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Some developments on seasonal 
INAR processes with application 
to influenza data
Fatimah E. Almuhayfith 1*, Emmanuel W. Okereke 2, Manik Awale 3, Hassan S. Bakouch 4,5 & 
Hana N. Alqifari 6

Influenza epidemic data are seasonal in nature. Zero-inflation, zero-deflation, overdispersion, and 
underdispersion are frequently seen in such number of cases of disease (count) data. To explain these 
counts’ features, this paper introduces a flexible model for nonnegative integer-valued time series 
with a seasonal autoregressive structure. Some probabilistic properties of the model are discussed 
for general seasonal INAR(p) model and three estimation methods are used to estimate the model 
parameters for its special case seasonal INAR(1) model. The performance of the estimation procedures 
has been studied using simulation. The proposed model is applied to analyze weekly influenza data 
from the Breisgau- Hochschwarzwald county of Baden–Württemberg state, Germany. The empirical 
findings show that the suggested model performs better than existing models.

Many epidemic diseases follow a seasonal pattern and so is the Influenza. Influenza shows a seasonal pattern1 
in temperate regions. The weekly/monthly/yearly epidemic data form a time series of counts. Analyzing and 
forecasting time series of counts remain a useful technique of getting information needed for successful policy 
making and management of epidemics. Before modeling a count time series, an analyst should be familiar 
with specific characteristics of the series in order to select a good model for the data. Dispersion characteristic, 
stationarity, autocorrelation structure and seasonality remain factors that help a researcher to determine the 
model that should be fitted to a count time series. Seasonality refers to the tendency of a time series (including 
low count time series) to exhibit patterns or movements that are completed within a year and repeat themselves 
every year. Seasonality deals with regular and predictable patterns in a time series. For example, a weekly time 
series of low counts is said to be seasonal with seasonal period s = 52 if its associated autocorrelation function 
has spikes at multiples of lag 52.

New INAR processes have been constructed and used to model stationary nonseasonal count time series from 
a variety of fields since the independent works of Al-Osh and Alzaid2, and McKenzie3, which paved the way for 
research on the applications and construction of nonnegative integer-valued autoregressive (INAR) processes. 
Several models were constructed for stationary, overdispersed nonseasonal series based on the binomial thinning 
operator and first-order autoregressive correlation structure4,5. Authors who used other thinning operators to 
build models for the count time series include Liu and Zhu6, and Ristić et al.7. There is also evidence of stationary, 
first-order integer-valued autoregressive processes, which were constructed using innovation distributions, that 
can exhibit any of the underdispersion, equidispersion and overdispersion phenomena8–10.

An INAR(1) process with an innovation distribution that is basically a standard discrete or compound Pois-
son distribution has been described as inappropriate for modeling any of underdispersed and overdispersed 
series with either inflation or a deflation of zeros11. Zero-modified distributions are useful in modeling count 
data with an inflation or deflation of zeros. The zero-modified versions of some discrete distributions have been 
introduced and used as innovation distributions to construct INAR(1) models by some authors. For example, 
Barreto-Souza11 constructed a zero-modified geometric INAR(1) process using the negative binomial thinning 
operator and illustrated empirically the applicability of the model using two practical data sets. In particular, 
the model may be used to describe an underdispersed or overdispersed series with deflationary or inflationary 
zeros. Sharafi et al.12 suggested an INAR(1) process using the zero-modified Poisson–Lindley (ZMPL) distributed 
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innovations. They fitted the model to both zero-deflated and zero-inflated series and compared the model’s fit 
to each data set to that of competing models. Empirically speaking, their model outperformed the other models 
fitted to each of the data sets.

Sometimes, it is necessary to analyze time series that exhibit seasonal variations. Such time series are called 
seasonal time series. Seasonal time series of counts are seen in several domains, including epidemiology13. 
Though authors have analyzed several seasonal epidemiological data using the Guassian multiplicative seasonal 
autoregressive moving average (SARIMA) model14–16 and Holt–Winter’s Method16, these models may not be 
suitable for certain nonnegative count time series, especially those involving small counts17–19. In the case of 
seasonal low count time series, a seasonal nonnegative integer-valued autoregressive (INAR) model is needed. 
Unlike the SARIMA model, the seasonal INAR model takes into consideration the discrete nature of the data 
through an appropriate discrete innovation distribution. It can also be used to generate integer-valued forecasts. 
It can also be constructed to account for properties of count time series, such as overdispersion, underdispersion, 
zero-inflation and zero-deflation. Despite the extensive literature on INAR models, INAR models for station-
ary seasonal count time series have received little attention20–22. Remarkably, none of the seasonal models was 
developed for the purpose of analyzing an underdispersed or overdispersed seasonal count time series that is 
either zero-inflated or zero-deflated. This study intends to achieve two principal objectives. First, to propose a 
seasonal INAR process of order one that is suitable for underdispersed, overdispersed, zero-inflated and zero-
deflated count time series data. Second, application of the model to influenza data. In view of the absence of the 
general seasonal INAR model in the literature, the theoretical framework is developed for the general seasonal 
INAR model in this paper.

The remainder of this article is organized as follows: “Introduction” discusses the general seasonal INAR 
model. In “The general seasonal INAR model”, we deal with the construction and properties of the general 
seasonal INAR(p) model. Methods of estimating the parameters of the model are investigated, namely the 
Yule–Walker and conditional least squares. The theoretical aspect of forecasting based on the proposed model, 
simulation and real-world data application for a special case of the general seasonal model, namely the INAR(1)s
ZMPL process are considered in “Construction of the proposed seasonal INAR(1) process and its properties”. 
The conclusions of this research are summarized in “Conclusion”.

The general seasonal INAR model
In response to the comment made by one of the anonymous reviewers, and considering that the literature lacks a 
general seasonal INAR model, we introduce the general seasonal INAR model in this section. Let “ ∗ ” be the nega-
tive binomial thinning (NBT) operator and � ∗W =

∑W
i=1 Zi , where Zi refers to the sequence of independent 

and identically distributed (i.i.d.) geometric variables having the probability mass function (PMF)

An elaborate discussion of the properties of the NBT operator is available in Ristić et al.7. The general seasonal 
INAR model of order P and seasonal period s (INAR(P)s model) is defined by

 In (1), the counting series are mutually independent, �l ∈ [0, 1], l = 1, 2, . . . ,P and {νt} are independent of 
all the counting series.

Theorem 2.1 contains the condition for the existence of a unique stationary INAR(P)s model.

Theorem 2.1  Let {νt} be i.i.d., nonnegative integer-valued random variables whose mean and variance are 
E(νt) = µv and Var(νt) = σ 2

ν  respectively. Suppose that �l ∈ [0, 1], l = 1, 2, . . . ,P . If the roots of the equation

lie inside the unit circle, then there is a unique stationary nonnegative integer-valued series {Wt} that satisfies the 
equation

Proof  The proof of Theorem 2.1 is based on some properties of the NBT operator. These properties, which were 
established by Ristić et al.7 are as follows 

	 (i)	 E 
[
∏r

m=1 (�m ∗Wm)
]

=
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m=1 �mE(Wm), r ≥ 1

	 (ii)	 E(� ∗W)2 = �
2E(W)2 + �(1+ �)E(W)

	 (iii)	 E(� ∗W − � ∗ Y)2 = �(1+ �)E(|W − Y |)+ �
2E(|W − Y |)2, if each of the counting series of � ∗W 

and � ∗ Y  has the geometric 
(

�

1+�

)

 distribution. The remaining part of the proof can be deduced from 
the proof of Theorem 2.1 in Jin-Guan and Yuan23.

	�  �

Taking expectation of both sides of (1) and assuming stationarity, the mean of the INAR(P)s model becomes

P[Zi = w] = �
w

(1+ �)w+1
,w ∈ N0, � ∈ [0, 1).

(1)Wt = �1 ∗Wt−s + �2 ∗Wt−2s + · · · + �P ∗Wt−Ps + νt , t ∈ N0.

zP − �1z
P−1 − �2z

P−2 − · · · − �P = 0

Wt = �1 ∗Wt−s + �2 ∗Wt−2s + · · · + �P ∗Wt−Ps + νt , t ∈ N0.
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Ne x t ,  w e  s t u d y  t h e  aut o c or re l a t i on  s t r u c t u re  o f  t h e  I NA R(P)s  m o d e l .  L e t 
Wt =

(

Wt ,Wt−s ,Wt−2s , . . . ,Wt−(P+1)s

)′
.

Then (1) can be written as

where

The vector of the autocovariances is defined by

Since E(Wt) = CE(Wt−s)+ E(νt) , it is easy to verify that (C − I)E(Wt−s)E
(

W
⊤
t−k

)

+ E(νt)E
(

W
⊤
t−k

)

 is a 
null matrix. Thus

It follows that the autocovariance function at lag k is

The associated autocorrelation coefficient has the form:

In view of (6), it is obvious that the model under consideration and the Gaussian AR model of order P and 
seasonal period ‘s’ have similar autocorrelation structures. Hence, the identification of the model can be done 
using the autocorrelation function (ACF) and partial autocorrelation function (PACF). Theoretically speaking, 
the ACF of the INAR(P)s model has nonzero values at the seasonal lags. The nonzero values at the seasonal lags 
tail off while the related partial ACF cuts off after lag P. When we have a stationary seasonal time series with 
sample ACF and sample partial ACF that have patterns that are akin to the theoretical ACF and sample partial 
ACF, we are expected to fit the INAR(P)s model to the data. In situations where, the sample ACF and sample 
partial ACF do not look exactly like their theoretical counterparts, a variety of models can be fitted to the given 
data and the best model is determined using model selection criteria24.

The parameters �l , l = 1, 2, . . . , P of the model can be estimated using any of the Yule–Walker and conditional 
least squares approaches. For k = s, 2s, . . . , Ps , we derive P equations from (6). These equations are written in 
matrix form as

where

The Yule–Walker estimator �̂ of � is given as

For example, for a second order monthly count time series, s = 12 and the estimates �̂1 and �̂1 based on sample 
autocorrelation coefficients at lags 12 and 24 are given as.
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In (7),

Furthermore, the Yule–Walker estimate of µν is

The corresponding estimate of σ 2
ν  is

Notably,

and

L e t  � = (µν , �1, �2, . . . , �P)
⊤   ,  g(�, Ft) = �1Wt−s + �2Wt−2s + · · · + �PWt−Ps + µν  a n d 

Q(�) =
∑n

Ps+1

(

Wt − g(�, Ft)
)2
.

The CLS estimator �̂ of � is obtained by minimizing Q(�) . In this case, we solve the following equations 
simultaneously:

Certain properties of CLS estimators are well-known (see, Klimko and Nelson25).
The minimum mean squared error (MMSE) predictor of Wn+1 is

In general, the MMSE of Wn+m becomes

We have carried out a simulation study to assess the performance of the Yule–Walker (YW) and condi-
tional least squares(CLS) estimates. For the sake of brevity we consider INAR(2)S model and its parameter 
estimation. We simulated 1000 series from the proposed model for various parameter combinations and for 
various sample sizes as given in Table 1. We have computed the mean estimates and their related MSEs based 
on 1000 simulations. In this study, we estimated two autoregressive parameters ( �1 and �2 ) and the mean of 
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the innovation distribution ( µν ). For simulation from an innovation distribution, we use the parameter com-
binations:  α = (4, 1, 2, 0.5) and δ = (−2, 0.5,−1, 0.7), which give the mean of the innovation distribution as 
µν = (0.9, 0.75, 1.3333, 1.00) . The estimation of AR coefficient and all the parameters of innovation distribution 
have been studied in detail for INAR(1)S model in “Construction of the proposed seasonal INAR(1) process and 
its properties”. From Table 1, it can be seen that the estimates perform well, and their mean squared errors (MSEs) 
decrease as the sample size increases. It also can be seen that the CLS estimation performs much better than the 
YW estimation in terms  of the MSE. As the joint distribution of �1 ∗Wt−s and �2 ∗Wt−2s is not tractable, we can 
not find the conditional distribution and hence maximum likelihood estimation cannot be attempted, as it has 
been done for INAR(1)S model in “Construction of the proposed seasonal INAR(1) process and its properties”.

Construction of the proposed seasonal INAR(1) process and its properties
In this section, the definition of the first-order seasonal INAR process based on zero-modified Poisson–Lindley 
(ZMPL) innovations12 and NBT operation is given, with an extensive study. Using the NBT operator, we define 
the proposed seasonal INAR(1) process as follows.

Definition 3.1  Let {Wt} be a discrete-time nonnegative integer-valued process. Then, the process is a seasonal 
INAR(1) process with zero-modified Poisson–Lindley innovations if

where ‘s’ represents the seasonal period such that s ∈ N+ , N+ is the set of positive integers, {Wt} stands for a 
sequence of identically distributed nonnegative random variables, {νt} is an innovation sequence of i.i.d. ZMPL 

(12)Wt = � ∗Wt−s + νt , t ∈ N0,

Table 1.   Parameter estimates and their mean squared errors for INAR(2)S model.

n �̂1YW �̂2YW µ̂νYW �̂1CLS �̂2CLS µ̂νCLS

�1 = 0.2 , �2 = 0.3 , µν = 0.9

 300
0.1608 0.1193 1.1578 0.1986 0.2923 0.9120

0.0055 0.0351 0.0788 0.0081 0.0101 0.0225

 500
0.1924 0.1997 1.0531 0.1950 0.2935 0.9154

0.0025 0.0119 0.0314 0.0031 0.0040 0.0117

 1000
0.2035 0.2547 0.9654 0.1989 0.2963 0.9069

0.0015 0.0033 0.0094 0.0014 0.0015 0.0054

 1500
0.2026 0.2711 0.9432 0.1985 0.2974 0.9047

0.0009 0.0017 0.0054 0.0009 0.0009 0.0035

�1 = 0.3 , �2 = 0.4 , µν = 0.75

 300
0.2152 0.1824 1.0753 0.2900 0.3937 0.7690

0.0116 0.0510 0.1295 0.0073 0.0103 0.0259

 500
0.2718 0.2556 0.9927 0.2959 0.3885 0.7670

0.0038 0.0233 0.0738 0.0032 0.0043 0.0145

 1000
0.2978 0.3346 0.8809 0.2969 0.3938 0.7674

0.0014 0.0055 0.0252 0.0014 0.0016 0.0085

 1500
0.3022 0.3563 0.8388 0.2994 0.3962 0.7567

0.0009 0.0029 0.0129 0.0009 0.0010 0.0050

�1 = 0.4 , �2 = 0.3 , µν = 1.333

 300
0.3944 0.1469 1.7433 0.3933 0.2954 1.3582

0.0110 0.0631 0.4273 0.0090 0.0114 0.0574

 500
0.3941 0.1455 1.7445 0.3980 0.2938 1.3547

0.0027 0.0251 0.1878 0.0036 0.0042 0.0301

 1000
0.4165 0.2295 1.5181 0.3990 0.2947 1.3560

0.0017 0.0062 0.0473 0.0014 0.0015 0.0168

 1500
0.4163 0.2525 1.4479 0.3990 0.2973 1.3502

0.0012 0.0031 0.0232 0.0010 0.0010 0.0124

�1 = 0.6 , �2 = 0.2 , µν = 1

 300
0.4066 0.0557 1.5797 0.5912 0.1984 1.0170

0.0439 0.0244 0.4013 0.0084 0.0097 0.0483

 500
0.5138 0.1025 1.4430 0.5915 0.1957 1.0293

0.0113 0.0119 0.2321 0.0044 0.0043 0.0304

 1000
0.5759 0.1510 1.2525 0.5982 0.1965 1.0136

0.0024 0.0036 0.0806 0.0017 0.0018 0.0159

 1500
0.5893 0.1679 1.1633 0.5965 0.1985 1.0156

0.0012 0.0019 0.0395 0.0012 0.0011 0.0125
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random variables not depending on the past values of {Wt} and the thinnings of {Wt} and the random variables 
{Wt−s} , {Wt−2s} , . . . , are independent.

In the sequel, the notation INAR(1)sZMPL process is used to represent the model defined in Eq. (12). A 
random variable X follows the ZMPL distribution with parameters α and δ if its PMF is

where α > 0 and − α2(α+2)
α2+3α+1

≤ δ ≤ 1. Thus, the unconditional mean and variance of the random variable {νt} 
are, respectively, given by

and

Following26, the distribution of the random variable (RV) νt is overdispersed if δ ∈ [0, 1) , while it is underd-
ispersed when α >

√
2 and δ ∈

(

−α2(α+2)
α2+3α+1

, 0
)

. The INAR(1)sZMPL process comprises ‘s’ mutually independent 
INAR(1) processes with ZMPL innovations, which are constructed using the NBT operator such that they have 
the autoregressive parameter � and an innovation distribution. The simulated sample paths, sample ACFs and 
sample PACFs of the process for various parameter combinations are given in the Fig. 1. The seasonality in the 

(13)P(X = x) =
{

δ + (1− δ)
α2(α+2)
(α+1)3

, x = 0

(1− δ)
α2(x+α+2)
(α+1)x+3 , x ∈ N+,

(14)E(νt) = µν = (1− δ)
α + 2

α(α + 1)

(15)Var(νt) = σ 2
ν = (1− δ)

α3 + 4α2 + 6α + 2+ δ(α + 2)2
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Figure 1.   Sample path, sample ACF and sample PACF for simulated data: first row- � = 0.6, α = 4, δ = −2 ; 
second row- � = 0.7, α = 5, δ = 0 ; Third row- � = 0.8, α = 8, δ = 0.5 , seasonal period S = 52.
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simulated data can be seen from the time series plots as well as ACF plots in the figure. Let W (r)
t = Wts+r , t ∈ N0 , 

where N0 is a set of nonnegative integers. For r = 0, 1, 2, . . . , s − 1 , the process {W (r)
t } satisfies the model:

Here, the innovation sequences {ν(r)t } satisfy the equation ν(r)t = νts+r . The independence of {W (r)
t } is the direct 

implication of the independence of {ν(r)t } and the counting processes that define the requisite thinning operators. 
Additionally, the process defined in Eq. (12) is an s-step Markov chain, implying that

P(Wt = wt |Wt−1 = wt−1, . . . ,W0 = w0) = P(Wt = wt |Wt−s = wt−s), w0,w1, . . . ,ws−1 ∈ N0.
The conditional mean of the process is

Hence, the unconditional expectation of the process is

Assuming stationarity and using Eq. (17), the unconditional mean is found to be

The conditional variance satisfies the equation:

The unconditional variance is obtained as

Hence, it follows that

Suppose that W(k+h)s+j and Wks+i satisfy the process in Eq. (12), h ∈ N+ and k ∈ N0, i, j = 1, 2, . . . , s . In order 
to gain insight into conditional moments based on the seasonal period as well as the autocorrelation function 
of the process, we proceed to give the following propositions:

Proposition 3.1  The conditional expectation of  W(k+h)s+j given Wks+i is

and limh→∞ E
(

W(k+h)s+j|Wks+i

)

= µW .

Proof  Let W(k+h)s+j = W
(j)
k+h and Wks+i = W

(i)
k  . If i  = j , the conditional expectation of W (j)

k+h given W (i)
k  is equal 

to µν

1−�
 , which is the unconditional expectation of Wt . If i = j , we have

W
(r)
t = � ∗W (r)

t−1 + ν
(r)
t , t ∈ N0.

(16)
E(Wt |Wt−s) = E(� ∗Wt−s + νt |Wt−s)

= �Wt−s + µν .

(17)
E(Wt) = (E(Wt |Wt−s))

= �E(Wt−s)+ µν .

E(Wt) =
µν

1− �
= µW .

(18)

Var(Wt |Wt−s) = Var(� ∗Wt−s + νt |Wt−s)

= Var(� ∗Wt−s|Wt−s)+ σ 2
ν

= �
2E
(

W2
t−s|Wt−s

)

+ �(�+ 1)E(Wt−s|Wt−s)− �
2(E(Wt−s|Wt−s))

2

+ σ 2
ν

= �
2Var(Wt−s|Wt−s)+ �(�+ 1)E(Wt−s|Wt−s)+ σ 2

ν

= �(�+ 1)Wt−s + σ 2
ν .

(19)
Var(Wt) = E(Var(Wt |Wt−s))+ Var(E(Wt |Wt−s))

= �(�+ 1)E(Wt−s)+ σ 2
ν + �

2Var(Wt−s).

Var(Wt) =
�(�+ 1)µν + (1− �)σ 2

ν

(1− �)(1− �2)
= σ 2

W .

E
(

W(k+h)s+j|Wks+i

)

=
{ µν

1−�
, if i �= j

�
hWks+i + (1− �

h)µW , if i = j
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Consequently,

The proof comes to an end here. 	�  �

Proposition 3.2  The conditional variance of  W(k+h)s+j given Wks+i is

and limh→∞ Var
(

W(k+h)s+j|Wks+i

)

= σ 2
W .

Proof  If i  = j , W (j)
k+h and W (i)

k  are independent. Thus, the conditional variance of W(k+h)s+j given Wks+i is 
�(�+1)µν+(1−�)σ 2

ν

(1−�)(1−�2)
 , the unconditional variance of Wt.

If i = j , then

E
(

W(k+h)s+j|Wks+i

)

= E
(

W
(j)
k+h|W

(j)
k

)

= �E
(

W
(j)
k+h−1|W

(j)
k

)

+ E(
(

ν
(j)
k+h|W

(i)
k

)

= �E
(

W
(j)
k+h−1|W

(j)
k

)

+ µν

= �
2E
(

W
(j)
k+h−2|W

(i)
k

)

+ (�+ 1)µν

. . .

= �
hE

(

W
(j)
k |W (j)

k

)

+ (�h−1 + �
h−2 + · · · + �+ 1)µν

= �
hW

(j)
k + 1− �

h

1− �
µν

= �
hWks+i + (1− �

h)µW .

lim
h→∞

E
(

W(k+h)s+j|Wks+i

)

= lim
h→∞

E

(

�
hW

(j)
k + 1− �

h

1− �
µν

)

= µν

1− �

= µW .

Var
�

W(k+h)s+j|Wks+i

�

=



























�(�+1)µν+(1−�)σ 2
ν

(1−�)(1−�2)
, if i �= j

(�+ 1)
�

�
h(1−�

h)
1−�

�

W
(j)
k

+ �(�+1)
1−�

�

1−�
2(h−1)

1−�2
− �

h−1
�

1−�
(h−1)

1−�

��

µν

+
�

1−�
2h

1−�2

�

σ 2
ν , if i = j

Var

(

W(k+h)s+j

∣

∣Wks+i

)

= Var

(

W
(j)
k+h

∣

∣W
(j)
k

)

= Var

((

� ∗W(j)
k+h−1

+ ν
(j)
k+h

)

∣

∣W
(j)
k

)

= Var

(

� ∗W(j)
k+h−1

∣

∣W
(j)
k

)

+ Var

(

ν
(j)
k+h

∣

∣W
(j)
k

)

= �
2
Var

(

W
(j)
k+h−1

∣

∣W
(j)
k

)

+ �(�+ 1)E

(

W
(j)
k+h−1

∣

∣W
(j)
k

)

+ σ 2
ν

= �
2
Var

(

� ∗W(j)
k+h−2

+ ν
(j)
k+h−1

∣

∣W
(j)
k

)

+ �(�+ 1)E

(

W
(j)
k+h−1

∣

∣W
(j)
k

)

+ σ 2
ν

= �
4
E

(

(W
(j)
k+h−2

)2
∣

∣W
(j)
k

)

− �
4
(

E

(

W
(j)
k+h−2

∣

∣W
(j)
k

))2

+ �
3(�+ 1)E

(

W
(j)
k+h−2

∣

∣W
(j)
k

)

+ �(�+ 1)E

(

W
(j)
k+h−1

∣

∣W
(j)
k

)

+ �
2σ 2

ν + σ 2
ν

= �
4
Var

(

W
(j)
k+h−2

∣

∣W
(j)
k

)

+ �
3(�+ 1)E

(

W
(j)
k+h−2

∣

∣W
(j)
k

)

+ �(�+ 1)E

(

W
(j)
k+h−1

∣

∣W
(j)
k

)

+ �
2σ 2

ν + σ 2
ν

= . . .

= �
2h
Var

(

W
(j)
k

∣

∣W
(j)
k

)

+ �(�+ 1)M

+
(

�
2(h−1) + �

2(h−2) + · · · + �
2 + 1

)

σ 2
ν ,
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where

Notably, Var
(

W
(j)
k

∣

∣W
(j)
k

)

= 0 . Also, after some algebra with the earlier discussions, we can find that,

In the light of the above, we have

Hence,

	�  �

Proposition 3.3  The covariance of  W(k+h)s+j and Wks+i has the form

Proof  Once i  = j , the variables W(k+h)s+j and Wks+i are uncorrelated. In this case, Covar
(

W(k+h)s+j ,Wks+i

)

= 0.

Dividing the autocovariance function by Var(Wt) , the autocorrelation function (ACF) is obtained as

M = �
2(h−1)E

(

W
(j)
k

∣

∣W
(j)
k

)

+ �
2(h−2)E

(

W
(j)
k+1

∣

∣W
(j)
k

)

+ · · · + �
2E
(

W
(j)
k+h−2

∣

∣W
(j)
k

)

+ E
(

W
(j)
k+h−1

∣

∣W
(j)
k

)

.

M =
�
(h−1)

(

1− �
h
)

1− �
W

(j)
k + 1

1− �

(

1− �
2(h−1)

1− �2
−

�
(h−1)

(

1− �
(h−1)

)

1− �

)

µν .

Var
(

W(k+h)s+j

∣

∣Wks+i

)

= (1+ �)
�
h
(

1− �
h
)

1− �
W

(j)
k

+ �(1+ �)

1− �

(

1− �
2(h−1)

1− �2
−

�
(h−1)

(

1− �
(h−1)

)

1− �

)

µν

+
(

1− �
2h

1− �2

)

σ 2
ν .

lim
h→∞

Var
(

W(k+h)s+j|Wks+i

)

= �(�+ 1)µν + (1− �)σ 2
ν

(1− �)(1− �2)
= Var(Wt).

Covar
(

W(k+h)s+j ,Wks+i

)

=
{

0, if i �= j

�
h �(�+1)µν+(1−�)σ 2

ν

(1−�)(1−�2)
, if i = j.

On the other side,

Covar
�

W(k+h)s+j ,Wks+i

�

= Covar
�

W
(j)
k+h,W

(j)
k

�

= E
�

(� ∗W (j)
k+h−1 + ν

(j)
k+h)W

(j)
k

�

− E
�

� ∗W (j)
k+h−1 + ν

(j)
k+h

�

E
�

W
(j)
k

�

= E













W
(j)
k+h−1
�

q=1

Zq






W

(j)
k






+ E

�

ν
(j)
k+h

�

E
�

W
(j)
k

�

− �E
�

W
(j)
k+h−1

�

E
�

W
(j)
k

�

− E
�

ν
(j)
k+h

�

E
�

W
(j)
k

�

= E






E







W
(j)
k+h−1
�

q=1

Zq
�

�W
(j)
k+h−1






E
�

W
(j)
k

�

�W
(j)
k+h−1

�







− �E
�

W
(j)
k+h−1

�

E
�

W
(j)
k

�

= E
�

W
(j)
k+h−1W

(j)
k E

�

Zq
�

�

− �E
�

W
(j)
k+h−1

�

E
�

W
(j)
k

�

= �Cov
�

W
(j)
k+h−1,W

(j)
k

�

· · ·

= �
hCov

�

W
(j)
k ,W

(j)
k

�

= �
hVar

�

W
(j)
k

�

= �
h �(�+ 1)µν + (1− �)σ 2

ν

(1− �)(1− �2)
.
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Here, we have an exponentially decaying autocorrelation function. 	�  �

Techniques for estimating model parameters
Three popular and widely used methods of point estimation for the parameters of the INAR(1)SZMPL are adopted 
in this section. These are, the Yule–Walker, conditional least squares and conditional maximum likelihood 
methods. In each of the methods, we assume a realization of the seasonal count time series.

Yule–Walker approach
To estimate the parameters � , δ and α of the INAR(1)sZMPL process, we form three equations by equating ρ̂(s) , 
E(Wt) and Var(Wt) to γ̂ (s)

γ̂ (0)
 , W  and γ̂ (0) , respectively.

Notably, W =
∑n

t=1 Wt

n  , γ̂ (s) = 1
n

∑n
t=s+1

(

Wt −W
)(

Wt−s −W
)

 , and n are, respectively, the sample mean, 
sample autocorrelation function and length of the time series. If �̂YW , δ̂YW and α̂YW are the Yule–Walker (YW) 
estimators of � , δ and α in that order, then the following equations are needed:

where

From Eq. (20), we obtain

Using Eqs. (21) and (22), the following cubic equation is obtained:

where

R packages for solving polynomial equations, particularly the cubic equation, abound. In “Yule–Walker approach” 
of this study, polyroot R function is used to obtain the roots of Eq. (23) after the coefficients have been calculated 
from the given time series. Though the equation has three roots, only the root that gives an acceptable value of 
δ̂YW will be used for further computations.

Approach to conditional least squares estimation

Consider the process in Eq. (12). Let ξ̂CLS =
(

�̂CLS , δ̂CLS , α̂CLS

)T
 be the vector of the conditional least squares 

(CLS) estimators of ξCLS = (�CLS , δCLS ,αCLS)
T . Then

ρ(h) =
{

�
h
s , if h is a multiple of s

0, elsewhere.

(20)�̂YW =
∑n

t=s+1

(

Wt −W
)(

Wt−s −W
)

∑n
t=1

(

Wt −W
)2 ,

(21)(1− δ̂YW )
α̂YW + 2

α̂YW (α̂YW + 1)(1− �̂YW )
= W ,

(22)and
A

(1− �̂
2
YW )α̂YW (α̂YW + 1)(α̂YW + 2)

= γ̂ (0),

A = �̂YW (�̂YW + 1)W α̂YW (α̂YW + 1)(α̂YW + 2)

+ (1− �̂YW )W
(

(1− (1− �̂YW )W)α̂3
YW + (5− 3(1− �̂YW )W)α̂2

YW

)

+ (1− �̂YW )W
(

(10− 2(1− �̂YW )W)α̂YW + 6
)

.

(23)(1− δ̂YW ) = α̂YW (α̂YW + 1)(1− �̂YW )

α̂YW + 2
W .

(24)c1α̂
3
YW + c2α̂

2
YW + c3α̂YW + c4 = 0,

c1 =
[

�̂YW (�̂YW + 1)+ (1− �̂YW )(1− (1− �̂YW )W)

]

W − (1− �̂
2
YW )γ̂ (0),

c2 =
[

3�̂YW (�̂YW + 1)+ (1− �̂YW )(5− 3(1− �̂YW )W)

]

W − 3(1− �̂
2
YW )γ̂ (0),

c3 =
[

2�̂YW (�̂YW + 1)+ (1− �̂YW )(10− 2(1− �̂YW )W)

]

W − 2(1− �̂
2
YW )γ̂ (0),

and c4 = 6(1− �̂YW )W .
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where Cn(ξ) =
∑n

t=s+1

(

Wt − �Wt−s − (1− δ) α+2
α(α+1)

)2
.

Here, it is necessary to obtain and equate each of ∂Cn(ξ)
∂�

∣

∣

�=�̂CLS , δ=δ̂CLS , α=α̂CLS
,,  

∂Cn(ξ)
∂δ

∣

∣

�=�̂CLS , δ=δ̂CLS , α=α̂CLS
 and ∂Cn(ξ)

∂α

∣

∣

�=�̂CLS , δ=δ̂CLS , α=α̂CLS
 to zero, leading to the following equations, 

respectively:

Equations (26) and (27) are identical. Hence, we solve for �̂CLS using Eqs. (25) and (26). The concerned 
estimator has the form:

Suppose Cn(δ,α) is a function obtained when we substitute �̂CLS for � in Cn(ξ) . We minimize Cn(δ,α) in order 
to find δ̂CLS and α̂CLS . The minimization process is done using a suitable numerical method. To summarize, no 
closed form expression can be found for any of δ̂CLS and α̂CLS.

Conditional maximum likelihood estimation
In view of the s-step Markovian property of the seasonal INAR(1)sZMPL process, we define the transition 
probabilities as

Using this we can write the detailed transition probabilities as

Let ξ̂CML be the conditional maximum likelihood(CML) estimator of ξ . To find ξ̂CML , maximize the condi-
tional log-likelihood function below:

Obviously, ξ̂CML has no closed form. Furthermore, the required estimators can only be found through a 
numerical technique.

ξ̂CLS = argmin
ξ

(Cn(ξ)),

(25)
n

∑

t=s+1

WtWt−s −
n

∑

t=s+1

W2
t−s − (1− δ̂CLS)

α̂CLS + 2

α̂CLS(α̂CLS + 1)

n
∑

t=s+1

Wt−s = 0;

(26)
n

∑

t=s+1

Wt − �̂CLS

n
∑

t=s+1

Wt−s − (n− s)(1− δ̂CLS)
α̂CLS + 2

α̂CLS(α̂CLS + 1)
= 0;

(27)
n

∑

t=s+1

Wt − �̂CLS

n
∑

t=s+1

Wt−s − (n− s)(1− δ̂CLS)
α̂CLS + 2

α̂CLS(α̂CLS + 1)
= 0.

(28)�̂CLS =
(n− s)

∑n
t=s+1 WtWt−s −

∑n
t=s+1 Wt

∑n
t=s+1 Wt−s

(n− s)
∑n

t=s+1 W
2
t−s −

(
∑n

t=s+1 Wt−s

)2
.

Pxy = P
(

Xt = y
∣

∣Xt−s = x
)

= P
(

� ∗ Xt−s + νt = y
∣

∣Xt−s = x
)

=
y

∑

r=0

P(� ∗ x = r)P(νt = y − r).

(29)Pxy =























































































δ + (1− δ)
α2(α + 2)

(α + 1)3
, if x = 0, y = 0,

(1− δ)
α2(y + α + 2)

(α + 1)y+3
, if x = 0, y ≥ 1,

1

(1+ �)x

�

δ + (1− δ)
α2(α + 2)

(α + 1)3

�

, if x ≥ 1, y = 0,
�

x + y − 1
y

�

�
y

(1+ �)x+y

�

δ + (1− δ)
α2(α + 2)

(α + 1)3

�

+
y−1
�

r=0

�

x + r − 1
r

�

�
r

(1+ �)x+r

×
�

δ + (1− δ)
α2(y − r + α + 2)

(α + 1)(y−r+3)

�

if x ≥ 1, y ≥ 1.

l(ξ) =
n

∑

t=s+1

logP
(

Xt = xt
∣

∣Xt−s = xt−s

)

.
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Simulation study for the INAR(1)
s
ZMPL

In this section, we have carried out a simulation study to assess the performance of the proposed estimation meth-
ods for INAR(1)sZMPL process, paying attention to the cases of zero-inflation, overdispersion, zero-deflation 
and underdispersion baesd on the INAR(1)sZMPL process. We have simulated 1000 series of the sample sizes 
100, 300, 500 and 1000 for various parameter combinations and for seasonal period s = 52 . We have computed 
the mean and the mean squared errors (MSEs) of the estimates over all the 1000 simulations. All the quantities 
are given in the Table 2, the first row for each parameter and sample size (n) combination represents the mean 
estimate and second row represents the MSE. From the table, it can be seen that the MSE is decreasing with the 
increase in sample size, indicating the consistency of the estimates.  The numerical optimization of the likeli-
hood function to obtain CML estimates is done using the function ‘constrOptim’ in R software. In our setup, 
constraints are imposed on all the parameters. In particular, the upper limit of δ is 1 while its lower limit is a 
negative quantity that is a function of α . These constraints are considered while numerical optimization using 
‘constrOptim’. In all, CML estimates correspond to minimum MSEs compared to the YW and CLS estimates.

Model‑based forecasting
Time series models are usually constructed with a view to forecasting future values of time series data. In the case 
of INAR(1)sZMPL process, we handle the problem of forecasting a future observation Wn+h, h ∈ N using the 
information Fn available upto time n. From Eq. (12), we deduce using induction and properties of the NBT that

where d= implies equality in distribution, q = ⌈ hs ⌉ is the integer part of   hs  . That is ⌈y⌉ = min
[

n ∈ N+∣
∣y ≤ n

]

 . We 
round off this section with the following proposition.

Proposition 3.4  Consider the INAR(1)s ZMPL process in Eq. (12). Then

(a)	 The h-step conditional expectation is

(b)	 The h-step conditional variance is

(c)	 limq→∞ E
(

Wn+h

∣

∣Fn

)

= E(Wt).

(d)	 limq→∞ Var
(

Wn+h

∣

∣Fn

)

= Var(Wt).

It is not difficult to prove Proposition 3.4 using knowledge of the proofs of Propositions 3.1 to 3.2 and Eq. 
(30). Therefore, we omit the proof of Proposition 3.4. The h-step ahead forecast can be written as

Model comparison with seasonal ARIMA
In this section, we have compared the forecast performance of the proposed model and its counter-
part SARIMA(0, 0, 0)(1, 0, 0)s model. Here, we have simulated 1000 series each of size 500 from the INAR(1)s 
ZMPL model with various parameter combinations given in Table 3 and the seasonal period s = 52 . For each 
series, the first 495 observations are used for the estimation of the parameters and last five observations are used 
to check the forecast accuracy. We have used three forecast accuracy measures to assess the forecast performance 
of the model. These measures include prediction root mean squared error (PRMSE), prediction mean absolute 
error (PMAE) and percentage of true prediction (PTP). Notably,

where X̂(k)
(t+i) = m̂ean(Xt+i|Xt−k+i) is the k-step ahead conditional mean of the fitted process,

(30)Wn+h
d= �

q ∗Wn+h−qs +
q−1
∑

j=0

�
q ∗ νn+h−js , h ∈ N+,

E
(

Wn+h

∣

∣Fn

)

= �
q
(

Wn+h−qs − E(Wt)
)

+ µν .

Var
(

Wn+h

∣

∣Fn

)

= (1+ �)
�
q(1− �

q)

1− �
Wn+h−qs

+ �(1+ �)

1− �

(

1− �
2(q−1)

1− �2
−

�
(q−1)

(

1− �
(q−1)

)

1− �

)

µν

+
(

1− �
2q

1− �2

)

σ 2
ν .

Ŵn+h = �̂
q
(

Ŵn+h−qs − µ̂W

)

+ µ̂ν .

PRMSE(k) =

√

√

√

√

1

m

m
∑

i=1

(

X(t+i) − X̂
(k)
(t+i)

)2
,
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where X̂(k)
(t+i) = m̂edian(Xt+i|Xt−k+i) is the k-step ahead conditional median of the fitted process, and

where I(·) denotes the indicator function. Here, X(t+i) is the actual ith observation at time point (t + i) and X̂(k)
(t+i) 

is the k-step ahead forecast value at the same time point.
We have obtained the conditional mean of the process as traditional forecast while the median and mode from 

one-step ahead forecast distribution serve as coherent forecasts. For the computation of PMAE in the SARIMA 
model, we have used mean forecast while in the INAR(1)s ZMPL model, we have used the median of the one-step 
ahead forecast distribution. In the SARIMA model, we can have only mean as the forecast, for computation of 
percentage of true prediction (PTP) based on mean we have considered rounded mean for both models. We have 
computed median and mode from the forecast distribution for the computation of PTP-Med and PTP-Mode. In 
INAR literature, the median and mode of the forecast distribution are called the coherent forecasts.

PMAE(k) = 1

m

m
∑

i=1

|X(t+i) − X̂
(k)
(t+i)|,

PTP(k) = 1

m

m
∑

i=1

I
(

X(t+i) = X̂
(k)
(t+i)

)

× 100%,

Table 2.   Parameter estimates and their mean squared errors.

n �̂YW α̂YW δ̂YW �̂CLS α̂CLS δ̂CLS �̂CML α̂CML δ̂CML

� = 0.3 , α = 0.5 , δ = 0.7

100
0.2739 0.6347 0.6307 0.2747 0.5749 0.6324 0.2952 0.5234 0.6919

0.0157 0.0799 0.0205 0.0133 0.0159 0.0259 0.0081 0.0164 0.0054

300
0.2954 0.5363 0.6827 0.2947 0.5504 0.6641 0.2963 0.5073 0.6956

0.0046 0.0083 0.0042 0.0046 0.0072 0.0077 0.0022 0.0036 0.0014

500
0.2953 0.5229 0.6868 0.2954 0.5396 0.6721 0.2993 0.5088 0.6963

0.0029 0.0043 0.0026 0.0026 0.0046 0.0038 0.0013 0.0022 0.0009

1000
0.2966 0.5142 0.6919 0.2970 0.5303 0.6785 0.3005 0.5025 0.6998

0.0013 0.0021 0.0012 0.0012 0.0029 0.0019 0.0006 0.0011 0.0004

� = 0.5 , α = 1 , δ = 0.5

 100
0.4319 1.1772 0.3866 0.4656 1.0993 0.4106 0.4838 1.0845 0.4713

0.0198 0.4565 0.0848 0.0177 0.0358 0.0545 0.0138 0.0986 0.0190

 300
0.4756 1.0852 0.4525 0.4864 1.0718 0.4472 0.4912 1.0121 0.4920

0.0054 0.0560 0.0168 0.0050 0.0160 0.0147 0.0040 0.0209 0.0054

 500
0.4865 1.0564 0.4689 0.4905 1.0668 0.4505 0.4954 1.0179 0.4905

0.0032 0.0282 0.0097 0.0030 0.0114 0.0099 0.0022 0.0115 0.0028

 1000
0.4928 1.0226 0.4867 0.4930 1.0622 0.4576 0.4988 1.0087 0.4973

0.0015 0.0116 0.0043 0.0014 0.0089 0.0058 0.0011 0.0062 0.0014

� = 0.6 , α = 1.5 , δ = −0.5

 100
0.5188 1.4169 −0.4893 0.5621 1.4184 −0.4468 0.5688 1.5475 −0.5601

0.0172 0.9482 0.5433 0.0150 0.0833 0.0372 0.0124 0.1645 0.0796

 300
0.5784 1.5685 −0.5892 0.5838 1.4341 −0.4443 0.5919 1.5326 −0.5312

0.0043 0.4783 0.2972 0.0039 0.0382 0.0268 0.0028 0.0712 0.0354

 500
0.5851 1.5689 −0.5748 0.5917 1.4460 −0.4464 0.5943 1.5242 −0.5266

0.0026 0.2143 0.1535 0.0023 0.0261 0.0188 0.0017 0.0478 0.0239

 1000
0.5936 1.5606 −0.5558 0.5961 1.4491 −0.4494 0.5971 1.5090 −0.5107

0.0011 0.0649 0.0558 0.0011 0.0130 0.0130 0.0010 0.0225 0.0109

� = 0.7 , α = 2 , δ = −1

 100
0.5804 1.4330 −0.5686 0.6590 1.8734 −0.9271 0.6653 1.9439 −0.9821

0.0240 1.8765 1.2004 0.0153 0.1675 0.0744 0.0122 0.3010 0.1417

 300
0.6713 1.7131 −0.8222 0.6858 1.8965 −0.9120 0.6891 2.0113 −1.0204

0.0045 1.7318 1.0939 0.0038 0.0983 0.0559 0.0025 0.1510 0.0841

 500
0.6848 1.8997 −0.9649 0.6906 1.9002 −0.9101 0.6936 2.0205 −1.0274

0.0022 1.2074 0.8342 0.0022 0.0732 0.0491 0.0015 0.1214 0.0667

 1000
0.6930 2.0364 −1.0658 0.6932 1.9088 −0.9172 0.6982 2.0339 −1.0286

0.0011 0.7614 0.5599 0.0010 0.0393 0.0289 0.0007 0.0678 0.0378
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From Table 3, it can be seen that in terms of PRMSE both models perform equally well, as their forecasts are 
the same. However, the PMAE for the SARIMA model is higher than that of the PMAE for the proposed model, 
showing the better performance of the proposed model than the SARIMA model. This may be because median 
is used in the proposed model and mean is used in the SARIMA model for the computation of the PMAE. But 
when it comes to the coherent forecast performance, the proposed model outperforms the SARIMA model, which 
can be seen from the PTP for median and mode. When data are overdispersed, as it is the case in the top panel 
in the table, the coherent forecast performs five times better than the traditional forecast. Both models perform 
equally well when the data are underdispersed.

Application of INAR(1)
s
ZMPL model

We have analyzed weekly Influenza data from the Breisgau- Hochschwarzwald county of Baden–Württemberg 
state, Germany for the years 2001 to 2008 (https://​survs​tat.​rki.​de). The data have mean 0.4735 and variance 
2.5969. Clearly the data are overdispersed. From the relative frequency plot in Fig. 2, we can see that the number 
of zeros in the data is excessively high. Hence, this series can be modeled using the proposed zero-modified 
model. The seasonality of the data can be seen from the ACF and PACF plot in Fig. 3, as it is characterized by the 
sinusoidal autocorrelation pattern. Also, the data are seasonal because the corresponding ACF plot has significant 
peaks at multiples of 54. From Fig. 4, it can be seen that the AIC and BIC values are small for the period s = 54 . 
Hence the seasonal period of the series ( s = 54 ) is confirmed.

Table 3.   Forecast comparison with SARIMA.

SARIMA INAR(1) s  ZMPL

k PRMSE PMAE  PTP PRMSE PMAE PTP-Mean PTP-Med PTP-Mode

� = 0.3, α = 0.5, δ = 0.7

 1 2.376 1.555 10.00 2.374 1.186 9.80 58.10 61.30

 2 2.622 1.727 8.90 2.618 1.411 9.50 55.00 57.30

 3 2.602 1.679 8.10 2.592 1.300 8.20 59.20 60.20

 4 2.545 1.643 9.10 2.546 1.244 8.50 58.60 62.80

 5 2.443 1.595 10.20 2.438 1.203 9.80 60.30 62.30

� = 0.5, α = 1, δ = 0.5

 1 1.787 1.310 17.50 1.784 1.140 17.50 43.10 47.50

 2 1.671 1.254 16.60 1.673 1.035 16.90 45.20 51.10

 3 1.791 1.322 16.10 1.788 1.122 16.00 43.30 50.60

 4 1.809 1.335 15.30 1.810 1.134 15.00 42.30 49.50

 5 1.834 1.335 17.00 1.832 1.128 17.00 46.00 48.70

� = 0.6, α = 1.5, δ = −0.5

 1 2.391 1.730 19.60 2.391 1.701 19.60 22.20 23.70

 2 2.209 1.677 19.00 2.213 1.645 18.70 20.70 22.20

 3 2.483 1.868 15.60 2.470 1.839 15.10 18.00 21.60

 4 2.307 1.705 19.50 2.302 1.674 18.90 20.80 22.00

 5 2.300 1.719 19.50 2.294 1.683 19.20 20.90 22.70

� = 0.7, α = 2, δ = −1

 1 2.584 1.875 19.20 2.587 1.858 18.90 19.90 20.30

 2 2.448 1.856 17.30 2.442 1.841 17.30 18.10 20.30

 3 2.586 1.873 18.90 2.575 1.849 18.50 20.50 22.00

 4 2.565 1.862 20.90 2.562 1.846 20.30 21.10 19.80

 5 2.752 1.959 21.30 2.736 1.953 21.00 21.60 20.20

https://survstat.rki.de


15

Vol.:(0123456789)

Scientific Reports |        (2023) 13:22037  | https://doi.org/10.1038/s41598-023-48805-y

www.nature.com/scientificreports/

From Table 4, it can be seen that the proposed model is the best model for the data. We have obtained point 
forecast using the INAR(1)sZMPL model for the given data. The data has 416 observations. We have used 411 
observations (training data) for estimating the parameters and last five observations are predicted using the fit-
ted model. We have used the conditional ‘h’ step ahead mean as the forecast function. The parameter estimates 
(CML) based on training data are �̂ = 0.2497 , α̂ = 0.5289 , δ̂ = 0.8619 . The mean forecast X̂t+h and the rounded 
mean forecast [ X̂t+h ] are given in the Table 5. From this table it can be seen that the model predicts the future 
observations with good accuracy.
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Figure 2.   Relative frequency plot for the influenza data.
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Figure 3.   Sample path and sample ACF influenza data.



16

Vol:.(1234567890)

Scientific Reports |        (2023) 13:22037  | https://doi.org/10.1038/s41598-023-48805-y

www.nature.com/scientificreports/

Conclusion
In this paper, we have introduced a seasonal, nonnegative, integer-valued autoregressive model, with multiple 
features, using the negative binomial thinning operator and zero-modified Poisson-Lindley distributed innova-
tions. General seasonal INAR model of order P has been discussed in the paper and it has been illustrated in 
detail for order one. This model, denoted by INAR(1)sZMPL model, is the first of its kind for modeling zero-
deflated or zero-inflated seasonal time series of counts. Some theoretical results are determined for the model. 
Specifically, means, variances and autocorrelation function are obtained. In estimating the parameters of the 
model, the Yule-Walker, conditional least squares and conditional maximum likelihood approaches are given 
due consideration. The simulation results obtained in this study demonstrate the superiority of the conditional 
maximum likelihood method over the other two point estimation methods of estimating the model parameters. 
A real-life application of the model was investigated by analyzing a zero-inflated overdispersed seasonal count 
time series. The model fit was compared to the fits of three competing models. In the final analysis, the proposed 
model outperforms the other models.

Data availability
The datasets used and/or analysed during the current study can be provided by the corresponding author 
upon reasonable request.
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Figure 4.   Akaike information criterion (AIC) and Bayesian information criterion (BIC) for influenza data for 
various seasonal periods ‘s’. Green dashed line is for the BIC and Blue solid line is for AIC.

Table 4.   Model selection among seasonal INAR models using AIC and BIC.

Model Parameter estimates AIC BIC

PINAR(1)S14
φ̂=0.2435, �̂=0.4288 939.950 948.011

GINAR(1)S13
φ̂=0.4891, θ̂=0.4993 627.946 636.946

SNGINAR(s)16 α̂=0.2900, µ̂=0.6499 660.493 668.554

INAR(1)sZMPL �̂ = 0.2509 , α̂ = 0.5286 , δ̂=0.8640 505.243 517.535

Table 5.   Point forecasts for the influenza data.

h X411+h X̂411+h [X̂411+h]

1 0 0.2850 0

2 0 0.2850 0

3 0 0.2850 0

4 0 0.2850 0

5 0 0.2850 0
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