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A fine pore‑preserved deep neural 
network for porosity analytics 
of a high burnup U‑10Zr metallic 
fuel
Haotian Wang 1,3, Fei Xu 2,3, Lu Cai 2,3, Daniele Salvato 2, Fidelma Giulia Di Lemma 2, 
Luca Capriotti 2, Tiankai Yao 2,3* & Min Xian 1,3*

U‑10 wt.% Zr (U‑10Zr) metallic fuel is the leading candidate for next‑generation sodium‑cooled 
fast reactors. Porosity is one of the most important factors that impacts the performance of U‑10Zr 
metallic fuel. The pores generated by the fission gas accumulation can lead to changes in thermal 
conductivity, fuel swelling, Fuel‑Cladding Chemical Interaction (FCCI) and Fuel‑Cladding Mechanical 
Interaction (FCMI). Therefore, it is crucial to accurately segment and analyze porosity to understand 
the U‑10Zr fuel system to design future fast reactors. To address the above issues, we introduce 
a workflow to process and analyze multi‑source Scanning Electron Microscope (SEM) image data. 
Moreover, an encoder‑decoder‑based, deep fully convolutional network is proposed to segment pores 
accurately by integrating the residual unit and the densely‑connected units. Two SEM 250 × field 
of view image datasets with different formats are utilized to evaluate the new proposed model’s 
performance. Sufficient comparison results demonstrate that our method quantitatively outperforms 
two popular deep fully convolutional networks. Furthermore, we conducted experiments on the 
third SEM 2500 × field of view image dataset, and the transfer learning results show the potential 
capability to transfer the knowledge from low‑magnification images to high‑magnification images. 
Finally, we use a pre‑trained network to predict the pores of SEM images in the whole cross‑sectional 
image and obtain quantitative porosity analysis. Our findings will guide the SEM microscopy data 
collection efficiently, provide a mechanistic understanding of the U‑10Zr fuel system and bridge the 
gap between advanced characterization to fuel system design.

Early experimental fast reactors, such as Experimental Breeder Reactor I (EBR-I), and Experimental Breeder 
Reactor II (EBR-II), provided a large pool of irradiated experiments demonstrating the high performance, safety, 
and possibility of close fuel cycle using metallic fuel in sodium fast reactors (SFR). Further studies in the Fast 
Flux Test Facility (FFTF) and the Transient Reactor Test Facility (TREAT) provide further information on vari-
ous fuel designs and materials, further demonstrating the possibility of achieving higher core  performance1–6.

A limiting fuel performance phenomenon for this fuel system is irradiation gas swelling that leads to an 
increase in Fuel-Cladding Chemical Interaction (FCCI) and Fuel-Cladding Mechanical Interaction (FCMI), 
which can limit burnup extension. Currently, U–Zr-based metallic fuels are pursued as primary candidate fuels 
for Generation IV SFRs, due to their high thermal conductivity, high burnup capabilities, and promising neu-
tronic performance. Among them, U-10 wt.% Zr (U-10Zr) metallic fuel, cladded with HT9 alloy, has been tested 
up to a high burnup of 20 at.%, without cladding  breach7.

In the last years, over 10,000 U-10Zr fuel pins have been irradiated in the test reactors and new advanced 
Post-Irradiation Examination (PIE) data has been collected at Idaho National Laboratory (INL). The data includ-
ing observations on fuel swelling, Zr redistribution, FCCI, and FCMI phenomena, obtained through various 
characterization techniques such as neutron radiography, pin profilometry, gamma scan, fission gas release 
analysis, metallography, micro-hardness, isotopic chemical analysis, and high-resolution/micro-nano scale 
 characterization8–17. New advanced characterization techniques employ multi-source data, including Scanning 
Electron Microscopy (SEM) images, Energy-Dispersive Spectroscopy (EDS) images, and Scanning Transmission 
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Electron Microscopy (STEM), which provide qualitative material information from the optical scale, overall 
microstructure and pore distribution from SEM and EDS microscale, and phase/crystal structure identification 
from STEM nanoscale.

Advanced PIE technologies have enabled researchers to gain qualitative understanding of the irradiation 
behavior of U-10Zr fuel, including Zr redistribution, FCMI, and  FCCI8–17. For example, Salvato et al.12 inves-
tigated the Zr redistribution on a U-10Zr fuel cross-section, named FA, which was irradiated to a burnup of 
approximately 13.2 at.%. The study revealed three major Zr concentric zones within the fuel pin (a Zr-rich central 
region, a Zr-lean intermediate region, and a Zr intermediate peripherical region) and found that the irradiation 
temperature and time spent in the reactor were the primary factors affecting the formation of redistribution zones 
and their extension along the fuel cross-section, rather than the fuel burnup. While the existing literature has 
provided detailed information on the Zr redistribution behavior of the fuel, it is important to note that U-10Zr 
fuel performance is also impacted by other factors, such as swelling, FCCI, and FCMI.

The evolution of porosity in U-10Zr metallic fuel changes the fuel properties and impacts the heat transport 
and constituent redistribution  phenomena18. The accumulation of fission gas in U-10Zr fuel leads to the evolution 
of porosity, which can impact thermal conductivity, cause fuel swelling, and ultimately affect FCCI and FCMI. It 
is crucial to quantitatively analyze porosity to gain insights into fuel performance, particularly the distribution 
of porosity in different Zr concentric zones and its variation along the thermal gradient from the hot fuel center 
to the cool rim surface.

However, a major challenge remains in porosity analytics. The advanced characterization data collected 
from different instruments may have different image types, and microscopic length scales, resulting in large 
variances in the appearance of pores in SEM images. As illustrated in Fig. 1, in the first column, different image 
patches from various locations have different image conditions but are formatted the same. In each row, the 
same image patch appears in different image formats, Secondary Electron Microscopy (SE) and Backscattered 
Electron (BSE) image, or microscopic length scales, 250 × and 2500 × . SE images display the topography of the 
samples, while BSE images show the composition of the samples. High-magnification images could show more 
detailed microstructures and pores, particularly on the pore boundaries. The multi-source, multi-scale, and 

     (a) 250× SE images                     (b) 250× BSE images                           (c) 2500× BSE images

Figure 1.  Image patches of U-10Zr fuel from SE and BSE images captured at different magnifications. In 
each row, red circles highlight the target regions in different image formats and magnification, the same 
microstructures could have large variance in color and texture appearance.
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varied image conditions have large morphological variance pores, and large color and texture differences among 
images, making it challenging to detect and segment pores using traditional image processing techniques, such 
as image thresholding.

Machine learning algorithms have achieved great success in quantitatively predicting material properties 
and accelerating materials characterization by integrating physics information, such as loops, cavities, and grain 
boundary detection on STEM nanoscale  images19–24. For instance, Xu and Cai et al. developed a Decision Tree-
based machine learning model for fission gas pore classification on annular U-10Zr  fuels24,25; however, the tree-
based method is non-robust and sensitive to the SEM images at different formats and length scales. Recently, 
convolutional neural networks (CNNs) achieved advanced performance and robustness in segmenting, recog-
nizing, and classifying natural and microscopy  images13,26–36. However, there remain challenges for CNNs to 
accurately detect pores from the SEM images. 1) CNNs require a large amount of annotated data for converging, 
however, manually annotating images are expensive, time, and labor consuming. 2) It can be challenging to rec-
ognize the morphology of pores in SEM images due to the presence of a large number of small pores. Moreover, 
the morphology of pores can vary significantly in terms of size and shape, and different microstructures can 
cluster around the pores. 3) A robust model that can be applied to different types of image formats and various 
microscopic length scales in practice is needed.

In this study, we proposed a fine pore-preserve deep neural network for robust and accurate pore segmenta-
tion which eventually results in more accurate and reliable porosity analysis. In the following section, two major 
contributions were involved 1) Section "Material and data collection" proposes a data collection and preparation 
workflow for producing SEM images and their ground truths; and 2) Section "Fine pore-preserving network for 
pore segmentation" describes the architecture and the learning objective of the proposed deep learning model.

Proposed method
Material and data collection
The U-10Zr fuel FA has a diameter of 0.498 cm with three different Zr concentric regions. Zone 1 extends from 
the cross-section’s center down to 0.32 R, where R represents the pin radius. The fuel center is noted R as 0 and 
the cladding inner boundary is noted R as 1. On the other hand, Zone 2 develops between 0.32 R and 0.48 R, 
while Zone 3 between 0.48 R and 1 R, with the boundary between Zone 3a and 3b placed at approximately 0.63 
R, as shown in Fig. 2 12.

Advanced characterization techniques at INL, e.g., focused ion beam (FIB) sampling, scanning transmission 
electron microscopy (STEM), local thermal conductivity microscopy (TCM), and energy dispersive spectroscopy 
(EDS), have been applied to the FA sample. FIB cross-section data provides overall fuel appearance, including 
pores, and different types of microstructures; EDS images show the distributions of chemical elements, and STEM 
EDS images give the element content percentages for each microstructure. SE images are used to digitalize the 
surface region of the material. BSE images are used to detect the contrast between areas with different chemical 
positions from the deeper regions of the image samples. EDS images give the element content percentages for 
each microstructure. In this study, site-specific lamellae were extracted. Ion trenching, polishing, and lift-out were 

Figure 2.  (a) A cross-sectional Backscattered Electron (BSE) image at 250 × magnification. (b–d) Distribution 
of Zr, U, and Nd, respectively, in the red box region highlighted in (a)12.
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carried out with a high-energy Xe beam. After that, the thinning and final polishing were done in a FEI Quanta 
3D FIB with Ga beams at various energies. We collected the images patches on the cross-section under three 
different magnifications as shown in Table 1. All the images were collected using a FEI Helios plasma focused 
ion beam-scanning electron microscopy dual beam (PFIB/SEM) instrument. During cross-section SE/BSE image 
collecting, the instrument scans the whole sample from left to right, top to bottom, and saves the images one by 
one. The following image patch will have a 10% overlap with the previous one. However, there is dislocation/
drifting existing in the vertical direction which indicates the image patches cannot be catenated directly to get 
the cross-section one. We utilized  ImageJ37 software to stitch the image patches into a 250 × whole cross-section 
according to the coordinate information.

Data preparation
To design a machine learning model and validate its performance on different image formats and length scales, 
we prepared the datasets consisting of original images and their corresponding annotated images. Manually 
annotating the pores on original images can be challenging due to the different appearances of pores on dif-
ferent image formats and magnifications (Fig. 1). To address this, we used SEM/EDS to obtain corresponding 
chemical element content. As shown in the image of the elements in Fig. 3, the region with dark appearances 
indicates no selected element existing. In practice, the pore regions are the darkest regions without any chemical 
element existing. Therefore, the annotation images of pores are generated as follows: 1) using multi-threshold 
 method38 to detect the darkest regions (without the corresponding chemical element) on the U, Zr, Mo, Ru, Nd, 
Fe, Cr EDS images separately; 2) annotating the intersection darkest regions on all EDS images as pores (Fig. 3 
pores image). Since it is expensive and labor-intensive to generate images with corresponding EDS images, 
especially under high magnification settings, we acquired three datasets with a limited amount of data. Firstly, 
17 image patches were captured in both SE and BSE formats at 250 × magnification, named SE-250 × and BSE-
250 × , respectively. The corresponding annotated results were shared between both image sets. Then, eight SEM 
images were obtained using BSE format at 2500 × magnification, named SE-2500 × , each with its corresponding 
annotated image. Each image in the three datasets had a size of 512 × 400 pixels and was captured from different 
regions of the cross-section images.

Fine pore‑preserving network for pore segmentation
The proposed network aims to accurately detect and segment the pore foregrounds from the SEM image back-
ground. The network tasks the SEM images as input and outputs pore segmentation results represented by 
pixel-level masks of pore regions. The proposed network architecture is shown in Fig. 4. The proposed network 
is a fully convolutional deep neural network with an encoder-decoder architecture for accurate pore segmenta-
tion. In the encoder, we use ResNet-5031 as a feature extractor, which was trained on a public large scale dataset 

Table 1.  Advanced characterization data for fuel FA.

First Polish Second polish

50 × (2.85 µm/pixel) 250 × (0.545 µm/pixel) 2500 × (0.0545 µm/pixel) 2500 × (0.0545 µm/pixel)

BSE images 31 166 10,549 10,549

SE images 31 166

EDS images 4 17 8

Figure 3.  Example of the annotation results based on EDS images.
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 ImageNet39, and has achieved advanced and robust performance in many computer vision  tasks32–34. ResNet-50 
is a 50-layer convolutional neural network that contains four residual blocks. Each residual block contains a 
series of consecutive residual units. Different numbers of residual units are employed in the encoder at different 
down-sampling stages. Each residual block from downsampling stage 1 to 4 contains 3, 4, 6, and 3 residual units, 
respectively. The architecture of the residual units is shown in Fig. 4, which contains three consecutive batch 
normalizations, relu activation layers, and convolutional layers, with a skip connection to connect the gradient 
flow from the first layer to the last layer.

The decoder comprises a series of up-sampling layers, convolutional layers, and dense  units35 to reconstruct 
the encoded latent representation to pore predictions. For the proposed method, multiple dense units are stacked 
to build a large receptive field with minimal network parameters. Compared to convolution layers with larger 
kernel sizes, dense units ensure efficient gradient propagation and fewer parameters. Dense blocks are used 
after the first and second up-sampling operations, with four and eight consecutive dense units, respectively. 
Our proposed method follows with the U-Net29 design, using skip connections to incorporate features from the 
earlier layers in the encoder to the decoders. The low-level image information is particularly important in the 
semantic segmentation tasks. Finally, a 1 × 1 convolutional layer with a softmax layer outputs the pore foreground 
and background. Padding convolution is performed throughout the two upsampling branches to prevent poor 
predictions at the boundary, resulting in a smaller output size than the input.

Learning objective
The learning objective of the proposed network is to segment the pore foreground from the background. The 
total loss function consists of two terms: Binary Cross-Entropy loss (LBCE ) and Dice loss (LDice ). Let P and P* be 
the predicted pore mask and the ground truth pore mask, respectively. The total loss can be defined as follows:

where Pi is the categorical class prediction at point i-th, and n denotes the total number of pixels in the image 
patch.

Experimental results
Dataset and evaluation metrics
Dataset
As described in section "Fine pore-preserving network for pore segmentation", we prepared and utilized three 
datasets for training the proposed model and evaluating its performance. The SE-250 × and BSE-250 × datasets 
were used for evaluating the network’s performance and conducting porosity analysis due to their relatively 
larger dataset size. The BSE-2500 × dataset was used to evaluate the transfer learning strategies employed in the 
proposed network.

Evaluation metrics
The pixel-level metrics: Recall ratio, Precision, and F1 score were used to evaluate the methods. Recall ratio, 
Precision, and F1 score are formally defined by
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Figure 4.  The overview of the proposed neural network architecture.
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where TP, FP, FN are the total pixel number of true positive, false positive, and false negative, respectively. The 
Recall ratio measures the percentage of annotated pores that are accurately detected by the model, while the 
Precision measures the percentage of predicted pores that are correctly detected. The F1 score is a combination 
metric of Recall and Precision for measuring the overall detection performance. In the context of pore detec-
tion from SEM images, pixel-level metrics are adopted to accurately evaluate the segmentation performance.

Implementation details
The proposed network takes the input size of 256 × 256 pixels. Due to the small amount of data, we applied the 
leave-one-out cross-validation40 to evaluate the whole process. In each leave-one-out experiment, one single 
image is used as a test image, and the rest of the images are employed as the training set for network training. 
The image augmentation approaches, e.g., random flip, random rotation, Gaussian blur, and median blur, are 
employed in the training stage. In total, 340 training image patches were generated. The training epoch of the 
network is set as 100, and the initial learning rate for the Adam optimizer is set as  10−4 and is reduced to  10–5 
after 50 epochs. The batch size is 4 for training the model. The postprocessing morphology operations (e.g., fill 
the holes, remove the small objects) are employed to generate fine segementation maps.

The effectiveness of the proposed network
The proposed network introduces two major contributions, ResNet  blocks31 and Dense  blocks35, compared to 
the U-Net29. To evaluate the effectiveness of these components, we conducted experiments and compared our 
network to three networks: 1) the U-Net with a ResNet encoder (Res-U-Net), where its decoder architecture is 
similar to our method but replaces all the Dense block with convolutional layers; 2) the U-Net with a ResNet 
encoder and a single Dense block in the decoder (ResNet-Dense-U-Net), where its decoder architecture has a 
similar architecture to our method but replaces the second Dense block with convolutional layers; and 3) the 
U-Net with a ResNet encoder and two Dense blocks in the decoder (Ours). The experiments were conducted 
on the BSE-250 × dataset and evaluated using Recall ratio, Precision, and F1 score. As shown in Table 2, with the 
ResNet block, the Res-U-Net improved the U-Net by 2.9% and 1.3% in Recall ratio and F1 score, respectively. 
Adding a single Dense block, Res-Dense-U-Net improved the Res-U-Net by 3.9% and 2.1% in Reccall ratio and 
F1 score, respectively. Our method achieved the best overall performance and improved the U-Net by 11.2% 
and 4.5% in Recall ratio and F1 score, respectively. Figure 5 provides a sample of the segmented results of the 
networks, and it is worth noting that the integration of two components into the U-Net led to an improvement 
in the visual representations. Both quantitative and qualitative results demonstrate that incorporating ResNet 
blocks and Dense blocks can significantly improve segmentation performance in Recall and F1 score, highlight-
ing the effectiveness of the two major components in our proposed method.

(4)Recall =
TP

TP + FN

(5)Precision =
TP

TP + FP

(6)F1 score =
TP

TP + 1
2 (FP + FN)

Table 2.  Effectiveness of the network design. Significant values are in [bold].

Networks Recall Precision F1 score

U-Net 0.7349 0.9390 0.8232

Res-U-Net 0.7572 0.9321 0.8345

Res-Dense-U-Net 0.7884 0.9285 0.8523

Ours 0.8282 0.9012 0.8624

           Images                        U-net                 Res-U-Net            Res-Dense-U-Net        Proposed network    Ground truth

Figure 5.  The visual representation of the effectiveness of the network design on BSE-250 × dataset.
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Overall performance
To demonstrate the effectiveness of the proposed network, our method was compared with two deep super-
vised neural networks:  SegNet36, and U-Net29 on pore segmentation. SegNet and U-Net are benchmark fully 
convolutional networks for semantic image segmentation. Compared to U-Net, our network has two major 
improvements: 1) we use ResNet units instead of convolutional layers in the encoder to eliminate gradient vanish 
problems, and 2) we employ dense units instead of single convolutional layers in the decoder to improve the net-
work efficiency with limited resources. Compared to U-Net and our network, SegNet uses the computed pooling 
indices to transfer knowledge from the encoder to the decoder instead of a skip-connection design to transfer 
the low-level features to the decoder, but all networks share a similar encoder-decoder design. The experiments 
were conducted on the BSE-250 × dataset using three metrics: Recall, Precision, and F1 score. Leave-one-out 
cross-validation was applied to all methods for a fair comparison. The overall results are shown in Table 3.

For BSE images, our method achieved the best Recall, and the F1 score among all the methods. The Recall 
value improved by 11.26% compared to the second-best method, U-Net, indicates that our method is capable of 
outputting more positive predictions. The F1 score shows the overall detection performance, and our method 
achieved a value of 0.8624, which is promising for pore detection. The Precision score of 0.9012 indicates that the 
accuracy of positive prediction is reliable. Meanwhile, SegNet and U-Net methods have the Recall score range 
of 0.72 to 0.74, and the Precision score range of 0.92 to 0.94, indicating that they return fewer predicted labels, 
but most of the predicted labels are correct. In Fig. 6, the qualitative visual comparison of BSE images shows that 
SegNet and U-Net return fewer predicted pores compared to the ground truth and our methods (relatively low 
Recall), especially for small pores’ detection and the pores with irregular shapes.

For SE images, the model was trained and tested using the SE images with the annotated images. The model 
performance was evaluated using Recall, Precision, and F1 score by conducting leave-one-out cross-validation on 
the dataset. As shown in Table 3, we achieved the highest Recall and F1 score among all the methods, with Recall, 
Precision, and F1 score of 0.6873, 0.7433, and 0.7105, respectively. However, compared to the prediction results 
from the BSE images, the performance of all methods on the SE images was slightly worse on all metrics. This is 
due to the fact that SE images mainly show the different topography and morphology of the microstructure with 
less composition information of pores, which may miss part of the microstructures. Therefore, the SE images’ 

Table 3.  Comparisons of the proposed method and state-of-the-art segmentation methods. Significant values 
are in [bold].

BSE 250 × dataset SE 250 × dataset

Method Recall Precision F1-score Recall Precision F1-score

SegNet 0.7265 0.9236 0.8120 0.5331 0.7569 0.6201

U-Net 0.7349 0.9390 0.8232 0.4359 0.8309 0.5647

Ours 0.8282 0.9012 0.8624 0.6873 0.7433 0.7105

          (a) Image              (b) Ground truth              (c) SegNet                    (d) U-Net             (e) Ours

Figure 6.  The visual representation of comparison with state-of-the-art methods on BSE-250 × dataset.
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test performance may be slightly worse than the BSE images, but SE images can still be used to detect the pores 
and achieve relatively reliable performance. Figure 7 shows examples of the segmented pores from SE images.

To show the proposed model is not sensitive to outlier images, we present the leave-one-out cross-validation 
results of every single test image on BSE images using Recall, Precision and F1 score metrics in Table 4. From 
the F1 score results, the minimum score is 0.8146; the maximum score is 0.9019; the mean score is 0.862, and 
the mean is close to the high end of the score range, which suggests that the predictions achieved promising 
results. The standard deviation score of 0.027 compared to the score range of 0.0873 is relatively small, indicating 
that the model performed consistently and there is low variability in predictions. Figure 8 shows more predicted 
examples of BSE images. We present the three best images with the top three highest F1 score (images 1,2,7- [top 
three row]), and two images with the lowest F1 score presented in Table 4 (images 11, 14- [bottom two]). From 
the images, we can observe that the three best predictions have close visual representations compared to the 
ground truths. The two images with the lowest F1 score are close to ground truth in large objects, but face the 

Figure 7.  Results of pore segmentation using our method on SE-250 × images.

Table 4.  Results of leave-one-out cross validation on BSE images using Recall, Precision, and F1-score 
metrics.

Test image Recall Ratio Precision F1 score

1 0.8641 0.9254 0.8937

2 0.8789 0.9262 0.9019

3 0.8303 0.9069 0.8669

4 0.7956 0.8670 0.8297

5 0.7830 0.8771 0.8274

6 0.8333 0.8552 0.8584

7 0.8533 0.9306 0.8903

8 0.8301 0.9270 0.8759

9 0.8274 0.9391 0.8797

10 0.8379 0.9100 0.8725

11 0.7328 0.9170 0.8146

12 0.8270 0.9151 0.8688

13 0.8045 0.8769 0.8392

14 0.7412 0.8978 0.8120

15 0.8947 0.8479 0.8707

16 0.8687 0.8826 0.8756

17 0.8771 0.8893 0.8831

Mean ± SD 0.828 ± 0.045 0.901 ± 0.028 0.862 ± 0.027
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challenges to detect the small objects. Overall, from the observation of the quantitative and qualitative results, 
our methods achieved promising pore segmentation performance.

Small pore detection
Measuring pore size and distribution is crucial for understanding material performance. Detecting small pores is 
a major challenge in pore segmentation on SEM images. However, current pixel-level evaluation metrics evaluate 

Figure 8.  Results of pore segmentation using our method on BSE images. The left column shows the original 
BSE images; the second column shows the corresponding ground truths; and the right column shows the 
segmented results. The top three rows display the three images with the highest F1-score, while the bottom two 
rows show two images with the lowest F1-score.
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the performance of the model at individual pixel levels without considering the size of the detected objects. 
Therefore, a model that performs well in detecting large pores may have difficulties in detecting small pores. In 
this section, we evaluate the model performance based on different pore sizes, and we categorize pores into small 
and large pores and evaluate them separately. Let S represent the size of each individual pore, where the value of 
S is the total number of connected pixel points in the object. We categorize pore size into two categories: 1) small 
pores, where the region contains 50 or fewer pixels, and 2) large pores, where the region contains more than 50 
pixels. We used Recall, Precision, and F1 score to evaluate segmentation performance on different sizes of pores, 
and we evaluated the model on the BSE-250 × image set with the leave-one-out cross-validation experiments. 
Table 5 shows the results, the proposed method achieved the best Recall and F1 score in small pore detection, 
improving 27.1%, and 15.4% on Recall and F1 score, respectively, compared to the second-best method (U-Net) 
in detecting small pores. All the models achieved promising detection performance in detecting large pores, with 
our proposed method achieving the best overall results. Although the proposed method outperformed SegNet 
and U-Net in small pore detection, our Recall score of 0.5791 is still limited, and there is room for improvement 
in the future. Detecting small pores is challenging due to the following major reasons in the BSE images: 1) small 
pores can be extremely small, appearing as a single pixel in width and height in images, 2) small objects may be 
dispersedly distributed in the images, and the matching ground truth with BSE images may not have obvious 
image factors on these small objects. Figure 9 shows an example of a BSE image with different pores size. The 
second to fourth rows are the predicted results from all models. Our method classified more small pores com-
pared to the SegNet and U-Net methods.

Application to 2500 × magnifications
High magnification images can provide detailed information about the sample, but it is more challenging to 
prepare the high-power field images with the corresponding ground truth, and those data size is limited. To 
solve the limited data issue in high magnification images, training, testing, and transferring the model at lower 
magnifications can help to assess the generalizability of the model to different magnifications. To evaluate the 
performance of the proposed network at different magnifications, we conducted three experiments: 1) directly 
applied the pre-trained network (trained at BSE-250 × magnification) to images at BSE-2500 × magnification; 
2) retrained and updated the network with the BSE-2500 × images; 3) employed transfer learning to transfer 
the existing knowledge from a larger dataset of images at 250 × magnification to a smaller dataset of limited 
images at 2500 × . Specifically, we utilized the pre-trained weight on the BSE-250 × images to retrain the limit 
images at BSE-2500 × . The experimental results are presented in Table 6, and the qualitative results are shown 
in Fig. 10. When directly applied to images at 2500 × , the pre-trained network achieved an F1-score of 0.7422 
and the qualitative results showed reliable pore detection performance. Retraining our network with the new 
2500 × images resulted in a Recall, Precision, and F1-score of 0.7905, 0.8313, and 0.8001, respectively. The transfer 
learning approach, integrated with the retrained model, achieved a Recall, Precision, and F1-score of 0.8197, 
0.7888, and 0.8132, respectively, outperforming the other two experimental strategies. The results suggest that 
the transfer learning approach integrated with the retrained model achieves the best performance among the 
three experimental strategies.

Porosity analysis using the fuel cross‑sectional imaging
In this section, we conducted porosity analysis on the fuel cross-sectional images. In Section "Material and data 
collection", we discussed the details of the preparation of the cross-sectional images. The experiments were con-
ducted on SE cross-sectional images. Although BSE images are preferred for pore analysis because they reveal 
the morphology of pores, due to the unavailability of BSE cross-sectional images, SE images were used instead. 
The pore regions in each SE image patch were predicted by utilizing the pre-trained proposed network on the 
SE-250 × dataset and then concatenated the patches to form cross-sectional images with the predicted pores.

Figure 2a presents an example of the fuel cross-sectional image. In a fuel cross-sectional image, there are 
three major zones based on the Zr  content12 described the details zone categorization in a post-irradiation 
examination (PIE) work through advanced characterization. As shown in Fig. 2a, Zone 1 is the fuel central 
region up to 0.32 R (R—fuel radius after irradiation), with enriched Zr content. Zone 2 is the Zr depleted region 
approximately 0.32 R to 0.48 R. Zone 3 has intermediate Zr content, with Zr content slightly higher than the 
as-fabricated condition. Zone 3 can be divided into Zone 3a (0.48 R to 0.63 R) and Zone 3b, the latter of which 
is in the fuel peripheral region with higher Zr content than the former. Though the Zr content stays relatively 

Table 5.  Quantitative comparison of segmentation results on different pore sizes. Significant values are in 
[bold].

Size Method Recall Ratio Precision F1 score

Small pores (≤ 50 pixels)

SegNet 0.4153 0.7272 0.5273

U-Net 0.4225 0.7842 0.5471

Ours 0.5791 0.7396 0.6471

Large pores (> 50 pixels)

SegNet 0.8716 0.9260 0.8975

U-Net 0.8999 0.9439 0.9072

Ours 0.9026 0.9190 0.9105
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the same within each zone, each zone has multiple crystallographic  phases12. The as-fabricated fuel pin radius is 
2.49  mm8. The radius of the irradiated fuel cross-section is about 2.875 mm, filling the gap between the fuel pin 
and the cladding. The overall porosity measured from the fuel cross-section is about 12.6% (pore area/the area 
of the fuel cross-section), accounting for about half of the fuel radial swelling. It is important to note that due to 
the SEM resolution, any pore smaller than 0.54 µm2 is not detectable. The zone porosity increases from center 
(Zone 1) to the fuel peripheral region (Zone 3b) as shown in Fig. 11. The pores are divided into three categories 
based on their sizes. The porosity contribution from small pores (area between 0.54 and 32 µm2, corresponding 
to diameter 0.8 and 6.4 µm in which diameter = 2×

√
area/π  ) increases from 3.3% in Zone 1 to 4.3% in Zone 

2, stays relative the same (4.2%) in Zone 3a, and decreases to 3.8% in Zone 3b. The porosity contributed from 
the intermediate-sized pores (32 < area < 205 µm2 or equivalent 6.4 < diameter ≤ 16.2 µm of round-shaped pores) 

G
round truth

SegN
et

U
-N

et
O

urs
All pores                                             Small pores                                            Large pores

Figure 9.  Qualitative comparison of segmented pores with different pore size on BSE-250 × dataset.

Table 6.  Quantitative results on BSE-2500 × dataset. Significant values are in [bold].

Experiments Recall Ratio Precision F1 score

Pretrain-using 250 × 0.6476 0.9262 0.7422

Retrain-using 2500 × 0.7905 0.8313 0.8001

Transfer learning-retrain 0.8197 0.7888 0.8132
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scatters between 4% and 5.4% without a clear trend. The large-sized pores (area coverage > 205 µm2, correspond-
ing to diameter > 16.2 µm of round-shaped pores) take 2.1% of the porosity in both Zones 1 and 2 and increase 
to 2.9% and 5.6% porosity in Zone 3a and 3b.

To further study the localized porosity distribution, the fuel cross-section is separated into 36 concentric 
annuli with each annular thickness approximately 0.08 mm, and the porosity for each annular, including overall 
porosity in the annulus as well as the porosities contributed from three pore size, is shown in Fig. 12. The poros-
ity from small pores (0.54–32 µm2) stays relatively constant (3.1%–3.3%) in Zone 1 and has a step increase to 
4.3% near the boundary of Zone 1 and Zone 2. It remains flat in Zones 2 and 3a but decreases slightly to 3.5% 
after the boundary of Zones 3a and 3b. It maintains around 3.5% in Zone 3b until close to the fuel peripheral 
region, where it starts to increase up to 5.2%. On the other hand, both porosities from intermediate and large 
pores fluctuate in Zone 1. They have a “U”-shape trend in Zone 2. Zone 1 has multiple crystallographic phases, 
three major phases and up to five sub-phases according to TEM, while Zone 2 has been observed mainly as an 
α-U matrix with Zr nano-precipitates12. Multiple crystallographic phases may create more phase boundaries and 
grain boundaries, which can serve as a sink for the fission gas, resulting in pore growth. Since multiple crystal-
lographic phases are randomly distributed in Zone 1, it is not surprising to see the fluctuations of the distribution 
of intermediate and large pores. Zone 2 has more intermediate and large pores near the boundaries with Zone 
1 and Zone 3a than that of the zone center. In Zones 3a and 3b, the porosity from intermediate pores seems to 
follow an opposite trending of the porosity from the large pores, except near the fuel peripheral region, where 
porosity from both the intermediate and large pores decrease around as-fabricated radius to cladding but porosity 
from the small pores increases at the regions. The porosity from large pores reaches maximum near the center 
of Zone 3b but decreases when approaching the fuel edge. A similar trend is observed for U-10Zr annular fuel, 
where large pores decrease the contribution to porosity when moving closer to the inner cladding  surface25. The 
less large pores near the fuel edge may reduce the FCCI, as the large pores can provide a pathway for lanthanides 
to reach and react with the cladding. The reason why small pores increase but large pores decrease is not clear. 
Perhaps lower temperatures and certain crystallographic phases at the fuel edge reduce fission gas diffusion, so 

  

       

images (2500 x) ground truth pretained retained transfer learning

Figure 10.  Qualitative results on BSE-2500 × dataset.

Figure 11.  Analysis of porosity in various zones of the cross-sectional imaging.
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that the pores grow slowly. For example, the γ2 phase (a Zr-rich body centered cubic solid solution between U 
and Zr) is surprisingly present at Zone  3b12. The γ2 seems to have low Xe (one type of fission gas)  diffusivity41.

Conclusion
In this paper, we first introduced a data processing workflow for generating multi-source SEM image data to 
understand the metallic fuel. We proposed a deep fully convolutional network with the residual units and the 
dense units for accurate pore segmentation and small pore detection. We evaluated our network using Recall, 
Precision, F1 score metrics on two SEM image datasets. The experimental results demonstrated that our method 
outperforms two recent fully convolutional networks both quantitatively and qualitatively. Additionally, the 
generated visual representation results exhibit the effectiveness of our method. We further trained and tested the 
proposed method on SEM images under different magnifications and showed that transfer learning improves the 
model performance by transferring the existing knowledge into new SEM images with various magnifications. 
Finally, we use the pre-trained network to predict SEM images in a whole cross-sectional fuel, and statistical 
analysis of the predicted pore distribution in the fuel bridges the gap between fundamental understanding and 
practical application. Overall, this paper proposes a comprehensive pipeline for conducting porosity analysis to 
study U-10Zr metallic fuel. We propose an accurate and robust deep neural network that significantly improves 
pore segmentation performance.

The use of machine learning provides us with unprecedented quantitative data on pore distribution and 
characteristics. How these pore statistics affect fuel performance is still under study, and these data are aimed 
to support the development of fuel modeling tools (such as BISON). Currently, the ongoing work is focused on 
crystallographic phase identification quantitatively combining SEM–EDS, TEM, and machine learning.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to the laboratory 
policy but should be available 3–5 years after the article is released. Currently, partial data is available from the 
corresponding author on reasonable request.
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