
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:1994 | https://doi.org/10.1038/s41598-023-48767-1

www.nature.com/scientificreports

Resilient multi‑agent RL:
introducing DQ‑RTS for distributed
environments with data loss
Lorenzo Canese 1,2*, Gian Carlo Cardarilli 1,2, Luca Di Nunzio 1,2, Rocco Fazzolari 1,2,
Marco Re 1,2 & Sergio Spanò 1,2

This paper proposes DQ‑RTS, a novel decentralized Multi‑Agent Reinforcement Learning algorithm
designed to address challenges posed by non‑ideal communication and a varying number of agents
in distributed environments. DQ‑RTS incorporates an optimized communication protocol to mitigate
data loss between agents. A comparative analysis between DQ‑RTS and its decentralized counterpart
Q‑RTS, or Q‑learning for Real‑Time Swarms, demonstrates the superior convergence speed of
DQ‑RTS, achieving a remarkable speed‑up factor ranging from 1.6 to 2.7 in scenarios with non‑ideal
communication. Moreover, DQ‑RTS exhibits robustness by maintaining performance even when the
agent population fluctuates, making it well‑suited for applications requiring adaptable agent numbers
over time. Additionally, extensive experiments conducted on various benchmark tasks validate the
scalability and effectiveness of DQ‑RTS, further establishing its potential as a practical solution for
resilient Multi‑Agent Reinforcement Learning in dynamic distributed environments.

Reinforcement Learning (RL) is a Machine Learning technique used to train an entity called “agent” to accom-
plish a particular task in a certain environment. The training of the agent is obtained through the maximization
of a reward signal that represents a figure of merit depicting the effectiveness of the action taken by the agent. RL
is an expanding sector that is found in a wide range of applications such as finance1, robotics2–4, natural language
 processing5, and communications6.

In recent years, a new sub-field of RL called Multi-Agent Reinforcement Learning (MARL) has found increas-
ing interest in the literature7,8. In MARL, several agents interact with each other concurrently sharing the same
environment. MARL generalizes and improves RL making it possible to accomplish more complex tasks in which
several intelligent agents have to make decisions based on the action of the others. MARL has been proposed
in several fields, for example, to model autonomous driving9, control fleets of drones10, telecommunications11,
and energy sharing applications in smart grids12. The use of MARL is also desirable in IoT applications in which
“IoT objects” have to operate in a distributed decentralized manner. In this context, MARL can be embedded
directly into the items, thus forming an artificial swarm of agents.

In MARL, agents can interact with each other in 3 different settings: cooperative, competitive, and mixed. In
a cooperative setting, all the agents receive a unique team reward based on their joint action. Agents are thus
required to cooperate to solve the task, e.g. splitting their work into a series of more feasible sub-tasks. An exam-
ple of this scenario is a fleet of drones equipped with a downwards-facing camera used to monitor and follow
a moving target10. In competitive settings (also called zero-sum games), the sum of the rewards received by all
agents is 0. An example of this scenario is the modeling of board games like chess or trading markets.

Mixed settings are a combination of the aforementioned in which agents exhibit some degree of cooperation
and competition. An example of such a setting is the modeling of team games when the agent cooperates with
their peers while competing against an adversary team. Lots of MARL algorithms capable of “super-human”
performances in several scenarios have been presented6,13–15 in literature. Most of those algorithms have been
proposed to operate on a traditional personal computer configuration (processor + GPU). The MARL algorithms
presented in the literature mostly use independent agents that cannot communicate with each other16. In some
cases, communication is possible through a central control center that does all the math for the agents17. In all
these cases, there are significant limitations. Independent agents may fail to converge for cooperation tasks18;
while a centralized coordinator implies a single point of failure if the central node is unavailable. To solve the
aforementioned problem, we propose a novel MARL algorithm called Distributed Q-RTS (DQ-RTS) which is

OPEN

1Department of Electronics, University of Rome Tor Vergata, 00133 Rome, Italy. 2 These authors contributed equally:
Lorenzo Canese, Gian Carlo Cardarilli, Luca Di Nunzio, Rocco Fazzolari, Marco Re and Sergio Spanò. *email:
canese@ing.uniroma2.it

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-48767-1&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:1994 | https://doi.org/10.1038/s41598-023-48767-1

www.nature.com/scientificreports/

based on the multi-agent Q-RTS algorithm19. In DQ-RTS, agents exchange information between each others
through a time varying communication network, this is similar to other works20 where message diffusion was
used to train a fully decentralized multi-agent actor-critic. The difference is in the type of information exchanged
observations or updated estimation as in our case and the structure of the algorithm executed by each agent. At
the time of writing, this is the only MARL algorithm suitable for hardware-based implementations. The main
innovation of the DQ-RTS algorithm is the capability for each agent to operate in a fully decentralized manner.
This feature allows for the distribution of knowledge among the agents and the possibility to operate both in the
case of failed data transmission and the variation of the number of agents.

Background
Q-learning for Real-Time Swarm (Q-RTS)19 is a multi-agent generalization of Q-learning21 and it is meant for
hardware-based implementations. It improves the convergence speed for real-time RL of intelligent swarms.
Q-RTS allows for the sharing the swarm knowledge by using a global swarm Q-matrix Qsw . The global matrix Qsw
is computed by the central node that merges the N-agents local Q-matrices Qi . The merging operation is carried
out thanks to an aggregation function applied to the set � of all the local matrices (1).

Each agent computes in parallel an updated matrix Q′
i that is a linear combination of Qsw and Qi . The agent

evaluates its new local Q-matrix Qi by applying Q-learning update rule to Q′
i (2). β ∈ [0, 1) is a parameter called

independence factor which weights the local and global knowledge.

Distributed Q‑RTS
We propose a novel fully decentralized MARL algorithm, inspired by Q-RTS. This method is optimized for
swarm reinforcement learning applications, overcoming the above-discussed limitations due to communication
issues with the main node.

For swarm applications, the use of a central node implies two main limitations:

• The design of the entities composing the swarm is heterogeneous as the central node is characterized by a
different functionality with respect to the other agents.

• The central node represents a single point of failure: if this node fails, the correct behavior of the system is
compromised.

The possibility of failed transmissions between agents and the central node is not considered in the literature.
However, it is a very common event in some contexts, e.g. IoT wireless networks.

Algorithm development
To eliminate the need for a central node, DQ-RTS introduces a local swarm knowledge Q-matrix Qi

sw that is
computed by each i-th agent. The algorithm operates in two phases: an update phase in which the agent interacts
with the environment and updates its Q-table and a communication phase in which agents communicate with
each other to share their knowledge. Qi

sw is computed in the latter phase. The algorithm estimates Qsw like Q-RTS
but independently for each agent. A top-level overview of the algorithm can be found in fig 1. In the following,
we analyze in detail the two algorithm phases.

Update phase
Before starting the learning process, each agent i initializes to zero its Q-table Qi and its swarm knowledge Q-table
Qi
sw of size |S| × |A| , where S is the number of states of the environment and A is the number of available actions.

The training parameters are also initialized, the training rate α ∈ [0, 1) , the discount factor γ ∈ [0, 1) , and the
independence factor which is the weight used to combine the local and swarm Q matrix β ∈ [0, 1).

Each agent performs the update phase independently by following these steps:

1. Starting from the current state st , an action at is selected in compliance with the chosen policy (for example
an ǫ-greedy policy).

2. The state is updated evolving from st to st+1.
3. The agent receives a reward rt.
4. The local Q-matrix Qi and the swarm knowledge Q-matrix Qi

sw of the agent i are locally combined, forming
the update matrix Qi

upd , according to the equation:

(1)Qsw(s, a) =

max
Qi∈�

Qi(s, a), if

�

�

�

�

max
Qi∈�

Qi(s, a)

�

�

�

�

>

�

�

�

�

min
Qi∈�

Qi(s, a)

�

�

�

�

min
Qi∈�

Qi(s, a), otherwise

(2)

{

Qi(st , at) ← (1− α)Q′
i(st , at)+ α(ri + γ max

{a}
Q′
i(st+1, a))

Q′
i(st , at) = βQi(st , at)+ (1− β)Qsw(st , at)

(3)Qi
upd = βQi + (1− β)Qi

sw .

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:1994 | https://doi.org/10.1038/s41598-023-48767-1

www.nature.com/scientificreports/

5. The Q-learning update rule is applied to Qi
upd to update the local Q-matrix.

6. Qi(st , at) is saved in the Qi
sw matrix if

7. The updated Q-value Qi(st , at) and its position index are transferred in a transmission buffer.
8. The communication phase starts.

Communication phase
In this phase, each agent sends and receives the Q-values to/from the other agents and then updates its swarm
knowledge Q-Matrix Qisw . This is done by executing the following steps:

1. Each agent sends the messages saved in its transmission buffer to the other agents available.
2. The transmission buffer is cleaned.
3. Received messages are stored in a reception buffer. For each element in the buffer the following steps are

executed:

 3.1. The Q-value Qj(s, a) received form the agent j is compared with the value in the local Q-matrix with
the same index Qi(s, a).

 3.2. The swarm knowledge Q-matrix value Qi
sw(s, a) is updated by the following rule.

4. The reception buffer is cleaned.
5. The training time-step t is incremented and the agent moves to the next updating phase.

This procedure ensures that at the end of the communication phase each agent has stored in its swarm knowl-
edge matrix Qi

sw the most important Q-values related to low and high reward signals. An overview of the above
detailed phases is shown in Fig. 1.

Agent communication
As discussed in the previous sections, in real-world applications the data transmission between the agents may
fail for several reasons: connectivity problems, failure of one or more nodes, etc. In order to make the algorithm

(4)Qi(s, a) =

{

(1− α)Qi
upd(st , at)+ α(r + γ maxa′ Q

i
upd(st+1, a

′)) if a = at e s = st

Qi
upd(s, a) otherwise

(5)|Qi(st , at)| ≥ |Qi
sw(st , at)|.

(6)Qi
sw(s, a) =

{

Qi(s, a) if |Qi(s, a)| > |Qj(s, a)|
Qj(s, a) otherwise

Figure 1. Structure of DQ-RTS algorithm. Each agent stores in its memory the two Q-Tables. The Swarm
Q-table is updated using the information received from neighboring agents. The Local Q-table stores the matrix
that the agent updates based on its experience. The two matrices are linearly combined and the result is used to
perform the Q-learning update step.

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:1994 | https://doi.org/10.1038/s41598-023-48767-1

www.nature.com/scientificreports/

robust to these events, we developed a re-transmission protocol for the messages. It is supposed that the com-
munication protocol is equipped with an acknowledgment mechanism and handshaking. In this way, every
time an agent receives a message, it sends back an acknowledgment to confirm the correct receipt of the update.

The protocol’s operation mode is described in the following: for each agent, two vectors are defined. The first
one, called history vector �H , contains all the state-action couples that the agent encountered during the learning.
The second vector, called Missed transmissions vector �Mtx,contains the communication history. For example if we
consider a case with 4 agents �Mtx will be a vector with 4 elements. if the �Mtx of the first agent 1 is [0, 12, 0, 5] it
means that the agent has not communicated with agent 2 for 12 algorithm steps, 0 and 5 for respectively agents 3
and 4 (obviously the first element is always 0 since the agent do not communicate with himself). The state action
couple is saved in �H as a single integer representing the index of the Q-Matrix element related to the couple.

For each agent, the number of algorithm iterations passed since the last successful communication is stored.
The elements of vector �H are handled with First-In, First-Out (FIFO) methodology. So, during the update phase,
the current state-action couple (st , at) is stored in the FIFO and the first added element is deleted.

After the transmission there are two possibilities:

1. The agent does not receive an acknowledgment from agent i .

1.1 The ith element of the Missed transmission vector is incremented.

2. The agent receives an acknowledgment from agent j

 2.1. The agent loads in its transmission buffer Mtx(j) the state-action couples (s, a) and the related
Q-values from the local Q-matrix Q(s, a) from the most recent elements of the history vector �H.

 2.2. The update of the Qsw proceeds as described in the Communication phase section.
 2.3. Mtx(j) is set to zero since the agent does not have more missed messages to send to agent j.

The pseudo-code for the algorithm can be found in Fig. 2.

Optimization of sent messages
We propose an optimization to limit the number of sent messages. If an agent interrupts the communication
for a certain time, when the communication is reactivated it will have to send a high number of messages. This
causes a communication overhead that could slow the training. During the communication failure, an agent can
explore the same state-action couples more than once. However, for the training of the system, it is sufficient
to know only if a state action couple has been explored and not how many times. For this reason, we adopted a
data compression technique on the vector �H.

This compression technique works in this way:

• Each state-action couple is coded as an integer number and stored in a temporary vector called temp
• The elements of vector �temp are sorted in ascending order
• The vector temp2 is created by differentiating the values of temp as temp(i+1)-temp(i).
• We take the elements of temp that correspond to non-zero elements of temp2, that is we discard all zero-values

of the differential.

This process is shown in Fig. 3.

Robustness to change in the number of agents
As introduced before, DQ-RTS is also capable of operating in the case of a variation in the number of agents. If
one or more agents are removed from the swarm (this is the case of damage or malfunction) there is no effect on
the correct behavior of the algorithm. The only negative aspect is the slow-down of the convergence. Vice versa,
if new agents are inserted into the swarm, these new agents receive the full information about the swarm matrix
Qsw and they contribute to speed-up the convergence of the algorithm.

Methods
To evaluate DQ-RTS and to estimate its performance, we performed the same test used in19 and compared the
results. The evaluation environment was designed in MATLAB, it is a maze composed of cells, and each cell
represents a state. So, the environment may be considered a grid. There are three cell types: free path, wall, and
exit from the maze. Each agent can choose from among four actions, which are: move up, move down, move to
the left and move to the right. The task of the agents is to reach the exit of the maze using the minimum number
of steps. At each step of the algorithm, the agent receives a reward based on its choice. If the agent selects an
action that will lead to a collision into a wall, it receives a large negative reward r = −101 and remains in its
current state. However, if the agent moves to an accessible path (no collision with the wall) it receives a slight
negative reward r = −0.1 . Upon reaching the exit, the agent receives a positive reward r = 100 , then it is moved
to a random location and continues the training. This reward strategy was designed to motivate the agent to find
the best path to exit the maze without collisions and in the least number of steps. To measure the performance
we used two metrics. The first is the number of iterations required by the swarm to reach the optimal policy.
Each maze has a single optimal solution that consists of the correct action to take for each state. The training is

(7)Mtx(i) = Mtx(i)+ 1.

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:1994 | https://doi.org/10.1038/s41598-023-48767-1

www.nature.com/scientificreports/

concluded when for each maze cell all the agents have learned the correct action to take. This metric indicates
the time required by the swarm to converge (training time) to the optimal solution. The second metric is the
one used in19. It is the average of the Q-values of the state before the maze’s exit over the simulation’s steps. If
the value is small, the agents had collisions during the path while a high value indicates an absence of collisions.
This metric shows how fast the agents can find the path to the exit. The training parameters were set as: α = 0.5 ,
β = 0.1 , γ = 0.9 and both the swarm and the local Q-matrices were initialized to zero.

We performed two types of tests. In the first method, communication between the agents is ideal without
any possibility of missed messages. In the second, we considered also communication problems by the agent, in
particular, communication is possible for agents who are within a certain range from each other. This range is
defined as the communication range and it is a simulation parameter. The test considering ideal communication
was carried out for various maze sizes (11× 11 , 15× 15 , 21× 21 , 31× 31 , 41× 41) and the number of agents
involved in the training (2, 4, 6, 8, 12, 16, 20, 24, 28). The goal is to demonstrate that DQ-RTS can achieve the

Figure 2. Pseudo-code for the DQ-RTS algorithm with limited range of communication.

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:1994 | https://doi.org/10.1038/s41598-023-48767-1

www.nature.com/scientificreports/

same performance of Q-RTS when tested in the same scenario, with the benefits of a decentralized structure.
The second test is oriented to estimate the performance of DQ-RTS, considering also the possibility of failed
transmission. Experiments were carried out in the 31X31 maze with a different number of agents (2, 16, 24).
We varied the communication span from a 15 cells radius (good communication range) to 2 (very poor com-
munication range). Failed communication, in the Q-RTS algorithm, assumes a different meaning. It does not
mean that two agents didn’t send their updates to each other, but that an agent failed to communicate with the
central node. Thus, the agent does not receive the Qsw for that particular time step. In this case, the agent can not
aggregate Qsw and Qi . Thus, for the current time step, it will make an update using only the local Q matrix. This
is equivalent to the traditional Q-learning, as it can be seen in Eq. (6) when β = 1 . To determine the distance
between the agents and the central node in the traditional Q-RTS counterpart, the latter was located in the center
of the maze. In this way, the central node covers most of the area of the maze under its communication range.
We show the simulations’ results in the following. We computed the mean and standard deviation of the chosen
metrics over 50 simulations.

Results and discussion
The results of the first experiment (ideal communication with unlimited range) are presented in Table 1. On the
rows are shown the agents’ configuration, and in the columns, the mazes’ size. Results are expressed as the mean
and standard deviation of algorithm convergence time. Considering several simulations.

Results confirm what is stated in the “Distributed Q-RTS” section. In the case of ideal communications, the
performance of DQ-RTS and Q-RTS are equivalent, regardless of the size of the maze and the number of agents.

The results of the second experiment are shown in Table 2. As can be seen, for both algorithms, the conver-
gence speed decreases as the communication range decreases.

As the communication range decreases, DQ-RTS performs better than Q-RTS. This is because the presence
of the hand-shake communication and the retransmission protocol makes it possible to retain the information
related to states explored by the agent when it was isolated from the swarm.

The time required to reach the convergence is related to how fast an agent can communicate the information
extracted during its exploration of the environment to every other agent. In Q-RTS, if the agent is too distant
from the central node, the update is never recorded inside the swarm matrix. Thus, it will never be made avail-
able to other agents. Since in DQ-RTS each agent stores an estimation of Qsw , it will share it with the rest of the
swarm when it becomes available again. In other words, in a decentralized scheme, the distribution of knowledge
among agents is more efficient.

In the DQ-RTS algorithm, the update of the swarm Q-matrix can be received either directly or indirectly. The
first case is if two agents are inside the communication range and exchange Q-values. The second case exploits

Figure 3. Method to reduce the number of messages to send.

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:1994 | https://doi.org/10.1038/s41598-023-48767-1

www.nature.com/scientificreports/

the distribution of the agents in the environment. Let us consider 3 agents A, B, and C with A into the commu-
nication range of B, and C into the communication range of B. A and C are not in their communication range.
The Q-value sent from A to B in a given time step is used to update B’s Q-swam matrix. In the successive time
steps, B sends to C Q-values dependent on B’s Q-swarm and local Q matrices. In such a way, the information
obtained by A and sent to B is also received by C.

As shown in Table 2, DQ-RTS exhibits a lower performance reduction with the decrease in the communica-
tion range. When the range of communication covers the entire maze the performances are equivalent. For the
minimum range of communication simulated (2 cells) DQ-RTS was 1.6 to 2.73 times faster in converging. The
speed-up factor of 1.6 has been obtained considering 2 agents, while 2.7 has been obtained considering 28 agents.
This is because if more agents share the same environment, they will communicate more often and distribute
the information gained more efficiently. Fig. 4 shows that the capability of the agents to find the exit of the maze
improves along with their number. Another interesting aspect is the decrease in the standard deviation with the
increase in the number of agents.

From a performance point of view, DQ-RTS outperforms Q-RTS both in broadcast and local communica-
tion scenarios. However, it is important to note that the communication overhead of those algorithms is quite
different. For each iteration, DQ-RTS sends a total of N(N − 1) updates packages, while Q-RTS just needs 2N
updates message. The aforementioned retransmission protocol was used to reduce the negative effect of the added
communication overhead. The effectiveness of the protocol is proportional to the sparsity of the communications
between agents, and it manages to cut up to 60% of the communication overhead for the bigger environment
with more distributed agents.

We presented the results in terms of the number of iterations needed to reach convergence. However, with a
growing number of agents during each iteration, the number of computations that they have to perform increases
too. Each update message received has to be compared to the local swarm table. The timing of the iteration
depends mainly on the number of agents, as it increases with increasing agents. Iterations take less time if the

Table 1. DQ-RTS and Q-RTS convergence iterations comparison using different number of agents and maze
size. Unlimited transmission radius range.

Maze size 11× 1111× 1111× 11 15× 1515× 1515× 15 21× 2121× 2121× 21 31× 3131× 3131× 31 41× 4141× 4141× 41

2 Agents DQ-RTS 3195± 371 16063± 2150 60036± 5799 29.975± 3.139× 10
4

63.983± 4.768× 10
4

2 Agents Q-RTS 3542± 422 17703± 2339 60616± 6840 33.262± 3.113× 10
4

71.067± 4.768× 10
4

4 Agents DQ-RTS 1735± 236 8640± 1568 29081± 2324 15.334± 1.306× 10
4

33.504± 2.615× 10
4

4 Agents Q-RTS 1812± 252 8872± 1110 30940± 2983 16.728± 1.521× 10
4

35.272± 2.919× 10
4

6 Agents DQ-RTS 1217± 166 5975± 763 19890± 1778 10.369± 1.023× 10
4

22.372± 2.187× 10
4

6 Agents Q-RTS 1239± 158 5868± 821 21096± 2141 11.098± 1.129× 10
4

24.523± 2.414× 10
4

8 Agents DQ-RTS 971± 134 4516± 549 15210± 1395 7.852± 0.695× 10
4

16.670± 1.353× 10
4

8 Agents Q-RTS 999± 125 4572± 638 15876± 1551 8.320± 0.564× 10
4

17.872± 1.482× 10
4

12 Agents DQ-RTS 732± 101 3151± 555 10206± 1118 5.160± 0.458× 10
4

11.185± 0.842× 10
4

12 Agents Q-RTS 667± 83 3162± 470 10779± 1015 5.525± 0.491× 10
4

12.073± 1.130× 10
4

16 Agents DQ-RTS 574± 74 2436± 265 7820± 771 3.928± 0.318× 10
4

8.440± 0.778× 10
4

16 Agents Q-RTS 555± 57 2367± 324 8228± 756 4.212± 0.325× 10
4

8.814± 0.760× 10
4

20 Agents DQ-RTS 491± 44 2091± 186 6587± 694 3.125± 0.237× 10
4

6.682± 0.587× 10
4

20 Agents Q-RTS 466± 49 2040± 210 6713± 767 3.427± 0.318× 10
4

7.257± 0.622× 10
4

24 Agents DQ-RTS 439± 46 1807± 185 5547± 434 2.624± 0.204× 10
4

5.663± 0.430× 10
4

24 Agents Q-RTS 388± 40 1730± 200 5678± 405 2.892± 0.297× 10
4

6.142± 0.649× 10
4

28 Agents DQ-RTS 396± 39 1807± 167 4796± 475 2.282± 0.159× 10
4

4.789± 0.396× 10
4

28 Agents Q-RTS 362± 48 1500± 166 4958± 539 2.438± 0.244× 10
4

5.206± 0.436× 10
4

Table 2. DQ-RTS and Q-RTS convergence iterations comparison using different number of agents and
transmission radius range. Maze size 31× 31.

Transmission radius 2 cells 4 cells 7 cells 10 cells 15 cells

2 Agents Q-RTS 410± 16× 10
3

318± 12× 10
3

215± 16× 10
3

183± 15× 10
3

166± 17× 10
3

2 Agents DQ-RTS 253± 12× 10
3

181± 13× 10
3

165± 13× 10
3

159± 13× 10
3

153± 11× 10
3

16 Agents Q-RTS 265± 7× 10
3

164± 5× 10
3

83± 4× 10
3

61± 4× 10
3

43± 3× 10
3

16 agents DQ-RTS 111± 3× 10
3

53± 4× 10
3

44± 3× 10
3

41± 3× 10
3

39± 3× 10
3

28 Agents Q-RTS 216± 4× 10
3

130± 3× 10
3

64± 2× 10
3

44± 2× 10
3

25± 2× 10
3

28 Agents DQ-RTS 79± 2× 10
3

32± 1.2× 10
3

25± 2× 10
3

25± 2.3× 10
3

23± 1.6× 10
3

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:1994 | https://doi.org/10.1038/s41598-023-48767-1

www.nature.com/scientificreports/

communication network is more sparse, and that can lead to faster convergence times. Distributed computing
for DQ-RTS, in comparison with the central paradigm of Q-RTS, requires less time to reach convergence with
a typical speed-up factor in the range 4.5-5.5. Data and methods for the timing comparison can be found in the
supplementary material (Supplementary Information).

Discussion
DQ-RTS extends the implementability of Q-RTS to decentralized scenarios. This framework improves the robust-
ness of the system by the elimination of the central aggregation node. Results show that in the presence of ideal
communications, the performance of DQ-RTS and Q-RTS are equivalent (the swarm knowledge matrix is locally
estimated by each agent). Vice-versa, in the case of real communication (with failures) DQ-RTS proved to be
superior for every range of communication investigated. This is caused primarily by the use of the retransmission
protocol, presented in the “Optimization of sent messages” section.

DQ-RTS outperforms Q-RTS since it is executed in parallel over a various number of agents. Q-RTS is
executed on a single machine then the agent receives an update policy before taking the action. The time per
iteration can be reduced by using a central node with more computational power, but that is not the case for
edge computing. DQ-RTS is particularly fast in convergence time when the agent communicates sporadically;
only relevant updates are sent when a communication appears, saving time. When the communication range
decreases, the number of iterations to reach convergence increases. However, the time per iteration is reduced,
resulting in overall faster convergence times. There is a trade-off between the sparsity of the network and the
performance. When the network becomes too sparse, agents may fail to converge.

The messages between agents can cause a communication overhead. In this paper, solutions for this problem
have not been investigated, but using a token system to transmit the update or to limit the number of agent-to-
agent messages to a fixed number during the communication phase could be a solution.

Another important aspect of the DQ-RTS is the possibility of being easily implemented in hardware digital
circuits (such as Field Programmable Gate Array, FPGA) because it shares most of its structure with the Q-RTS
that was fully implemented in FPGA22 and, at the moment of writing, it is the only FPGA-implementable MARL
algorithm in the literature. In such a scenario, DQ-RTS could be implemented with minor modifications from
Q-RTS. It is necessary to introduce two additional modules. A memory to be used for the storing of the past
iterations and a circuit to select the values to be sent to each agent. A possible architecture is shown in Fig. 5.

Figure 4. Each plot reports the Q-value computed by each agent when it exits the maze. 2 agents (purple), 4
agents (green), 8 agents (red), 16 agents (blue), 32 agents (yellow). The width represents the standard deviation,
while the solid line the mean. Both quantities are computed over 50 simulations.

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:1994 | https://doi.org/10.1038/s41598-023-48767-1

www.nature.com/scientificreports/

Data availability
Reinforcement learning does not require training data, All the training was done in a simulator coded in MAT-
LAB. For the code and the images of the mazes used in this paper contact author Canese Lorenzo.

Received: 30 May 2023; Accepted: 30 November 2023

References
 1. Yang, H., Liu, X.-Y., Zhong, S. & Walid, A. Deep reinforcement learning for automated stock trading: An ensemble strategy. In

ICAIF ’20. https:// doi. org/ 10. 1145/ 33834 55. 34225 40 (Association for Computing Machinery, 2020).
 2. Abbeel, P., Darrell, T., Finn, C. & Levine, S. End-to-end training of deep visuomotor policies. J. Mach. Learn. Res. 17, 1334–1373.

https:// doi. org/ 10. 5555/ 29466 45. 29466 84 (2016).
 3. Konar, A., Goswami Chakraborty, I., Singh, S., Jain, L. C. & Nagar, A. A deterministic improved q-learning for path planning of

a mobile robot. IEEE Trans. Syst. Man Cybern. Syst. 43, 1141–1153. https:// doi. org/ 10. 1109/ TSMCA. 2012. 22277 19 (2013).
 4. Lin, J., Hwang, K., Jiang, W. & Chen, Y. J. Gait balance and acceleration of a biped robot based on q-learning. IEEE Access 4,

2439–2449. https:// doi. org/ 10. 1109/ ACCESS. 2016. 25702 55 (2016).
 5. Gkatzia, D., Hart, E. & Panagiaris, N. Generating unambiguous and diverse referring expressions. Comput. Speech Lang. 68,

101–184. https:// doi. org/ 10. 1016/j. csl. 2020. 101184 (2021).
 6. Marco, Mea. A reinforcement learning-based QAM/PSK symbol synchronizer. IEEE Access 7, 124147–124157. https:// doi. org/ 10.

1109/ ACCESS. 2019. 29383 90 (2019).
 7. Dinneweth, J., Boubezoul, A., Mandiau, R. & Espié, S. Multi-agent reinforcement learning for autonomous vehicles: A survey.

Auton. Intell. Syst. 2, 1–12 (2022).
 8. Zhou, Q.-N., Yuan, Y., Yang, D. & Zhang, J. An advanced multi-agent reinforcement learning framework of bridge maintenance

policy formulation. Sustainability 14, 10050 (2022).
 9. Shalev-Shwartz, S., Shammah, S. & Shashua, A. Safe, multi-agent, reinforcement learning for autonomous driving. arXiv. https://

doi. org/ 10. 48550/ ARXIV. 1610. 03295 (2016).
 10. Qie, H. e.a. Joint optimization of multi-UAV target assignment and path planning based on multi-agent reinforcement learning.

IEEE Access 7, 146264–146272. https:// doi. org/ 10. 1109/ ACCESS. 2019. 29432 53 (2019).
 11. Cardarilli, G. C. et al. An FPGA-based multi-agent reinforcement learning timing synchronizer. Comput. Electr. Eng. 99, 107749

(2022).
 12. Fang, X. E. A. Multi-agent reinforcement learning approach for residential microgrid energy scheduling. Energieshttps:// doi. org/

10. 3390/ en130 10123 (2020).
 13. Matignon, L., Laurent, G. J. & Le Fort-Piat, N. Hysteretic q-learning : An algorithm for decentralized reinforcement learning in

cooperative multi-agent teams. In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. 64–69. https:// doi.
org/ 10. 1109/ IROS. 2007. 43990 95 (2007).

 14. Foerster, J., Farquhar, G., Afouras, T., Nardelli, N. & Whiteson, S. Conterfactual multi-agent policy gradients. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference
and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence, AAAI’18/IAAI’18/EAAI’18 (2018).

 15. Rashid, T. E. A. QMIX: Monotonic value function factorisation for deep multi-agent reinforcement learning. In Proceedings of the
35th International Conference on Machine Learning. Vol. 80. 4295–4304 (PMLR, 2018).

 16. Cui, J., Liu, Y. & Nallanathan, A. Multi-agent reinforcement learning-based resource allocation for UAV networks. IEEE Trans.
Wirel. Commun. 19, 729–743. https:// doi. org/ 10. 1109/ TWC. 2019. 29352 01 (2020).

 17. Kong, X., Xin, B., Wang, Y. & Hua, G. Collaborative deep reinforcement learning for joint object search. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 7072–7081. https:// doi. org/ 10. 1109/ CVPR. 2017. 748 (2017).

 18. T., M. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Machine Learning Proceedings. 330–337. https://
doi. org/ 10. 1016/ B978-1- 55860- 307-3. 50049-6 (1993).

 19. Matta, M. e. a. Q-RTS: A real-time swarm intelligence based on multi-agent q-learning. Electron. Lett. 55, 589–591. https:// doi.
org/ 10. 1049/ el. 2019. 0244 (2019).

 20. Siyuan, D. et al. Decentralized multiagent actor-critic algorithm based on message diffusion. J. Sens.https:// doi. org/ 10. 1155/ 2021/
87392 06 (2021).

 21. Watkins, C. Q-learning. Mach. Learn.https:// doi. org/ 10. 1007/ BF009 92698 (1992).
 22. Cardarilli, G. E. A. FPGA implementation of Q-RTS for real-time swarm intelligence systems. In 54th Asilomar Conference on

Signals, Systems, and Computers. 116–120. https:// doi. org/ 10. 1109/ IEEEC ONF51 394. 2020. 94433 68 (2020).

Author contributions
All the authors contributed equally to this work.

Figure 5. Possible hardware implementation for the selection of unique Q matrix indices inside of the history
vector, the sorted values of the state-action couples in the transmission buffer are serialized, then using a delay
block as a flip-flop we compare each value with the previous one and use the output of the comparison to select
values to send to the trasmission module only when they differ, ensuring the unicity of the trasmitted update
messages.

https://doi.org/10.1145/3383455.3422540
https://doi.org/10.5555/2946645.2946684
https://doi.org/10.1109/TSMCA.2012.2227719
https://doi.org/10.1109/ACCESS.2016.2570255
https://doi.org/10.1016/j.csl.2020.101184
https://doi.org/10.1109/ACCESS.2019.2938390
https://doi.org/10.1109/ACCESS.2019.2938390
https://doi.org/10.48550/ARXIV.1610.03295
https://doi.org/10.48550/ARXIV.1610.03295
https://doi.org/10.1109/ACCESS.2019.2943253
https://doi.org/10.3390/en13010123
https://doi.org/10.3390/en13010123
https://doi.org/10.1109/IROS.2007.4399095
https://doi.org/10.1109/IROS.2007.4399095
https://doi.org/10.1109/TWC.2019.2935201
https://doi.org/10.1109/CVPR.2017.748
https://doi.org/10.1016/B978-1-55860-307-3.50049-6
https://doi.org/10.1016/B978-1-55860-307-3.50049-6
https://doi.org/10.1049/el.2019.0244
https://doi.org/10.1049/el.2019.0244
https://doi.org/10.1155/2021/8739206
https://doi.org/10.1155/2021/8739206
https://doi.org/10.1007/BF00992698
https://doi.org/10.1109/IEEECONF51394.2020.9443368

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:1994 | https://doi.org/10.1038/s41598-023-48767-1

www.nature.com/scientificreports/

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/
10. 1038/ s41598- 023- 48767-1.

Correspondence and requests for materials should be addressed to L.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1038/s41598-023-48767-1
https://doi.org/10.1038/s41598-023-48767-1
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Resilient multi-agent RL: introducing DQ-RTS for distributed environments with data loss
	Background
	Distributed Q-RTS
	Algorithm development
	Update phase
	Communication phase

	Agent communication
	Optimization of sent messages
	Robustness to change in the number of agents

	Methods
	Results and discussion
	Discussion

	References

