coupled microwave cavity magnomechanical configuration will 
open new perspectives in coherent control of various quantum correlations including quantum state 
transfer among macroscopic quantum systems.

Quantum entanglement is a fundamental property of quantum mechanics and has proven to be a key ingredient 
in various quantum technologies as well as it is an important area of study in both theoretical and experimental 
quantum physics1. In continuous variables (CV) quantum systems which are described by Gaussian states, a very 
well known mathematical formulation to quantify the amount of bipartite entanglement present is the logarithmic 
negativity2. In the early stages of quantum technology, seminal theoretical and experimental investigations 
mainly explored only microscopic systems, such as atoms, trapped ions, etc to obtain quantum entanglement3. 
However, the realization of quantum entanglement for various quantum protocols in practical applications and 
larger-scale quantum technologies often necessitates working at macroscopic level. Major advancements in 
nanotechnology already provided novel platform such as cavity optomechanical system to study macroscopic 
bipartite entanglement between a single cavity mode and a vibrating mirror2. Subsequently, several studies such 
as entanglement of two vibrating mirrors4–8 , Entanglement of multiple cavity modes coupled to single vibrating 
mirror9–11, entanglement in Laguerre-Gaussian cavity system12–18 explored macroscopic quantum entanglement 
in cavity optomechanical systems.

Ferrimagnetic materials such as yttrium iron garnet (YIG) sphere based cavity magnomechanical systems 
also offer a robust platform for studying the macroscopic quantum phenomena19–22. In cavity magnomechanical 
systems, YIG sphere is the most favourable ferrimagnetic materials due to its extremely high spin density and 
low decay rates of collective spin excitations known as Kittel mode23,24. This leads to the strong coupling of Kittel 
mode with the microwave cavity photons which leads to the vacuum Rabi splitting and cavity-magnon polaritons. 
So, these systems also provides a promising platform for the study of strong interactions between light and 
matter25–27. Moreover, many others interesting quantum phenomena such as magnon induced transparency28–31, 
coherent feedback enhanced entangelemnt32,33, magnon dark modes34, bistability35,36, magnon Kerr effect37–41 , 
microwave-optical conversion42, and magnon blockade43,44, successfully explored in cavity magnomechanical 
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systems. In 2018, J. Lie et. al first studied the magnon-photon-phonon entanglement in cavity magnomechanical 
systems27. Many other theoretical works such as entanglement between two microwave fields45,46, entanglement 
between two YIG spheres47, Kerr enhanced entanglement between two magnon modes48,49, enhancement of 
photon-magnon entanglement using optical parametric amplifier50,51 and magnon squeezing effects52,53 were 
proposed to enhance macroscopic quantum entanglement as well as remote magnon-magnon entanglement 
between two massive ferrimagnetic spheres54,55.

Distant entanglement, also well known as long-distance entanglement, refers to the phenomenon to generate 
and maintain bipartite entanglement between quantum systems that are physically separated by finite distances56. 
The study of distant entanglement is an active area of research due to its significant applications in quantum 
information science, quantum communication and quantum networks. Recently, only few theoretical works 
studied the perfect transfer of bipartite entanglement and quantum steering between different subsystems in 
coupled cavity magnomechanical system where both the microwave cavities are coupled through single photon 
hopping factor57–60. Motivated by these works, we theoretically investigate coupled magnomechanical system to 
generate distant bipartite entanglement between different bi-partitions. Therefore, we emphasis on the possibility 
of generation of distant entanglements via single photon hoping. Furthermore, such a well-designed coupled 
magnomechanical system can be utilized to entangle and then the transfer of entanglement between different 
distant bosonic modes.

This paper is organized as follows: In Sect. "The model", we introduce theoretical model Hamiltonian whereas 
in Sect. "Quantum dynamics and entanglement of the coupled magnomechanical system", we evaluate quantum 
Langevin equations (QLEs) and also discuss in details about mathematical formulation of bipartite entanglement 
between different bipartitons. Numerical Results and related discussions are given in details in Sect. "Results and 
discussion", whereas we conclude our results in Sect. "Conclusion".

The model
The magnomechanical system under consideration consists of two MW cavities connected through single photon 
hoping factor Ŵ . As shown in Fig. 1, each cavity contain a magnon mode m and a phonon mode b. The magnons 
in the YIG sphere are considered to be quasiparticles which are integrated by a large-scale collective excitation 
of spins inside a ferrimagnet, e.g. a YIG sphere61. The coupling between the magnon and the MW-field is due to 
magnetic dipole interaction. In addition, the positioning of YIG sphere in each cavity field is in the zone where 
there is a maximum magnetic field (See Fig. 1). At the YIG sphere site, the magnetic field of the cavity mode is 
along the x axis while the drive magnetic field is along the y direction). Furthermore, the bias magnetic field is 
set in the z direction. In addition, the magnon and phonon modes are coupled to each other via magnetostrictive 
force, which yields the magnon-phonon coupling62,63. The resonance frequencies of the magnon and phonon 
modes affect the magnetostrictive interaction24. In the current study, the mechanical frequency is considered to 

Figure 1.   (a) Graphical representation of the coupled cavity magnomechanical system. Each MV cavity contain 
a magnon mode in a YIG sphere couples that interact with the cavity mode via magnetic dipole interaction. 
Furthermore, magnon mode interact with phonon mode via magnetostrictive interaction. The magnetic field 
of the each cavity modes is set to be in the x-direction, while the drive magnetic field (bias magnetic field) is 
considered along y-direction (z-direction). (b) The linear coupling diagram of each cavity magnomechanical 
system is shown. The two cavity modes are coupled via photon hoping Ŵ , while a cavity mode photon c1 ( c2 ) is 
coupled to the magnon mode m1 ( m2 ), with coupling strength g1 ( g2 ), which then coupled to a phonon mode b1 
( b2 ) to with magnomechanical coupling strength gm1 ( gm2).
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be much smaller than the magnon frequency, which surely helps to set up the strong dispersive phonon-magnon 
interaction61,64. The Hamiltonian of the coupled magnomechanical system takes the form:

where

where ck
(
c†k

)
 and mk

(
m†

k

)
 are the annihilation (creation) operator of the the k cavity and magnon mode, respec-

tively. Furthermore, qk and pk are the position and momentum quadratures of the respective mechanical mode 
of the magnon. In addition ωk , ωmk

 , and ωbk denote the resonant frequencies of the k-th cavity mode, magnon 
mode, and mechanical mode. The magnon frequency ωmk

 can be finely tuned by adjusting the bias magnetic 
field B through the relation ωmk

= γ0B , where γ0 represents the gyromagnetic ratio. Furthermore, the optom-
agnonical coupling strength is given by

where V represents the Verdet constant of the YIG sphere, ρspin represents the spin density, nr stands for the 
refractive index, and VYS =

4πr3

3  corresponds to the volume of the YIG sphere65. We examined the scenario of 
strong coupling, wherein the interaction between the k-th cavity mode and magnon mode gk surpasses the decay 
rates of both the magnon and the cavity modes, i.e. gk > κmk

 , κk25,65,66. Furthermore, gmk denotes the interaction 
strength between magnons and phonons, which is generally considered to be quite small. However, it can be 
improved by employing a MW field to drive the YIG sphere. The Rabi frequency � = (

√
5/4)γ0

√
NspinB0

67,68  
denotes the coupling strength of the drive field with frequency ω0 and amplitude B0 = 3.9× 10−9 T, where 
Nspin = ρVYS is the total number of spins with the spin density of the YIG ρspin = 4.22× 1027m−3 and γ0 = 28
GHz/T. It is also crucial to emphasize that the collective motion of the spins is reduced to bosonic operators m 
and m† through the Holstein-Primakoff transformation. Additionally, the Rabi frequency � is obtained based 
on the fundamental assumption of having low-lying excitations, specifically when 2Ns ≫ �m†m� , where s = 5

2 
represents the spin value of the Fe3+ ion in the ground state of YIG. Moreover, Ŵ represents the single photon 
hopping strength between the two cavity mode which is mainly controlled by adjusting the distance between 
two microwave cavities. However, there are other factor which affect the photon hopping strength like cavity 
detuning, cavity decay as well as transmission and reflection of the cavity mirrors.

The Hamiltonian of the system can be written as following under the rotating wave approximation at the 
drive frequency ω0:

where �k = ωk − ω0k and �mk
= ωmk

− ω0k.

Quantum dynamics and entanglement of the coupled magnomechanical system
Because of the interaction between the magnomechanical system and its environment, the system will experi-
ence influences from cavity decay, magnon damping, and mechanical damping. By considering these dissipative 
factors, the system’s dynamics can be characterized by a set of quantum Langevin equations :

(1)H/ℏ =H0 +Hint +Hd ,

(2)H0 =

2∑

k=1

[
ωkc

†
kck + ωmk

m†
kmk +

ωbk

2

(
q2k + p2k

)]
,
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2∑

k=1

[
gk

(
ckm

† + c†km
)
+ gmkm

†
kmkqk

]
+ Ŵ

(
c1c

†
2 + c†1c2

)
,

(4)Hd =i�
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[
m†

ke
−iω0kt −mke

iω0kt
]
,

(5)gk =V
c
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√
2

ρspinVYS
,

(6)
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2∑

k=1

[
�kc

†
kck +�mk
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(
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)
+ i�

(
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)]

+ Ŵ(c1c
†
2 + c†1c2),

(7)q̇k =ωbk pk ,

(8)ṗk =− ωbqk − γbpk − gmkm
†
kmk + ξk ,

(9)ċk =− (i�k + κk)ck − igkmk + Ŵcj +
√
2κac

in
k , (j = 1, 2, j �= k)
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where κk(κmk
 ) represents the decay rate of the k-th cavity (magnon) mode and γb is the damping rate of the k-th 

mechanical mode. ξ , min , and cink  are operators for input noise associated with the k-th mechanical, magnon, and 
cavity modes, respectively. These noise operators are defined by the following correlation functions69:

The equilibrium mean number of thermal photons, magnons, and phonons is expressed as 
nf (ωf ) = [exp(

ℏωf

kbT
)− 1]−1 for f = ck ,mk , bk . Here, kb represents the Boltzmann constant and T denotes the 

temperature of the environment.
If the magnon mode experiences strong excitation, it implies that |�m�| ≫ 1 . Furthermore, the two microwave 

cavity fields exhibit large amplitudes due to interactions with the beam splitter interaction between the cavity 
magnon modes. This allows us to simplify the QLEs by expressing any operator as the sum of its mean value and 
its fluctuation, i.e. o = �o� + δo70–72, where (o = pk , qk , ck ,mk) , and then substitute this into Eqs. (7), (8), (9) and 
(10). The mean values of the dynamic operators can be calculated as follows:

where �k = (i�k + κk)(i�mk
+ κmk

)+ g2k  , �mk
= �mk0

+ gmk

〈
qk
〉
 represents the effective magnon mode 

detuning which includes the slight shift of frequency due to the magnetostrictive interaction.
Now, we introduce the quadrature for the linearised quantum Langevin equations describing fluctuations 

are: δx = 1√
2
(δm− δm†) , δy = 1√

2i
(δm− δm†) , δXk =

1√
2
(δck − δc†k) , δYk =

1√
2i
(δck − δc†k) can be written as

where F (t) and N(t) denote the vectors of quantum fluctuations and input noise, respectively. They are defined 
as:

where

and

(10)ṁk =−
(
i�mk0

+ κm
)
mk − igkck − igmkmkqk +�k +

√
2κmk

min
k ,

(11)
〈
ξk(t)ξk(t

′)
〉
+

〈
ξk(t

′)ξk(t)
〉
/2 =γb[2nbk (ωbk )+ 1]δ(t − t ′),

(12)
〈
min†

k (t)min
k (t

′)
〉
=nmk

(ωmk
)δ(t − t ′),

(13)
〈
min

k (t)m
in†
k (t′)

〉
=[nmk

(ωmk
)+ 1]δ(t − t ′),

(14)
〈
cink (t)c

in†
k (t′)

〉
=[nk(ωk)+ 1]δ(t − t ′),

(15)
〈
cin†k (t)cink (t

′)
〉
=nk(ωk)δ(t − t ′),

(16)
〈
pk
〉
=0,

(17)
〈
qk
〉
=
−gmk

ωb
|�mk�|

2,

(18)�mk� =
�k − igk�ck�

i�mk
+ κmk

,

(19)�c1� =
ig1�1�2 − Ŵg2�2(κm1 + i�m1)

α1α2 + Ŵ2
(
i�m1 + κm1

)(
i�m2 + κm2

) ,

(20)�c2� =
ig2�2�1 − Ŵg1�1(κm2 + i�m2)

α1α2 + Ŵ2
(
i�m2 + κm2

)(
i�m1 + κm1

) ,

(21)Ḟ (t) = MF (t)+N(t),

F (t) =[δCXY (t), δMxy(t), δQqp(t)]
T
,

N(t) =[NXY ,Nxy ,Nqp]
T
,

δCXY (t) =δX1(t), δY1(t), δX2(t), δY2(t),

δMxy(t) =δx1(t), δy1(t), δx2(t), δy2(t),

δQqp(t) =δq1(t), δp1(t), δq2(t), δp2(t),
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In addition, the drift matrix M of the present coupled magnomechanical system can be expressed as

where Gk = i
√
2gmk�mk� governs the effective magnomechanical coupling strength. Furthermore, using Eq. (4), 

By utilizing strong magnon drive, the effective magnomechanical coupling strength can be increased..
Now we investigate the entanglement between various bipartite subsystems with an emphasis on the entangle-

ments of the indirectly coupled mode. According to the Routh-Hurwitz criterion73, the system achieves stability 
only when we obtained negative real parts of all eigenvalues of the drift matrix M , which is verified throughout 
this manuscript and therefore, the success of our approach hinges on the stability of the proposed system. The 
system under study is characterized by an 12× 12 covariance matrix V and its corresponding elements defined as:

The following Lyapunov equation can be utilized to determine the covariance matrix of our coupled magnome-
chanical system74,75

w here  D = d iag[κ1(2n1 + 1), κ1(2n1 + 1), κ2(2n2 + 1), κ2(2n2 + 1), κm1

(
2nm1

+ 1
)
, κm1

(2nm1
+ 1), κm2(

2nm2
+ 1

)
, κm2

(2nm2
+ 1), 0, γb(2nb + 1), 0, γb(2nb + 1)] represents the diffusion matrix, a diagonal matrix 

that characterizes noise correlations. Furthermore, Eq. (24) represents the steady-state correlation matrix. We 
use the logarithmic negativity to measures the degree of entanglement of the steady state, is given by75–79

where η− =min eig|
⊕

2

j=1
(−σy)Ṽ4| represents the covariance matrix’s smallest symplectic eigenvalue. Here, 

Ṽ4 = ̺1|2Vin̺1|2 , where Vin is a 4× 4 matrix obtained by extracting the relevant rows and columns from V4 
for the chosen subsystems. The matrix ̺ 1|2 = σz

⊕
1 =diag(1,−1, 1, 1) performs partial transposition on covari-

ance matrices. σ ’s are the Pauli spin matrices in this context. Moreover, a positive value of logarithmic negativity, 
given as EN > 0 , highlights the existence of bipartite entanglement between any two given modes in our cavity 
magnomechanical system.

Results and discussion
As there are six different modes in this coupled cavity magnomechanical system, we investigate into details  about 
the numerical results of different bipartite entanglements. So, we may get bipartite entanglement in any of two 
modes however the most significant part of our study is to explore the bipartite entanglement present in spatially 
distant subsystems which we have summarised in Table 1 with symbols. We have used the experimental feasible 
parameters in our study given as in Table 2.

In Fig. 2, we present five different distant bipartite entanglements as a function of the cavity detunings and 
gradually changing the hoping factor in our coupled magnomechanical system. For single photon hopping factor 
Ŵ = 0.5κc and keeping both the magnon detunings at blue sideband regime i.e. �m1 = �m2 = ωb , we obtain the 
optimal bipartite entanglements ENc1−c2

 and ENc1−m2
(ENc2−m1

) at two different places, however the entanglement 

NXY =
√
2k1X

in
1 (t),

√
2k1Y

in
1 (t),

√
2k2X

in
2 (t),

√
2k2Y

in
2 (t),

Nxy =
√
2kmx

in
1 (t),

√
2kmy

in
1 (t),

√
2kmx

in
2 (t),

√
2kmy

in
2 (t),

Nqp =0, ξ1(t), 0, ξ2(t).

(22)M =




−κ1 �1 0 Ŵ 0 g1 0 0 0 0 0 0

−�1 − κ1 − Ŵ 0 − g1 0 0 0 0 0 0 0

0 Ŵ − κ2 �2 0 0 0 g2 0 0 0 0

−Ŵ 0 −�2 − κ2 0 0 − g2 0 0 0 0 0

0 g1 0 0 − κm1
�m1

0 0 − G1 0 0 0

−g1 0 0 0 −�m1
− κm1

0 0 0 0 0 0

0 0 0 g2 0 0 − κm2
�m2

0 0 − G2 0

0 0 − g2 0 0 0 −�m2
− κb2 0 0 0 0

0 0 0 0 0 0 0 0 0 ωb1 0 0

0 0 0 0 0 G1 0 0 − ωb1 − γb1 0 0

0 0 0 0 0 0 0 0 0 0 0 ωb2
0 0 0 0 0 0 0 G2 0 0 − ωb2 − γb2




,

(23)Vij(t) =
1

2

〈
Fi(t)Fj(t

′)+Fj(t
′)Fi(t)

〉
,

(24)MV + VM
T = −D ,

(25)EN = max[0,− ln 2η−],

Table 1.   Adopted notation for the different bipartite subsystem entanglement.

Bipartite subsystem Entanglement symbol Bipartite subsystem Entanglement symbol

Cavity 1-cavity 2 ENc−c

Cavity 1-magnon 2 ENc1−m2
Cavity 2-magnon 1 ENc2−m1

Cavity 1-phonon 2 ENc1−b2
Cavity 2-phonon 1 ENc2−b1
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ENc1−b2
(ENc2−b1

) is concentrated to a specific region of normalized cavity detunings as can be seen in Fig. 2a–c. It 
can be also seen that the optimal entanglement of these bipartitions exist for different cavity detunings which 
means that we can shift/transfer entanglement from one bipartition to another through gradually changing both 
the cavity detunings. Moreover, the bipartite entanglement between two cavity modes ENc1−c2

 becomes maximum 
for �1 = �2 = −0.5ωb although even if both the cavity detunings are resonant only with blue sideband regime 
i.e. �1 = �2 = ωb we have significant amount of the bipartite entanglement in ENc1−c2

 as shown in Fig. 2a. In 
Fig. 2b we study the bipartite entanglement ENc1−m2

(ENc2−m1
) which attains maximum value either when both the 

cavity detunings are resonant with the driving field, i.e. �1 = �2 = 0 or are resonant with red sideband regime, 
i.e. �1 = �2 = −ωb . Moreover when both the cavity detunings are kept in resonance (symetric case) with red 
sideband regime, the bipartite entanglement ENc1−b2

(ENc2−b1
) attains its maximum value as shown in Fig. 2c. 

Furthermore, it can be seen that if cavity detunigs for both the cavities are kept fixed and in resonance with 
blue sideband regime i.e. �1 = �2 = ωb then all the above mentioned bipartite entanglements have significant 
values on gradually varying �m1/ωb from 0.7 to 1.1 as shown in Fig. 2d–f, however, the entanglement can be 
transferred among these bipartitions by altering the �m2/ωb . So, in this case to get significant amount of bipartite 

Table 2.   Parameters used in our numerical simulations.

Parameters (symbol) Value Parameters (symbol) Value

Cavity decay rates ( κ1 = κ2 = κ) 2π× 1 MHz Magnon decay rate ( κm) 2π× 1 MHz

Phonon frequency ( ωb) 2π× 10 MHz Cavity frequency ( ωa) 2π× 10 GHz

Mechanical damping rate ( γb) 2π×100 Hz Optomagnonical couplings(gk) 2π×3.2 MHz

Drive magnetic field (B) 3.9× 10
−5T Magnomechanical coupling(gmk) 2π×0.3 Hz

Power ( ℘ = B2πr2c
2µ2 ) 9.8 mW Spin density ( ρ) 4.22× 10

27m−3

YIG sphere diameter (D) 250 µm Temperature (T) 10 mK

Figure 2.   (Color online) Density plot of bipartite entanglement in (a,d) ENc1−c2
 ; in (b,e) ENc1−m2

= ENc2−m1
 and in 

(c,f) ENc1−b2
= ENc2−b1

 versus cavity detunings �1/ωb and �2/ωb in (a–c) for �m1
= �m2

= ωb whereas varying 
both magnon detunings �m1

/ωb and �m2
/ωb in (d–f) for both the cavity detunings fixed at �1 = �2 = ωb . The 

other parameters are given in Table 2.
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entanglements between different modes either both the cavity detunings or both the magnon detunings should 
be kept at blue sideband regime of the phonons due to deformation of YIG sphere. This is because it leads to 
anti-stokes process which results in significant cooling of phonons and enhance the bipartite entanglement 
between the different bipartions.

Next, we plot five different distant bipartite entanglements as a function of �1/ωb and �2/ωb for 
different single photon hopping factor Ŵ , while keeping both the magnon detuning in resonance with blue 
sideband regime i.e. �m1 = �m2 = ωb in Fig. 3. For Ŵ = 0.5ωb , the quantity ENc1−c2

 attains optimal value around 
i.e. �1 = �2 = −0.5ωb whereas for off resonant cavities, we also get finite values of ENc1−c2

 as shown in Fig. 3a. 
However, the cavity-magnon entanglements ENc1−m2

(= ENc2−m1
 ) become maximum for two different values of 

cavity detunings which are �1 = �2 = 0 and �1 = �2 = −ωb as shown in Fig. 3b. In addition, we obtained the 
optimal cavity-phonon entanglements ENc1−b2

(= ENc2−b1
) at �1 = �2 = −ωb as shown in Fig. 3c. It can be seen that 

if we increase the single photon hopping factor upto Ŵ = 0.8ωb then the bipartite entanglement in between both 
the cavity modes ENc1−c2

 becomes maximum for two cases i.e. either both the  cavity detunings should be in red  
sideband regime ( �1 = �2 = −ωb ) or in blue sideband regime ( �1 = �2 = ωb ) as shown in Fig. 3d. In addition, 
in the density plots of the bipartite quantities ENc1−m2

= ENc2−m1
 the region corresponding to red sideband regime 

start to decrease whereas the region corresponding to resonant cavities increases as shown in Fig. 3e. Moreover, 
the quantities ENc1−b2

= ENc2−b1
 show the finite values for a broad range of cavity detunings and attain maximum 

value for �1 = �2 = −1.5ωb as shown in Fig. 3f. On further increasing the value of Ŵ and keeping it at Ŵ = ωb , 
the quantity ENc1−c2

 again becomes maximum for two cases i.e. for �1 = �2 = −0.5ωb and �1 = �2 = −1.5ωb 
as shown in Fig. 3g whereas the quantities ENc1−m2

= ENc2−m1
 attain maximum value only when both the cavity 

detunings are nearly resonant with blue sideband regime as given in Fig. 3h. However, both the quantities 
ENc1−b2

= ENc2−b1
 attain maximum value only for very far off-resonant cavities �1 = �2 = −2ωb whereas for a 

broad range of negative cavity detunings both these distant entanglements almost become negligible however 
for a positive value of �1/ωb and �2/ωb both the bipartite entanglements attain finite values ENc1−b2

= ENc2−b1
 

as shown in Fig. 3i. Overall, it can be also seen from Fig. 3 that as the cavity-cavity photon hopping strength Ŵ 
continue to increase, concentration of various bipartite entanglements in density plots decrease significantly. 
This is because within a certain range, the photon hopping strength is positively correlated with the bipartite 
entanglement, but when it is increases continuously, the quantum system will undergo degradation, leading to 
a decrease in bipartite entanglement.

Now, we study the effects of varying photon hopping factor Ŵ/κc and normalised first cavity detuning 
�1/ωb on these five bipartite entanglements. It is important to mention here that we have taken two cases: 
symmetric case ( �1 = �2 = ωb ), which correspond to upper panel and non symmetric case ( �1 = −�2 = ωb ) 
corresponding to lower panel while keeping second cavity detuning �2/ωb fixed in Fig. 4. It can be seen that for 

Figure 3.   Density plot of bipartite entanglement in (a,d,g) ENc1−c2
 ; in (b,e,h) ENc1−m2

= ENc2−m1
 and in (c,f,i) 

ENc1−b2
= ENc2−b1

 versus detunings �1/ωb and �2/ωb . Here we have taken Ŵ = 0.5ωb for (a–c); Ŵ = 0.8ωb for (d–
f) and Ŵ = ωb for (g–i). We have fixed both the magnon detunings at �m1

= �m2
= ωb The other parameters 

are given in Table 2.
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�2 = ωb , i.e. when second cavity detuning is resonant with blue sideband regime, the quantity ENc1−c2
 becomes 

maximum for �1 varying in the range of 0− (−0.5ωb) whereas photon hopping factor varies upto 0− 5 although 
after this range ENc1−b2

= ENc2−b1
 get finite values for both positive and negative �1/ωb with varying Ŵ/κc as shown 

in Fig. 4a. Similarly, both the bipartite quantities ENc1−m2
 and ENc2−m1

 get maximum for �1 ≈ −ωb and after this 
both attain finite values again on varying �1/ωb and Ŵ/κc as shown in Fig. 4b and c. Moreover, the other two 
quantities ENc1−b2

 and ENc2−b1
 attain their maximum value for �1/ωb varying in the range of (−1) to (−2) even for 

a very high value of Ŵ/κc as shown in Fig. 4d and e. In another scenario for �2 = −ωb i.e. when second cavity 
detuning is resonant with red sideband regime, the quantity ENc1−c2

 becomes maximum nearby to �1/ωb = 0 
and Ŵ ≈ κc however after this it decreases very rapidly on gradually increasing �1/ωb as well as Ŵ/κc as shown 
in Fig. 4(f). For this value of second cavity detuning, it can be seen that both the bipartite entanglements ENc1−m2

 
as well as ENc2−m1

 get maximum only around �1/ωb = 0 and Ŵ/κc varies in between 7− 10 , afterwards both these 
entanglements vanish as shown in Fig. 4g and h. However  for this range of �1/ωb , ENc1−b2

 and ENc2−b1
 both become 

maximum for single photon hopping factor Ŵ/κc  varying in between the range of 5–7 and then both the bipartite 
entanglements become zero although a further increase in Ŵ/κc give maximum values of ENc1−b2

 and ENc2−b1
 as 

depicted in Fig. 4i and j. Therefore, it can be seen that the density plots of various bipartition show completely 
different results depending upon that weather the second cavity detuning is resonant with blue or red sideband 
regime of the phonons due to deformation of YIG Sphere. This is because in case of symmetric cavities i.e. 
( �1 = �2 = ωb ) we have only anti-stokes process whereas in case of ( �1 = −�2 = ωb ) both anti-stokes and 
stokes processes came into scenario.

In Fig. 5 we plot different distant bipartite entanglements as a function of �/ωb for symmetric cavities where 
we take � = �1 = �2 = ωb (upper panel) and for antisymmetric cavities � = �1 = −�2 = ωb (lower panel). 
For Ŵ = 0.5ωb and symmetric cavities, the bipartite quantity ENc1−c2

 varies from 0 to 0.6  on gradually changing the 
normalised detuning �/ωb in between -1 to 1 and after this range the quantity ENc1−c2

 becomes zero as shown in 
Fig. 5a. Furthermore, both the bipartite quantities ENm2−b2

 (ENm1−b1
) varies from 0 to 0.2 for negative values of �/ωb  

whereas for �/ωb greater than zero both of these quantities get saturated to a finite positive value. In addition, the 
bipartite quantities ENc1−b2

 ( ENc2−b1
 ) as well as ENc1−m2

 ( ENc2−m1
 ) become almost zero for positive values of �/ωb as 

shown in Fig. 5a. It can be seen that for this value of Ŵ a significant amount of entanglement transfer takes place 
from ENm2−b2

 (ENm1−b1
) to ENc1−b2

 ( ENc2−b1
 ) and ENc1−m2

 ( ENc2−m1
 ) at �/ωb ≈ -0.3 and -1.2. For Ŵ = 0.8ωb , the bipartite 

entanglement ENc1−c2
 become finite for �/ωb varying in the range of (0.3)–(1.3) and (–0.5)–(–1.3) as shown in 

Fig. 5b. It can be also seen that the bipartite quantities ENm2−b2
 (ENm1−b1

) almost get around 0.2 for positive as well 
as negative values of �/ωb except for certain values of �/ωb ≈ 0.2 and −1.5 whereas ENc1−m2

 ( ENc2−m1
 ) has finite 

values upto �/ωb ≈ 0.5 and ENc1−b2
 ( ENc2−b1

 ) becomes zero even for negative values of �/ωb . In this case we get 
maximum entanglement transfer from ENm2−b2

 (ENm1−b1
) to ENc1−b2

 ( ENc2−b1
 ) and ENc1−m2

 ( ENc2−m1
 ) around �/ωb ≈ 

0.1 and -1.5. If we increase further single photon hopping factor upto Ŵ = ωb then the quantity ENc1−c2
 remains 

Figure 4.   Density plot of bipartite entanglement in (a,f) ENc1−c2
 ; in (b,g) ENc1−m2

 ; in (c,h) ENc2−m1
 ; in (d,i) ENc1−b2

 
and (e,j) ENc2−b1

 versus �1/ωb and Ŵ/ωb for �2 = ωb in (a–e) and for �2 = −ωb in (f–j). The other parameters 
are same as in Fig. 3.



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21840  | https://doi.org/10.1038/s41598-023-48825-8

www.nature.com/scientificreports/

finite only for �/ωb varying in the range of (0.5)− (1.5) as well as (−0.5)− (−1.5) whereas ENm2−b2
 (ENm1−b1

) 
almost gets around 0.25 except at certain values of the �/ωb for which the entanglement transfer takes place in 
between the different bipartite correlations as shown in Fig. 5c. In this case ENc1−m2

 ( ENc2−m1
 ) has finite values upto 

�/ωb ≈ 1.0 however ENc1−b2
 ( ENc2−b1

 ) qualitatively remains the same as depicted in Fig. 5c. It can be seen that the 
maximum entanglement transfer from ENm2−b2

 (ENm1−b1
) to ENc1−b2

 ( ENc2−b1
 ) and ENc1−m2

 ( ENc2−m1
 ) takes place around 

values �/ωb ≈ 0.5 and -1.8. Now for antisymmetric cavities � = �1 = −�2 = ωb and single photon hopping 
factor Ŵ = 0.5ωb it can be seen that both the bipartite entanglements ENm2−b2

 (ENm1−b1
) have finite values with a 

varying �/ωb although for few values both become zero as shown in Fig. 5d. All other bipartite entanglements 
have very small values for this value of Ŵ . For Ŵ = 0.8ωb the bipartite entanglement ENc1−c2

 becomes zero whereas 
the quantities ENm2−b2

 (ENm1−b1
) have finite values from (0.1)− (0.25) as shown in Fig. 5d. Moreover, the bipartite 

entanglements ENc1−b2
 ( ENc2−b1

 ) increases for this value of Ŵ and become finite for a varying �/ωb in between the 
range of (– 1)–(1) whereas ENc1−m2

 ( ENc2−m1
 ) also increases and varies from 0–0.07(0.08) with �/ωb as depicted 

in Fig. 5d. With a further increment in Ŵ both the bipartite entanglements ENc1−m2
 ( ENc2−m1

 ) becomes finite over 
whole range of varying �/ωb whereas all other bipartite entanglements qualitatively remain the same (like earlier 
case of Ŵ = 0.8ωb ) as shown in Fig. 5f. It can be also seen that in case of symmetric microwave cavities when 
both the cavity detunings are kept fixed at blue sideband regime and only anti stokes process dominates, we have 
finite cavity-cavity entanglement whereas for antisymmetric cavities we get both stokes and anti stokes processes 
and hence it almost gives negligible cavity-cavity entanglement for any value of single photon hopping strength 
Ŵ . In addition, for symmetric cavities we also get maximum entanglement transfer from directly coupled modes 
(magnon-phonon) to indirectly coupled modes (cavity-magnon) as shown in Fig. 5.

We study the density plots of different distant bipartite entanglements as a function of environmental tem-
perature T and single photon hopping factor Ŵ/κc for symmetric case i.e. �1 = �2 = ωb (upper panel) and non 
symmetric case i.e. �1 = −�2 = ωb (lower panel). For second cavity detuning �2 = ωb it can be seen that for 
T ∼ 0.1K − 0.15K , all the three bipartite entanglements ENc1−c2

 , ENc1−m2
 and ENc2−m1

 are finite for a very narrow 
range of Ŵ/κc as shown in Fig. 6a–c whereas the other two bipartitions ENc1−b2

 and ENc2−b1
 remain finite for Ŵ/κc 

varying in between 5− 10 as depicted in Fig. 6d–e. For second cavity detuning �2 = −ωb (lower panel), three 
bipartitions ENc1−c2

 , ENc1−m2
 and ENc2−m1

 remain finite for a wider range of varying Ŵ/κc as shown in Fig. 6f– whereas 
the other two correlations ENc1−b2

 and ENc2−b1
 become maximum in two different regions of varying Ŵ/κc as shown 
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Figure 5.   Plot of different bipartite entanglement versus �/ωb by taking � = �1 = �2 = ωb for the upper 
panel and � = �1 = −�2 = ωb for the lower panel. The other parameters are same as in Fig. 3.



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:21840  | https://doi.org/10.1038/s41598-023-48825-8

www.nature.com/scientificreports/

in Fig. 6i and j. Moreover, in case of antisymmetric cavities, on gradually increasing the environmental tem-
perature T all the five distant bipartitions show finite value of entanglement for a broader range of single photon 
hopping strength Ŵ as compared to symmetric cavities. Hence as compared to results discussed in Fig. 5 here 
antisymmetric cavities are showing enhanced concentration of the bipartite entanglement with environmental 
temperature T.

Conclusion
We present an experimentally feasible scheme based on coupled magnomechanical system where two microwave 
cavities are coupled through single photon hopping parameter Ŵ and each cavity also contains a magnon mode 
and phonon mode. We have investigated continuous variable entanglement between distant bipartitions for an 
appropriate set of both cavities and magnons detuning and their decay rates. Hence, it can be seen that bipartite 
entanglement between indirectly coupled systems are substantial in our proposed scheme. Moreover, in our 
present scheme cavity-cavity coupling strength also plays a key role in the degree of bipartite entanglement and 
its transfer among different direct and indirect modes. This scheme may prove to be significant for processing 
continuous variable quantum information in quantum memory protocols.

Data availability
The corresponding author will provide the datasets used and/or analyzed during the current work upon 
reasonable request.
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