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A machine learning driven 
nomogram for predicting chronic 
kidney disease stages 3–5
Samit Kumar Ghosh * & Ahsan H. Khandoker 

Chronic kidney disease (CKD) remains one of the most prominent global causes of mortality 
worldwide, necessitating accurate prediction models for early detection and prevention. In recent 
years, machine learning (ML) techniques have exhibited promising outcomes across various medical 
applications. This study introduces a novel ML-driven nomogram approach for early identification of 
individuals at risk for developing CKD stages 3–5. This retrospective study employed a comprehensive 
dataset comprised of clinical and laboratory variables from a large cohort of diagnosed CKD patients. 
Advanced ML algorithms, including feature selection and regression models, were applied to build 
a predictive model. Among 467 participants, 11.56% developed CKD stages 3–5 over a 9-year 
follow-up. Several factors, such as age, gender, medical history, and laboratory results, independently 
exhibited significant associations with CKD (p < 0.05) and were utilized to create a risk function. The 
Linear regression (LR)-based model achieved an impressive R-score (coefficient of determination) 
of 0.954079, while the support vector machine (SVM) achieved a slightly lower value. An LR-based 
nomogram was developed to facilitate the process of risk identification and management. The 
ML-driven nomogram demonstrated superior performance when compared to traditional prediction 
models, showcasing its potential as a valuable clinical tool for the early detection and prevention of 
CKD. Further studies should focus on refining the model and validating its performance in diverse 
populations.

Chronic kidney disease (CKD) is an age-related, dangerous, and progressive pathological condition that affects 
the reduction in kidney  function1–3. It occurs when the kidneys are damaged and unable to effectively filter waste 
products from the blood. Over time, the condition may progress to end-stage renal disease (ESRD), where the 
kidneys lose their ability to perform their essential functions, and patients require kidney dialysis or a kidney 
transplant to  survive4. Based on findings from a systematic review, it has been found that approximately 11-13% 
of the world population is affected by CKD, with the majority of cases falling within the stage of three to five. 
The incidence of CKD increases in direct proportion to the progression of age. This is supported by empirical 
evidence indicating that around 35% of individuals who are 70 years old or above are impacted by  CKD5. CKD 
is associated with a higher susceptibility to cardiovascular disorders (CVD), such as strokes and heart  attacks6. 
In the last 20 years, the prevalence of CKD has significant rise, affecting 13.4% of the global  population7. Majority 
of the cases are seen between stages 3 and 5 of  CKD5. Patients diagnosed with CKD are highly susceptible to the 
development of cardiovascular diseases, which stand as the primary cause of mortality within this population. 
Accurate prediction of survival is essential for the management of CKD patients at a significant risk of heart 
diseases, as it can aid in guiding clinical decision-making and improving patient outcomes. The initial phases 
of CKD are often asymptomatic, which means that patients may not experience any noticeable symptoms until 
the disease has progressed to a more advanced  stage3. As a result, early detection and management of CKD are 
crucial for preventing the disease’s progression to ESRD and reducing the risk of associated complications such 
as cardiovascular disease, anemia, and bone  disease8. The diagnostic process of CKD typically involves blood 
and urine tests to assess kidney function and identify any abnormalities. Treatment may include medications 
to regulate blood pressure and blood sugar levels, dietary changes, and lifestyle modifications such as quitting 
smoking and increasing physical  activity9. The causes of CKD can vary, but some common risk factors include 
hypertension, blood pressure, diabetes mellitus, cholesterol levels, smoking, obesity, and a family history of kid-
ney  disease10–13. Survival forecasting in patients with CKD has traditionally relied on clinical factors such as age, 
sex, coexisting medical conditions, and laboratory values. However, these factors may not accurately predict sur-
vival in all CKD patients, especially those with complex medical histories and multiple comorbidities. With the 
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advent of machine learning algorithms and big data analytics, there is an opportunity to develop more accurate 
and personalized survival forecasting models for CKD  patients14, 15. In this study, we conducted an analysis on a 
dataset consisting of 467 patients released by Al-Shamsi et al.7 in 2018. In their original study, the authors used 
multivariate Cox proportional hazard analysis to find the independent risk factors (older age, history of smok-
ing, history of coronary heart disease, and history of diabetes mellitus) associated with developing CKD stages 
3–5. In 2021, following the previous study, Davide et al.16 conducted an analysis on the identical dataset. They 
focused on developing a machine learning approach that could effectively classify the progression of serious CKD 
and identify the key variables within the dataset. Through a feature ranking analysis, they determined that age, 
creatinine, and eGFR were the most significant clinical characteristics when the temporal component was absent, 
whereas hypertension, smoking, and diabetes played a crucial role when considering the year factor. Although 
the two  studies7, 16 mentioned above presented interesting results and identified distinct risk factors associated 
with different stages of CKD, the existing literature lacks robust nomograms specifically designed to predict the 
risk of incident CKD in high-risk populations of  CVD17. This study aims to fill this gap by developing a novel 
nomogram specifically designed for this particular population. The current nomogram serves as a straightforward 
and dependable tool for stratifying the risk of CKD among populations with a high risk of CVD. Utilizing a risk 
prediction tool to identify individuals at a higher risk of developing incident CKD can improve primary care 
for this condition. However, the primary healthcare system encounters several challenges, including a shortage 
of medical personnel, inadequate government funding, and excessive workloads. To address these issues, it is 
feasible, convenient, and widely accepted to construct a CKD risk prediction model using conventional data 
within the medical system, alongside improving chronic disease management techniques. Its purpose is to assist 
physicians in identifying individuals who are at risk and promptly implementing targeted prevention strategies.

Materials and methods
Dataset collection and subject information
The present investigation employed a dataset obtained  from7, which included health records of 544 patients col-
lected from Tawam Hospital located in Al-Ain city, Abu Dhabi, United Arab Emirates (UAE) between January 1, 
2008, and December 31, 2008. Figure 1 shows the flow diagram of the study design and patient selection process.

A total of 467 patients were included according to the inclusion and exclusion criteria. Out of which, 234 
were female patients and 233 were male patients, aged 23–89 years. Due to the retrospective nature of the study, 
the need for informed consent was waived by the Tawam Hospital and UAE University Research Ethics Board, 
which approved the study protocol under Application No. IRR536/17. The study was performed in accordance 
with the Declaration of Helsinki. All the patients were UAE citizens over the age of 20 and diagnosed with one 

Figure 1.  Flow diagram of study design and participants selection.
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or more of the following conditions: coronary heart disease (CHD), pre-hypertension, diabetes mellitus (DM) or 
prediabetes, vascular diseases, dyslipidemia, smoking, or being overweight or obese. The data collected includes 
the age of the patients ( ≤ 49 , 50–60, and ≥ 65 ), sex (female, male), smoking status (no, yes), obesity (no, yes), 
total cholesterol (TC), triglycerides (TG), estimated glomerular filtration rate (eGFR), glycosylated hemoglobin 
type A1C (HbA1C), systolic blood pressure (SBP), diastolic blood pressure (DBP), body mass index (BMI), 
and serum creatinine (Scr) of the patients. The study also includes disease parameters such as CHD (no, yes), 
diabetes mellitus (no, yes), hypertension (HTN) (no, yes), dyslipidemia (no, yes), and vascular diseases (no, yes), 
angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) use (no, yes). The 
category within the parentheses in the definition mentioned above serves as the reference group. Patients were 
recorded as having CHD if they had evidence of a coronary event, a coronary revascularization operation, or 
a cardiologist-determined diagnosis. Similarly, patients were categorized as having vascular disease based on 
specific criteria. These criteria included a documented history of cerebrovascular accident or transient ischemic 
stroke, a documented history of peripheral arterial disease, or the occurrence of revascularization for periph-
eral vascular disease. The exclusion criteria of this study were as follows: (i) eGFR less than 60 mL/min/1.73; 
(ii) patients with incomplete clinical data; (iii) the period of time during which the patient’s follow-up was lost. 
All dataset attributes refer to the patients’ initial visits in January 2008, except for the time-year variables and 
EventCKD35 (binary variables 0 and 1). The duration of the follow-up ended in June 2017. The binary variables 0 
and 1 indicate that the patients are in CKD stages 1 or 2, and 3, 4, or 5, respectively. During the follow-up period, 
54 patients (11.56%) with CKD stages 3–5 were identified in the entire cohort. In the context of this study, ‘time’ 
refers to the duration of the follow-up period subsequent to patients’ diagnosis and initiation of treatment, which 
is quantified in terms of survival months. In the sample of 54 patients, the average duration of follow-up was 
found to be 50 months, with the minimum observed follow-up period being 3 months.

Diagnostic criteria
The diagnostic criteria for CKD stages 3–5 were defined based on the eGFR and kidney damage, which can be 
assessed through various diagnostic tests and clinical evaluations. The Kidney Disease Improving Global Out-
comes (KDIGO) was used to categorize patients with CKD into two groups: normal (eGFR is ≥ 60 mL/min/1.73), 
and CKD stages 3–5 (eGFR is ≤ 60 mL/min/1.73)18. The CKD epidemiology collaboration (CKD-EPI) creatinine 
equation was used to determine eGFR, as per the definition given  below19:

where SCr denoted seram creatinine measured in µmol/L , age is expressed in years, κ is a constant of 0.9 for 
‘males’ and 0.7 for ‘females’, α is a constant of −0.411 for ‘males’ and −0.329 for ‘females’, ‘min’ represents the 
‘minimum’ value of SCr/κ or 1, and ‘max’ represents the ‘maximum’ value of SCr/κ or  119–21. A factor of 1.0 was 
assigned for ethnicity due to the absence of African-descent subjects in this study. The BMI ranges used for 
identifying individuals as overweight and obese are 25–29.9 kg/m2 and ≥ 30 kg/m2 , respectively. According 
 to22, HTN was described as SBP over 140 mmHg, DBP over 90 mmHg, or taking medicine to treat high blood 
pressure. Diagnostic standards for dyslipidemia included serum TC values of ≥ 6.21 mmol/L, serum TG levels 
of ≥ 2.26 mmol/L, or the use of lipid-lowering  drugs23. The reference ranges for creatinine were 58-96 µ mol/L 
for females and 53–115 mol/L for  males7. Patients were considered to have a positive smoking history if they 
reported either current or past tobacco smoking. The definition of prediabetes and DM followed the guidelines 
set by the American Diabetes Association (ADA)24.

Model estimation and selection
To analyze the data, first, the non-parametric Kaplan–Meier (KM) estimator was used to measure the amount 
of time spent in follow-up and visualize the survival curves. Then, a semi-parametric Cox proportional hazard 
regression model was employed to describe the impact of the variables on the survival outcome. These methods 
are briefly detailed here.

Kaplan–Meier method
The KM method is a non-parametric modeling approach established by Kaplan & Meier in 1958 that predicts 
survival probability based on observed  survival25. The general formula for determining the survival probability 
Ŝ(t) at time ti is as follows:

where t1, t2, · · · , tn are the ordered unique event timings, and ni is the total number of patients that were ‘at risk’ 
prior to time ti . The variable di represents the count of instances that have occurred at time ti . The estimated prob-
ability is a step function that begins with a horizontal line at a survival probability of 1 (when survival probability 
is 100% ) and then steps down to zero as survival probability drops. The KM estimates model is used to perform 
an analysis of the survival probability. The survival time, measured in months, was the primary dependent vari-
able. Follow-up time can be interpreted as a time to event (TTE), where the event would be CKD stages 1–2 
or CKD stages 3–5. The non-parametric KM method has a significant drawback: it cannot represent survival 
probability with a smooth function, rendering it unable to make predictions. On the other hand, parametric 
models such as the exponential and weibull distribution models can overcome this  limitation26. They serve as a 

(1)
eGFR = 141×min(SCr/κ , 1)α ×max(SCr/κ , 1)−1.209 × 0.993Age

× (1.018 if ‘female’)× (1.159 if for ‘African descent’)

(2)Ŝ(t) =
∏

ti≤t

ni − di

ni
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logical progression from the KM method, bridging the gap and greatly improve understanding of survival analy-
sis. Besides, in cases where parametric models are appropriate, they are more exact, more effective, and more 
informative than KM. The KM estimation curve fits with exponential and weibull distributions by considering 
statistical measures such as the AIC (Akaike Information Criterion) and maximum log-likelihood. A model with 
a smaller AIC value is a better fit, while a model with a higher (maximum) log-likelihood is a good fit. After 
running the initial analysis, it was seen that the weibull distribution has a larger loglikelihood of − 259.78 and 
the smallest AIC of 523.56 compared to exponential model estimates (loglikelihood: − 265.49, AIC: 532.98). So, 
weibull is a superior fit for the model because it follows the statistical preference of maximizing log-likelihood 
while minimizing AIC for fitting the model and making predictions.

Figure 2 shows the KM plots for the survival function of CKD patients in stages 3–5 and the visual distribution 
of both models. The Python programming language (version 3.10.12) and the “lifelines” package were used to 
estimate the KM  curve27. It displays the time period (follow-up months) on the x-axis and survival probabilities 
on the y-axis. A notable disparity was observed with regards to patient survival. The exponential distribution sur-
vival plot, depicted by the green curve (Fig. 2), exhibits a slight deviation from the KM survival plot represented 
by the blue curve, whereas the orange plot aligns with it. The smooth rate of decrease observed in the described 
approach effectively characterizes the survival probability, surpassing the step-wise nature of the KM method, 
which experiences abrupt drops in probability only following an event while maintaining constant probabilities 
between events. In order to determine which model provides the best fit, a comparison of the quantile–quantile 
(Q–Q) plot (as shown in Fig. 3) is used to check the clustering of observations along a slope  line28.

Figure 2.  Survival curves for different models: Kaplan–Meier estimator, Weibull distribution, exponential 
distribution.

Figure 3.  Q–Q plot for (a) exponential distribution, (b) Weibull distribution.
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The Q–Q plot determines which distribution provides a better fit to the KM estimation survival curve. The 
distribution whose Q–Q plot aligns more closely with a straight line indicates a better fit to the data. If the points 
deviate significantly from a straight line, it indicates that the data does not fit the chosen distribution well. From 
Fig. 3, it can be observed that the weibull distribution is a good fit for the model as most of the data points 
(observed data) seem to be clustered along the slope line. Hence, we can use the weibull distribution model to 
predict other features affecting CKD patients in stages 3–5; this will help us determine which features are most 
strongly associated with patients’ survival.

Cox proportional hazard model
The Cox proportional hazard model is a semi-parametric method that can be used to analyze survival-time 
outcomes, also known as time-to-event outcomes, based on one or more  predictors29. The model demonstrates 
features of a general regression analysis, which enables the evaluation of different levels of a factor’s influence on 
survival time while accounting for other factors. Its functionality is highly similar to that of the logistic regres-
sion model, but instead of predicting a binary outcome, it focuses on time-to-event data. The computation of the 
regression coefficient enables the determination of the relative risk that is linked to the corresponding factor. The 
logistic regression model is designed to handle only qualitative variables as the dependent variable, such as the 
outcome of a case (the end event), without incorporating the duration of survival time. The Cox hazard-based 
model utilizes survival time and event occurrence as its dependent variables. The Cox proportional hazards 
model is presented in the following form of an  equation30:

where, t represents the time, and X indicates a number of contributing factors. The relative risk function, denoted 
as g(X) = βT

X , is solely dependent on the p explanatory variables X = x1, x2, · · · , xp and the regression param-
eter β . The exponential values of eβ are called hazard ratios (HR). A positive value of βi or a HR greater than 
one indicates that an increase in the ith covariate leads to an increase in the event hazard, resulting in a decrease 
in the survival length. In other words, a covariate with an HR over 1 is one that is positively correlated with the 
likelihood of an occurrence and hence negatively correlated with the duration of survival.

Results and discussion
In this study, a total of 467 participants with eGFR greater than or equal to 60 mL/min/1.73 m2 was considered 
during every 3-month follow-up period from baseline visit to June, 30 2017. After a period of follow-up, a total 
of 54 new cases (male: 34; female: 20) of CKD stages 3–5 were identified. There are 233 males and 234 females 
in this study, and their ages range between 23 and 89 years old (Table 1).

(3)h(t,X) = h0(t)e
g(X)

Table 1.  Explanation, measurement units, and intervals of each feature of the dataset. ACEI angiotensin-
converting enzyme inhibitors, ARB angiotensin II receptor blobkers, kg kilogram, mmol millimoles, mmHg 
millimetre of mercury.

Feature Explanation Measurement Range

Gender Female or male Boolean 0, 1

Age Age of the patient Years [23, 24,  , 89]

History diabetes If the patient has diabetes Boolean 0, 1

History CHD If the patient has coronary heart diseases Boolean 0, 1

History vascular If the patient has vascular diseases Boolean 0, 1

History smoking If the patient smokes Boolean 0, 1

History HTN If the patient has history of hypertension Boolean 0, 1

History DLD If the patient has history of dyslipidemia Boolean 0, 1

History Obesity If the patient has history of obesity Boolean 0, 1

DLD meds If the patient has taken dyslipidemia medications Boolean 0, 1

DM meds If the patient has taken diabetes medications Boolean 0, 1

HTN meds If the patient has taken hypertension medications Boolean 0, 1

ACEIARB If the patient has taken ACEI or ARB Boolean 0, 1

Cholesterol Level of cholesterol mmol/L [2.23, 2.40,  , 9.30]

Triglycerides Level of triglycerides mmol/L [0.18, 0.22,  , 6.24]

HgbA1C Level of glycosylated hemoglobin type A1C % [3.90, 4.10,  , 18.10]

Creatinine Level of creatinine in the blood µmol/L [6, 27,  , 123]

eGFR Estimated glomerular filtration rate mL/min/1.73m2 [60, 60.4,  , 242.6]

SBP Systolic blood pressure mmHG [92, 95,  , 177]

DBP Diastolic blood pressure mmHG [41, 45,  , 112]

BMI Body mass index of the patient kg/m2 [16, 17,  , 57]

Time Follow-up period Months [3, 4,  , 111]

(Target) CKD Event Moderate or extreme CKD during the follow-up period Boolean 0, 1
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The oldest male was 89 years old, and the oldest female was 79 years old. Among 233 males, 199 were in 
CKD stages 1–2 and 34 were in CKD stages 3–5. Similarly, among 234 females, 214 were in CKD stages 1–2 and 
20 were in CKD stages 3–5. The dataset contains a total of 23 features (numerical and categorical) that report 
demographic, biochemical, and clinical information about the CKD patients. The categorical features include 
the gender of the patient. Additionally, personal history factors are considered, such as diabetes history, CHD 
history, vascular disease history, smoking history, HTN history, DLD history, and obesity history. Furthermore, 
specific-disease medicines, namely DLD medications, diabetes medications, HTN medications, and inhibitors 
(angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers), are represented as binary values 
(0, 1). A descriptive statistical analysis was done using a mean ± standard deviation (SD) with an unpaired, two-
tailed t-test for continuous variables and a frequency distribution for categorical variables (using the Chi-squared 
test) to find out about the patients and their medical conditions. The statistical quantitative description of the 
categorical and numerical features are described in Tables 2 and 3, respectively. It has been observed from the 

Table 2.  Statistical and quantitative description of the category features.

Total patients (N = 467)
CKD patients stages 1–2 
(N = 413)

CKD patients stages 3–5 
(N = 54)

Categorical feature Number Percentage (%) Number Percentage (%) Number Percentage (%)

Gender (0: female) 234 50.10 214 51.82 20 37.04

Gender (1: male) 233 49.90 199 48.18 34 62.96

Diabetes (0: false) 255 54.60 248 60.05 7 12.96

Diabetes (1: true) 212 45.40 165 39.95 47 87.04

CHD (0: false) 422 90.36 385 93.22 37 68.52

CHD (1: true) 45 9.64 28 6.78 17 31.48

Vascular diseases (0: false) 440 94.22 392 94.92 48 88.89

Vascular diseases (1: true) 27 5.78 21 5.08 6 11.11

Smoking (0: false) 398 85.22 357 86.44 41 75.93

Smoking (1: true) 69 14.78 56 13.56 13 24.07

HTN (0: false) 142 30.41 138 33.41 4 7.41

HTN (1: true) 325 69.59 275 66.59 50 92.59

DLD (0: false) 159 34.05 150 36.32 9 16.67

DLD (1: true) 308 65.95 263 63.68 45 83.33

Obesity (0: false) 224 47.97 201 48.67 23 42.59

Obesity (1: true) 243 52.03 212 51.33 31 57.41

DLD meds (0: false) 203 43.47 191 46.25 12 22.22

DLD meds (1: true) 264 56.53 222 53.75 42 77.78

DM meds (0: false) 308 65.95 295 71.43 13 24.07

DM meds (1: true) 159 34.05 118 28.57 41 75.93

HTN meds (0: false) 172 36.83 164 39.71 8 14.81

HTN meds (1: true) 295 63.17 249 60.29 46 85.19

ACEIARB (0: false) 252 53.96 240 58.11 12 22.22

ACEIARB (1: true) 215 46.04 173 41.89 42 77.78

Table 3.  Statistical and quantitative description of the numerical features.

Total patients (N = 467)
CKD patients stage 1–2 
(N = 413)

CKD patients stage 3–5 
(N = 54) p-value

Numerical feature Median Mean SD Median Mean SD Median Mean SD

Age 55.00 53.81 13.64 53.00 52.65 13.71 62.00 62.70 9.21 < 0.001

Cholesterol 5.00 4.98 1.10 5.00 5.04 1.09 4.40 4.54 1.11 0.002

Triglycerides 1.10 1.32 0.80 1.08 1.29 0.80 1.36 1.53 0.72 0.043

HgbA1C 6.10 6.61 1.71 6.00 6.38 1.42 7.50 8.30 2.57 < 0.001

Creatinine 66.00 67.75 17.81 64.00 65.78 16.93 84.00 82.85 17.26 < 0.001

eGFR 97.70 97.66 18.40 99.60 100.08 17.67 77.95 79.13 12.39 < 0.001

SBP 131.00 131.62 15.56 130.00 130.88 15.12 139.00 137.30 17.73 0.004

DBP 77.00 77.04 10.71 77.00 77.29 10.53 74.50 75.09 11.91 0.156

BMI 30 30.41 6.19 30.00 30.43 6.22 30.50 30.28 6.01 0.868

Time 93.00 84.67 24.22 95.00 89.17 19.00 50.00 50.22 31.36 < 0.001
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Table 2 that CKD group subjects (stages 3–5) have a higher history of dyslipidemia (83.33% vs 63.68%), obesity 
(57.41% vs 51.33%), DLD-Meds (77.78% vs 53.75%), HTN (85.19% vs 60.29%), diabetes (87.04% vs 39.95%), 
CHD (31.48% vs 6.78%), vascular diseases (11.11% vs 5.08%), smoking (24.07% vs 13.56%), diabetes mellitus 
(75.93% vs 28.57%), and ACEIARB (77.78% vs 41.89%) than non-CKD group subjects (stages 1–2). The differ-
ences in baseline characteristics of the CKD and non-CKD groups (CKD stages 1–2) of subjects in this study 
are presented in Table 3. The mean age of the non-CKD group ( 52.65± 13.71 years) was significantly lower than 
that of CKD group ( 62.70± 9.21 years). The levels of triglycerides (TG), glycosylated hemoglobin type A1C 
(HbA1C), serum creatinine (SCr), and systolic blood pressure (SBP) in the CKD group were significantly higher 
as compared to the non-CKD group, but the estimated glomerular filtration rate (eGFR), cholesterol, diastolic 
blood pressure (DBP), and body mass index (BMI) were lower. The data are expressed as the median, mean, and 
standard deviation. A p-value less than 0.05 was considered statistically significant. It has been observed from 
Table 3 that the p-value of the covariates such as age, cholesterol, triglycerides, HgbA1C, creatinine, eGFR, SBP, 
and time follow-up is less than 0.05, and this indicates that these variables had a significant impact on the CKD 
stage 3–5. The other covariates have no significant influence.

In this study, we employed the KM survival curve fitting approach in combination with the weibull distri-
bution to analyze and model the survival data. The aim was to determine the “decay rate” with respect to the 
follow-up time period, which was used as the dependent variable for subsequent regression models. The initial 
step involved fitting the KM survival curve using the weibull distribution. We produced an accurate representa-
tion of the survival data by computing the two parameters of the Weibull distribution, γ (shape parameter) and 
� (scaling parameter). This allowed us to calculate the shape and scale of the survival curve, providing valuable 
insights into the underlying survival trends. After obtaining the parameters γ = 1.53 and � = 55.35 , we deter-
mined the decay rate for the follow-up time. This result was used as the dependent variable in our regression 
models. We employed two regression techniques: Support Vector Machine (SVM)31 and Linear Regression (LR)32 
to investigate the relationship between the decay rate and other relevant features. To identify the most influential 
features, a feature ranking process was performed, which led to the selection of the top 11 predictors. Using the 
“SelectKBest” class in Python 3.10.12 with scikit-learn (version: 1.2.2), we specifically employed feature ranking 
to pinpoint the top 10 most relevant features. This method allowed us to extract features with the highest scores, 
as determined by statistical tests, underscoring their significance in our analysis and leveraging the chi-squared 
scoring function for feature selection. These top 11 features were carefully chosen to enhance both the predictive 
accuracy of our models and the interpretability of the results. Subsequently, these selected features served as 
the inputs for our regression models, contributing to a more comprehensive understanding of the relationship 
between these features and the decay rate. For our regression analysis, we adopted a data partitioning strategy, 
allocating 70% of the data for training the model and reserving the remaining 30% for testing and validation 
purposes. To assess the performance of the regression analyses, different metrics are used, namely R-score 
(R-squared), mean squared error (MSE), root mean squared error (RMSE), and mean absolute error (MAE). 
The MAE is a matric used to measure the average squared difference between the original and predicted values 
obtained by averaging the absolute differences over the entire dataset. It gives an indication of how close the 
predictions are to the actual values. The MSE is a measure of the average squared difference between the origi-
nal values and the predicted values. It is calculated by squaring the average difference over the dataset. RMSE 
is generated from MSE and provides the error rate of the prediction model. It is evaluated by taking the square 
root of MSE. RMSE is a popular metric since it provides a measure of the average magnitude of the prediction 
errors. It helps to understand the magnitude of the errors in the predictions. R-squared, alternatively referred 
to as the coefficient of determination, It indicates the goodness of fit of the model by measuring how well the 
predicted values align with the original values. R-squared can be interpreted as the percentage of variability in 
the dependent variable that is explained by the independent variables. The value of R-squared ranges between 0 
and 1, with a higher R-squared value indicating a better fit and 1 representing a perfect fit. The scores obtained 
from both the SVM and Linear Regression models were tabulated and compared in Table 4 in order to select 
the best prediction model.

Based on the comparison results provided in Table 4, it is evident that linear models exhibit superior per-
formance on this dataset. In order to obtain an optimal regression model, it is desirable to minimize the error, 
aiming for a value close to zero, while simultaneously maximizing the variability of the target variable explained 
by the features, striving for a value close to one. Interestingly, the results indicated that the Linear Regression 
model outperformed the SVM model, demonstrating better predictive accuracy for the used dataset. Therefore, 
we consider linear regression models having the lowest RMSE (0.069526) and the highest R2 (0.954079) as the 
final prediction models. The performance of the linear regression model was assessed by comparing the actual 
observed values with the predicted values. Figure 4 presents the ‘Actual vs. Prediction’ plot, where each data point 
represents an observation in the dataset. The x-axis represents the observed values of the dependent variable, 
while the y-axis corresponds to the predicted values based on the regression model.

It can be observed from the plot that the majority of the data points align along a diagonal line, indicating a 
reasonably strong linear relationship between the predicted and actual values. This alignment indicates that the 

Table 4.  Comparison of prediction models using MSE, RMSE, MAE and R2.

Model MSE RMSE MAE R
2

SVM regression 0.005628 0.075018 0.069163 0.934005

Linear regression 0.004834 0.069526 0.051722 0.954079
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model has successfully captured the underlying trends in the data. However, it is evident that a small number 
of data points deviate from the diagonal line, indicating a certain level of discrepancy or inaccuracy in the pre-
dictions. These deviations could be attributed to various factors, such as measurement errors or unaccounted 
variables that influence the dependent variable. The ‘Actual vs. Prediction’ plot demonstrates the satisfactory 
performance of the linear regression model in capturing the inherent relationship between the predictors and the 
dependent variable. The model’s capability to predict values that fall within a reasonable range of the observed 
values suggests its reliability for making accurate predictions and extracting meaningful insights from the data. 
We have conducted a thorough evaluation of our predictive model using the five-fold cross-validation approach. 
This approach involves partitioning the dataset into five subsets, training the model on four subsets, and evalu-
ating its performance on the remaining subset. This process is repeated five times, ensuring that each subset 
serves as the validation set exactly once. Table 5 provides a comparison of the cross-validation-based model 
performance metrics. By utilizing the cross-validation approach, we have ensured a robust assessment of its 
performance. The results from this comprehensive evaluation confirm that our predictive model is reliable and 
demonstrate its effectiveness.

To estimate the impact of various covariates on CKD stage 3–5, a semi-parametric Cox hazard model was 
fitted using the ‘lifelines’ module in Python 3.10.12; the obtained results are presented in Table 6.

The HR and corresponding p values for each of the twenty one variable sets are listed in this table. The HR 
was used to evaluate the relative risk of a variable. If the HR is greater than one, it implies that the variable is 
positively connected with the likelihood of CKD stage 3–5 and negatively correlated with survival time. On the 
other hand, if the HR is less than one, it shows that the correlation is in the other direction. It has been observed 
from Table 6 that the p-value of the covariates such as history of CHD, DLD medications and SBP is less than 
0.05, and this indicates that these variables had a significant impact on the CKD stage 3–5. The other covariates 
have no significant influence. The p-value for history of CHD is < 0.05 and the HR is 4.0603 indicating a strong 
relationship between the patients’ history of CHD and CKD stage 3–5. The variable ranking based on CKD stage 
3–5 is illustrated in Fig. 5.

The figure provides a forest plot reporting the HR and the 95% confidence intervals (CI) of the HR for each 
covariate included in the Cox proportional hazards model. Only history of CHD, DLD medications, and SBP 
were found to be significant with 0.05 cutoff. It is evident from looking at the figure that history of CHD have a 
positive influence on survival time while DLD medications have a negative influence on the survival time. The 
concordance index, or C-index33, provides a measure of the discriminative ability of the KM estimate and the 

Figure 4.  Actual vs. prediction plot for linear regression.

Table 5.  Cross-validation-based model performance metrics comparison.

Model Metrics Training set Validation set

SVM regression

MSE 0.0060 0.0079

RMSE 0.0777 0.0891

MAE 0.0719 0.0860

R2 0.9219 0.9370

Linear regression

MSE 0.0024 0.0026

RMSE 0.0495 0.0510

MAE 0.0378 0.0394

R2 0.9682 0.9793
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Cox Proportional Hazards model in our study. Remarkably, the KM estimate achieved a perfect C-index of 1.0, 
signifying its impeccable ability to distinguish between different outcomes and accurately order survival times 
within our dataset. In contrast, the Cox Proportional Hazards model yielded a C-index of 0.7510, indicating a 
substantial but not flawless discriminatory power. This comparison suggests that the KM estimate outperforms 
the Cox model in terms of discrimination, demonstrating an unparalleled capacity to precisely predict survival 
outcomes within our specific context. The KM estimate and the Cox Proportional Hazards model are both 
important tools in survival analysis, but they serve different purposes and have distinct advantages. Here are 

Table 6.  Significance of variables under Cox regression analysis and highlighted estimated coefficients those 
are significant.

Covariate β e
β Se(β) 95% CI for eβ z p

Gender 0.1774 1.1941 2.0613 [0.0210, 67.8699] 0.0860 0.9314

Age 0.0319 1.0324 0.0581 [0.9212, 1.1569] 0.5491 0.5829

History diabetes − 0.4991 0.6070 0.9680 [0.0910, 4.0478] − 0.5156 0.6061

History CHD 1.4012 4.0603 0.5933 [1.2690, 12.9908] 2.3615 0.0181

History Vascular − 0.8333 0.4345 0.9830 [0.0632, 2.9842] − 0.8477 0.3965

History Smoking − 0.7466 0.4739 0.6170 [0.1414, 1.5888] − 1.2100 0.2262

History HTN − 0.9810 0.3749 0.9988 [0.0529, 2.6556] − 0.9821 0.3260

History DLD 1.8573 6.4068 1.0272 [0.8554, 47.9809] 1.8080 0.0706

History Obesity − 0.0040 0.9959 0.8631 [0.1834, 5.4073] − 0.0047 0.9962

DLD Medications − 2.5255 0.0800 1.1418 [0.0085, 0.7500] − 2.2117 0.0269

DM Medications 1.2012 3.3243 0.6503 [0.9292, 11.8926] 1.8471 0.0647

HTN Medications 0.7190 2.0525 1.0752 [0.2495, 16.8855] 0.6687 0.5036

ACEIARB 0.2679 1.3072 0.8125 [0.2658, 6.4276] 0.3297 0.7415

Cholesterol 0.2922 1.3393 0.2270 [0.8582, 2.0901] 1.2869 0.1981

Triglycerides − 0.2401 0.7865 0.2992 [0.4375, 1.4139] − 0.8023 0.4223

HgbA1C − 0.0480 0.9531 0.1010 [0.7818, 1.1618] − 0.4753 0.6345

Creatnine 0.0203 1.0205 0.1052 [0.8303, 1.2544] 0.1937 0.8464

eGFR − 0.0069 0.9931 0.1090 [0.8020, 1.2297] − 0.0633 0.9495

SBP 0.0348 1.0354 0.0164 [1.0025, 1.0694] 2.1125 0.0346

DBP − 0.0399 0.9608 0.0240 [0.9166, 1.0071] − 1.6636 0.0961

BMI 0.0174 1.0175 0.0625 [0.9001, 1.1503] 0.2786 0.7805

Figure 5.  Cox proportional hazard model variable ranking based on log(HR).
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some advantages of the KM estimate over the Cox Proportional Hazards model: (i) KM estimates provide a 
non-parametric way to estimate survival curves. They make no assumptions about the underlying hazard func-
tion, which can be advantageous when the assumptions of the Cox model do not hold, (ii) KM curves are easily 
interpretable and can be plotted to visualize survival probabilities over time for different groups or categories. 
This makes them valuable for descriptive and exploratory analysis, (iii) KM analysis is relatively simple and 
does not involve the complexities of modeling covariates. It’s a suitable choice when you want to focus solely 
on estimating and comparing survival probabilities between groups, (iv) KM is the method of choice when the 
primary goal is to examine and describe the time-to-event data without modeling covariates. It is particularly 
useful for studying event occurrence in clinical trials and observational studies. However, it is important to note 
that while the KM estimate has these advantages, it is limited in its ability to model the impact of covariates on 
survival time and does not provide HRs. For such analyses, the Cox proportional hazards model may be more 
appropriate. Following the selection of the superior regression model, we extracted the coefficients and intercept 
values from the model. These coefficients and intercepts were crucial in constructing a nomogram. A nomogram 
is a graphical representation that provides a simple and intuitive tool for predicting outcomes based on the regres-
sion model. It consists of four lines: the point line, the line for the risk factor, the line for the probability, and the 
line for the total number of points. The process of constructing these lines has been previously  explained34, 35. 
The point line is built by assigning values ranging from 0 to 100. The linear predictor ( LPmn ) value is determined 
based on a coefficient derived from a fitted regression model. If the independent attributes X is a categorical with 
n categories, and ( n− 1 ) dummy variables are generated. The formula for LPmn is as follows:

Using this formula, PointSmn are calculated for each risk category and aligned to the respective risk factor lines. 
The calculation for PointSmn is as follows:

where βmn represents the regression coefficient value for the nth category of the mth risk factor. LP∗n indicates 
the LP value of the risk factor with the largest estimated range of attribute values. The probability line indicates 
the probability value associated with a given total point, which spans the range from 0 to 1. The total point line 
is derived by cumulatively summing up the PointSmn values.

The Logistic Regression model is represented by the expression 
∑

mn LPmn . The total number of points corre-
sponding to each value of the probability line can be determined by substituting this equation into the previous 
expression.

In this equation, the value on the probability line, P(Y = 1|X = x) is substituted to construct the total point line. 
By utilizing the coefficients and intercept value ( α ), a nomogram can be developed as shown in Fig. 6 to aid in 
clinical decision-making and risk  assessment34.

To predict the risk of CKD stages 3–5 for a patient with the following values: gender = 0, age = 89, history 
of smoking = 1, DM medications = 1, SBP = 92, and time follow-up = 5 months, each value is assigned to its 
respective points as illustrated in Fig. 7.

The resulting point values obtained are as follows: 38, 100, 20, 0, 28, and 65. These numbers are then summed 
to get an overall point value of 251, which may be used to assess the risk of CKD stages 3 to 5 by consulting the 
nomogram’s given curve. Using these data, we may estimate that this patient has a 0.58% chance of developing 
CKD stages 3–5. This example demonstrates the practical applications of nomograms to predict clinical outcomes. 
Figure 8 shows the nomogram results indicating the risk scores based on the established logistic regression model 
during the follow-up periods of 31–50 and 81–95 months, respectively.

Additionally, supplementary Figs. S1, S2, S3, and S4 provided the corresponding results for the follow-up 
periods of 16–30 months, 51–65 months, 66–80 months, and 96–111 months, respectively. The nomogram 
assessment considered various factors such as age, gender, medical history, laboratory results, and specific risk 
factors associated with CKD stages 3–5. By integrating these factors, we have generated personalized risk scores 
for each patient. These risk scores are visually represented in Fig. 9 and the summary of results is provided in 
supplementary Table ST1.

The plot depicting the patient’s ID versus risk score for CKD stages 3–5 provides a visual representation of 
the varying levels of risk associated with individual patients within these stages. The x-axis of the plot corre-
sponds to the patient ID, which is a unique identifier assigned to each patient within the dataset. The patient IDs 
are organized in ascending order, meaning that the patients’ data points will be plotted sequentially along the 
x-axis. The vertical y-axis, is used to represent the risk score associated with stages 3–5 of CKD. The risk score 
is a quantitative measure that evaluates the probability or seriousness of complications associated with CKD. 
Through an analysis of the plot, one can observe the distribution of risk scores across the patients with CKD 
stages 3–5. Higher risk scores are typically associated with patients who have a higher probability of developing 

(4)LPmn = βmn × Xmn

(5)PointSmn =
LPmn −minn (LPmn)

maxn (LP∗n)−minn (LP∗n)
× 100

(6)Total Points =
∑

mn

PointSmn =
∑

mn

LPmn −minn (LPmn)

maxn (LP∗n)−minn (LP∗n)
× 100

(7)Total Points =
∑

mn

ln
(

P(Y=1|X=x)
1−P(Y=1|X=x)

)

− α −
∑

mn minn (LPmn)

maxn (LP∗n)−minn (LP∗n)
× 100
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Figure 6.  Generate the nomogram with online generator.

Figure 7.  An example of Nomogram results for CKD stages 3–5 to predict risk score.
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complications from their kidney disease. Conversely, lower risk scores indicate a lower probability of such events 
occurring. The plot allows healthcare professionals to visually identify the risk scores of patients with CKD stages 
3–5. It can assist in identifying patients who may require closer monitoring, targeted interventions, or specialized 
care based on their individual risk profiles. Additionally, the plot can provide insights into the overall distribution 
of risk scores within this specific CKD population, helping to inform future clinical decision-making. The study 
has several flaws: (i) the small size of the datasets; (ii) since patient mortality was not taken into account in this 
study, the incidence of CKD may be underestimated; (iii) more information about the patient’s physical features 
and work history would have helped find other risk factors for cardiovascular diseases; and (iv) if a similar dataset 
with similar characteristics from a different part of the world had been available, it would have been helpful.

Figure 8.  Nomogram results predicting the risk scores: (a) during follow-up months 31–50; (b) during 
follow-up months 81–95.
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Figure 9.  Plot depicting the patient’s ID versus risk score.
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Conclusion
This study presents a novel machine learning-driven nomogram for predicting CKD stages 3–5. The proposed 
approach offers an accurate and personalized risk assessment tool with the potential to improve early detection 
and preventive strategies. The integration of advanced machine learning algorithms and comprehensive patient 
data contributes to the robustness and reliability of the developed nomogram. This proposed nomogram has great 
predictive capacity and may have major clinical implications for diagnosing CKD stages 3–5. Future research 
needs to focus on the integration of additional data sources and validation through prospective studies, fostering 
the translation of this nomogram into clinical practice, and improving patient outcomes.

Data availability
All data relevant to the study are included in the article or uploaded as supplementary information. The datasets 
utilized and/or examined in the present study can be accessed from the following source: https:// figsh are. com/ 
artic les/ datas et/ 67111 55? file= 12242 270.
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