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A CNN based m5c RNA 
methylation predictor
Irum Aslam 1, Sajid Shah 2, Saima Jabeen 3*, Mohammed ELAffendi 2, Asmaa A. Abdel Latif 4, 
Nuhman Ul Haq 1 & Gauhar Ali 2

Post-transcriptional modifications of RNA play a key role in performing a variety of biological 
processes, such as stability and immune tolerance, RNA splicing, protein translation and RNA 
degradation. One of these RNA modifications is m5c which participates in various cellular functions 
like RNA structural stability and translation efficiency, got popularity among biologists. By applying 
biological experiments to detect RNA m5c methylation sites would require much more efforts, time 
and money. Most of the researchers are using pre-processed RNA sequences of 41 nucleotides where 
the methylated cytosine is in the center. Therefore, it is possible that some of the information around 
these motif may have lost. The conventional methods are unable to process the RNA sequence directly 
due to high dimensionality and thus need optimized techniques for better features extraction. To 
handle the above challenges the goal of this study is to employ an end-to-end, 1D CNN based model 
to classify and interpret m5c methylated data sites. Moreover, our aim is to analyze the sequence in 
its full length where the methylated cytosine may not be in the center. The evaluation of the proposed 
architecture showed a promising results by outperforming state-of-the-art techniques in terms of 
sensitivity and accuracy. Our model achieve 96.70% sensitivity and 96.21% accuracy for 41 nucleotides 
sequences while 96.10% accuracy for full length sequences.

In the current era we are swimming in an extending sea of information. Data with big volume, high velocity, and 
variety is obtained from various fields of sciences and engineering1–3. Life researchers are also going to grap-
ple with massive data because of high-throughput genomics. They are facing vast range of problems related to 
handling, processing, storing and interpreting biological data. The techniques used to generate biological data, 
spit out various types of information, such as interactions of proteins, genomic sequences or findings in medical 
records etc. Since, the biological data come from wide range of methods, that is why when compared to other 
domains of science it is highly heterogeneous in nature.

Learning from big sets of data (massive data) is highly challenging but undoubtedly it is the essential part of 
numerous fields in the current time. It needs new ways of thinking to acknowledge the challenges of learning 
with massive data and the related convenient solutions. The novel techniques of learning were required which 
possess the ability to fully making sense of big data. In other words we need the algorithms which are inher-
ently efficient and powerful to tackle the data which poses the challenges due to its high dimensions, imbalance, 
heterogeneous and uncertain nature4,5.

The amount of biological sequential data has also increased in the last decade with the advent of high-through-
put sequencing projects. A biological sequence data is a continuous and single string or molecule of protein or 
nucleic acid which are made from amino acids or nucleotides respectively. The amino acids, nucleotides and 
ribonucleotides are the basic structural and functional blocks or units of the three fundamental and informative 
life’s polymers that is proteins, DNA and RNA respectively.

The genetic information present in DNA molecule is interpreted and copied by different types of RNA 
polymerases. A specific well defined sites of DNA is decoded and transcribed into a variety of single-stranded 
transcripts (RNAs). Furthermore, there are four standard ribonucleotides i.e., U, A, G and C involved in the 
production of RNA molecules. Ribonucleic acid (RNA) is the main polymeric molecule that transfer instruc-
tions from genes to ribosomes in order to synthesize specific proteins. Each triplet codon within transcript e.g 
mRNA has been translated into an appropriate and relevant amino acid of protein chains. There are 21 standard 
amino acids which are categorized as essential and non-essential entailed in the synthesis of protein molecules.
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However, in every biopolymer type, the limited amount of basic building blocks seems to be necessary for 
the natural flow of biological information from DNA to RNA to protein. Although it appears that they are not 
sufficient to attain all expected and anticipated functions of these polymers in organisms. DNA, RNA and pro-
teins are composed only from few basic units, so in order to perform such a variety of functions some targeted 
enzymes have altered the units at specific locations to produce new characteristics of molecules. The modifica-
tions in polymer molecules are termed as pre or post replicational , transcriptional or translational changes. Due 
to these modifications, the biopolymer got new functional or structural features thus allow them to perform 
more complicated functions in a well-organized manner6–10.

Post-transcriptional modifications of RNA play a key role in performing a variety of biological processes, such 
as stability and immune tolerance, RNA splicing, protein translation and RNA degradation. One of these RNA 
modifications is m5c which participates in various cellular functions like RNA structural stability and transla-
tion efficiency, got popularity among biologists. More specifically, m5C modification also known as methylation 
occurs at 5th position of cytosine when methyl group ( CH3 ) is added to it as shown in Fig. 1. A comprehensive 
study is presented in11 about the implication of RNA m5c modification in cancer.

By applying biological experiments to detect RNA m5c methylation sites would require much more efforts, 
time and money12. To know the logic of life it is essential to interpret the full spectrum of m5c methylation and 
its position in the RNA molecule. The m5c modified RNA molecules can be enunciated or presented as genetic 
or physical map, an actual sequence of amino acids or nucleic acids, or some more complicated data representa-
tion. To get insight into methylated molecule’s function, there is a need to analyze hidden features with in these 
modified molecules.

In order to explore the hidden features in data, feature extraction techniques are widely used in data analy-
sis field. Feature extraction refers to identifying an interpretable and discriminating representation of data for 
machine learning models that can enhance the prediction power of classifier and its performances. The perfor-
mances of underlying classifier depends on the quality of extracted features.

Feature extraction can either be handcrafted or automated, depending on the nature of the problem, the 
amount of data and available resources. The manual feature extraction known as hand crafted features is not 
only difficult and time consuming process but also some time these features may not effectively represent the 
underlying objects/entities (sequences in our case). Apart from the above challenges, fully domain expertise is 
also required to carry out this task. Now a days large amount of data is available due to which both biologists and 
computer scientists are confronted with many difficulties to speedily perform data analysis tasks in life sciences. 
In addition to scalable and efficient methods, high performance computing (HPC) platforms and automatic 
feature extraction techniques are entailed to gain a keen insight into the biological functions from big data. The 
key feature of deep learning techniques is representation learning which extracts a diverse range of meaningful 
descriptors/ features that enhance the prediction capabilities of the underlying model. By using this approach, 
feature extraction and classification can be done in an end-to-end manner, enabling us to obtain the significant 
high level features automatically, resulting in improved performances13–17.

Since further improvements have been enabled by the use of greater computational resources, especially 
graphics processing units (GPU), allowing training of deep networks containing various parameters in an appro-
priate time. It allows us to efficiently train specialized deep networks such as convolutional neural networks 
(CNN) and recurrent neural networks (RNN) with long short-term memory cells (LSTM). These networks have 
been successfully applied to many problems including image recognition and natural language processing tasks 
like language translation and speech recognition18–20.

Prediction of m5c poses some of the challenges. For example, the nucleotide preference around m5c cite is 
not known. So lack of clear sequence context information of m5c cite would led to intricacy in the prediction 
method. It may possible that the motif of m5c is obscured so it is difficult to find local sequence context of m5c 
cites. Most of the researchers are using pre-processed RNA sequences of 41 nucleotides, therefore, it is possible 
that some of the information around these motif may have lost. The conventional methods are unable to pro-
cess the RNA sequence directly and thus need optimized techniques for better features extraction. Being high 
dimensional, the methylated datasets usually posed a challenge to conventional analysis techniques. It is also 
termed as curse of dimensionality.

To handle the above challenges the goal of this study is to employ an end-to-end deep learning model as a 
powerful toolbox to classify and interpret m5c methylated data sites. The power of deep learning models for 
high dimensional data is proven in literature. Moreover, our aim is to analyze the sequence in its full length 
where the methylated cytosine may not be in the center. Thus, the contribution of this work to use analyze the 
sequences in a more natural way (closed to reality) using an end-to-end deep learning model to automatically 
extract the features.

Figure 1.   Cytosine with and without methylation.
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We have obtained state-of-the-art results for both 41 nucleotides and full length datasets (see Table 3. This 
paper is organized as follows: Related work is discussed in section “Related work”. Our proposed model is pre-
sented in section “Materials and methods”. The obtained results are discussed in section “Results and discussion” 
and finally the paper is concluded in in section “Conclusions”.

Related work
Methyl group attachment to RNA is a type of post-transcriptional modification controlling the mechanism of 
RNA interaction with other components of the cell. Recent research have been linked the RNA modifications to 
different processes ranges from alternative splicing to various diseases, including cancer. Understanding RNA 
modifications will let a new level of fine tuning of gene expression. It will have a significant impact on various 
field like fundamental biology, biotechnology, medicine and crop production etc.

In this section we mainly discussed only experimental or machine learning techniques which have been done 
previously on RNA methylation detection and classification.

The selection of experimental methods have shown in Table 1, depends on the type of modification, its 
abundance and pre-existing knowledge of context in the modified sequence21,22. Furthermore, these techniques 
are expensive in terms of time and money.

Many computational tools have been built due to the rapid developments of bioinformatics and machine 
learning techniques24,25. Considering the importance of RNA methylation specifically the m5c, there have been 
many computational tools designed till date that are used to detect or identify m5c RNA methylation. The devel-
oped tools or proposed approaches mainly worked on the primary sequence of RNA.

Three vital steps are used in the development of m5c methylation predictor: (1) data collection, (2) feature 
extraction, and (3) classification or prediction. The taxonomy of features which are used as input to machine 
learning models are given in Fig. 2.

A number of computational methods as shown in Table 3 had been developed to predict RNA m5c methyla-
tion. The description of these methods is discussed in this section.

Pengmian Feng et al.26, used a support vector machine based-method to predict m5c sites in homo sapiens 
transcriptome. In the proposed method, RNA sequences were encoded applying the pseudo dinucleotide com-
position in which three RNA physiochemical features were incorporated. It was observed that the overall success 
rate that is gained by the developed model is 90.42%.

Table 1.   Strategies for the detection of RNA methylation.

Sr. Experimental methods

1 Radioisotope incorporation21

2 Thin-layer chromatography23

3 Mass spectrometry21

4 Differential enzyme or Chemical-RNA interactions21

5 Bisulphite RNA sequencing21

6 Antibody-based sequencing21

Figure 2.   Taxonomy of features.
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Pengmian Feng et al.27 proposed a classification method that was applied for the classification of three kinds 
of RNA modification m1a, m6a and m5c. Local features (ring structure, functional group and hydrogen bonding) 
and density information of nucleotides have been employed to encode a RNA sequence. The encoded sequence 
is converted into general pseudo K-tuple nucleotide composition (PseKNC) vector which is used to train SVM 
based predictor called iRNA-PseColl. The classifier achieved 77.50% classification accuracy on a human tran-
scriptome m5c methylated dataset.

The authors in28 proposed a new predictor called iRNAm5C-PseDNC, which has been developed by embody-
ing ten different types of physical-chemical features into pseudo dinucleotide composition through the auto/
cross covariance technique. Rigorous jackknife tests has been used which shown that the anticipated accuracy 
of predictor is 92.37%.

In29 the researchers built a model for the prediction of m5c cites. The proposed model based on composite fea-
tures in which three features extraction techniques were combined. After feature extraction, MRMR (Minimum 
Redundancy Maximum Relevance) was applied as a feature selection method and SVM was used as classifier. 
The dataset used in this study acquired from RM-base data base in which each sequence is 41 nucleotide long 
and methylated cytosine is positioned in the center. The predictor have an accuracy up to 93.33%.

In30 a new m5c site predictor called M5C-HPCR is proposed in which multiple base classifiers are properly 
integrated in order to improve the accuracy of classification tasks. This combination of multiple classifiers in this 
manner is called ensemble classification. In order to get discriminative features and encoding method has been 
done by applying a heuristic nucleotide physicochemical property reduction algorithm(HPCR). The predefined 
algorithm extracts multiple redacts of physical-chemical properties which were used as input for ensemble 
classifier. They have demonstrated results for two benchmark dataset using jackknife test and got MCC = 0.850 
and AUC = 96.2%.

In31 RNAm5Cfinder, a web-server developed based on random forest algorithm. It is an efficient tool uses 
RNA sequence features to identify RNA m5c sites in eight different cell types from mouse and human. The results 
show that the cell-specific predictors could perform better. For the tissue-specific m5c sites prediction in human 
the obtained, area under curve (AUC) is 77%.

In12 a transfer learning based deep model DeepMRMP was built to predict different types of RNA modifica-
tion sites. They have predicted multiple RNA site modifications for three species i.e., H. sapiens, M. musculus 
and S. cerevisiae. It is one of the reliable tool for predicting N1-methyladenosine (m1A), pseudouridine ( � ) 
and 5-methylcytosine (m5c) modification sites. The designed predictor had achieved an accuracy up to 66% for 
m5c data set which is very less.

Dou et al.32 have worked on multiple sequences using SVM and other machine learning techniques for arabi-
dopsis thaliana. Chai et al.33 have proposed a computational method called staem5 for m5c prediction of mus 
musculus and arabidopsis thaliana. A deep learning based ensembler classifier is used to predict N5-methylation 
in34. A CNN (Convolutional Neural Network) based model is proposed for prediting different kinds of RNA 
modifications in35.

Materials and methods
Dataset
We have used the dataset of Squires et al.36 for training and evaluation of proposed model. The used data denoted 
the widespread occurrence of modified cytosine throughout Human transcriptome36. The ensemble transcript 
IDs were available for each methylated and nonmethylated transcript’s sequences.

The sequences for these IDs were obtained by applying the biomart tool. The tool is supported by ensemble 
genome browser. The tool provided many functions for obtaining sequence related information. The cDNA 
(Complementary DNA) for all transcripts have been downloaded from ensemble genome browser37–39. cDNA 
is similar to RNA, the presence of thymine (T) in place of Uracil (U). By simple T → U transition, the cDNA 
sequence is transformed into corresponding RNA sequence40.

Apart from the whole transcript length we also trained the model on the dataset of corresponding data 
acquired from RM-base data base in which each RNA sequence is 41 nucleotide long and methylated cytosine is 
positioned in the center. This dataset is used by almost all research works mentioned in section “Related work”. 
Redundant sequences were removed using CH-HIT41.

Encoding data
All the sequences were first converted into k-mers by using overlapping sliding window. The selection of value 
for k in kmer is a strenuous process. Its value varies according to research domain. Basically, the sequence length, 
equals to L yields (L−k+1) total k-mers, and generate total nk possible unique k-mers. Here, “n” is number of 
monomers which is four “U,A,C and G” in case of RNA42,43. On the basis of preceded work the proposed research 
has been selected the value of 3 for k. All the sequences were converted into 3-mers, so according to the formula 
we have got total 64 unique 3-mers. After obtaining k-mers the next step is to transform the k-mers into a digital 
vector. It is one of the fundamental phases in the process of feature learning and data representation, because 
machine learning models require numeric data.

In sequence analysis one-hot encoding is one of the common and effective encoding method, which map 
each sequence to a digital vector. One-hot digital vector designated every word as a |V| dimensional vector with 
single “1” and the remaining “0s”. Here, |V| indicates the size of predefined vocabulary. For example each and 
every mono nucleotide in RNA can be encoded into a four-dimensional matrix or vector such as A = [1,0,0,0], C 
= [0,1,0,0], G = [0,0,1,0], U = [0,0,0,1]. So, in our proposed method each 3-mer was converted into a 64 dimen-
tional one-hot digital vector as done by44–47. One-hot encoding is the simplest of all encoding techniques. There 
are advanced encoding techniques like whistle used in48, Gene2vec49, Geo2vec50, Genomics features48 etc, but we 
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have selected one-hot encoding because our main focus is to propose a powerfull deep learning classifier which 
rely less on the underlying encoding technique.

Data preparation for variable length input sequences
The input sequences are of variable length, so zeros are added (Zero padding) to each sequence up to a required 
longest common length. In this case the model will automatically learn that zeros carried no information, and 
they are added to generate same length vector51.

Imbalance data
The biological data are usually imbalanced in which the negative class out numbered the positive one. It might 
yield awful results to train a model with such an imbalanced data. In order to overcome this issue, the proposed 
work relied on weighted cross entropy instead of simple loss function. The weighted loss penalizes the classifier 
if its performance is not well on the minor class. There are a lot of methods that can be applied to alleviate the 
issue of imbalance52–58. To handle the issue of imbalance data, Yang et al.52 has devised a technique called sample 
subset optimization. The authors in53 have proposed a level wise strategy to handle this issue. In54 the researchers 
have used a technique called maximum-AUC to handle imbalanced data. A detailed survey is presented about 
techniques handling imbalance data in55. The authors in56 have used NCR (neighborhood cleaning rule) to 
tackle the issue of imbalance data. The work in57 presents a python package while58 discusses a hybrid data level 
sampling technique to handle imbalance datasets. The data is splited into training, validation and testing sets in 
order to validate the generalization of our model(s). The over all methodology is given in Fig. 3.

Performance metrics or evaluation indicators and hyper‑parameters settings
To evaluate the efficiency of classifier, many metrics were used including specificity ( Sp ), sensitivity ( Sn ), overall 
accuracy (ACC) and Area Under the Receiver Operating Characteristic Curve (AUC)59. The sequences containing 
methylated sites have been considered as the positive samples and the non methylated ones are negative samples, 
and all the metrics have computed according to the Formulas shown in Fig. 4. Different hyper-parameters for 
example learning rate, batch size, activation function, and dropout rate have been encountered. The proposed 
method has been maintained the default settings of almost all hyper-parameters.The value for the batch size has 
been selected up to 100. In order to overcome overfitting early stopping was adopted60,61.

Our proposed models
Kunihiko Fukushima first proposed CNN in 198862. There are three variants of CNN i.e., 1D, 2D and 3D CNN. 
In our work we have used 1D convolutional neural network, because it is best suited (among the three variants) 

Figure 3.   The over all methodology.
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for sequential data analysis. A detailed and comprehensive review article about the applications of 1D CNN is 
presented in63. Kiranyaz et al.64 used 1D CNN for the first time in 2015, on patient-specific ECG signals.

The basic idea to design classifier or network is to used variable size multichannel convolution layers65,66. 
Different sizes of convolution kernels are used to convolve the input data simultaneously at different resolutions 
or different n-grams (groups of words). Different sizes of convolution kernels increase diversity in the extracted 
features. The outputs of these layers are concatenated. Global max-pooling67, have been applied after convolu-
tion. The purpose of max-pooling layer is to focus on the most active or important features in each feature map.

In the proposed model three convolutional layers followed by a global max-pooling, followed by a dropout 
layer were added. At the end a dense layer with one unit as output layer was used. The purpose of dropout layer 
is to overcome the issue of overfitting. All the layers parameters are shown in Table 2.The proposed model 
architecture is shown in Fig. 5.

Results and discussion
Using a CNN architecture as the one described earlier we analyzed methylated and non methylated sequences 
for human. We run the model both on the whole transcript as well as on 41 nucleotide lengthy sequences. The 
ratio of training and testing dataset is set to 90:10.

The accuracy, loss function’s graph, for training while ROC and confusion matrix for testing are show in Fig. 6 
respectively. These experiments were performed on 41 nucleotides lengthy sequences. We compare our model’s 
results to the state-of-the-art classifiers in Table 3. These works also have used the same dataset of Human. The 
comparison is based on four different measures accuracy, sensitivity, specificity, and AUROC (see Table 3). For 
the human dataset taking 41 nucleotide our model shows prediction accuracy up to 96% for testing and 98% for 
training, outperforming all the methods.

These results demonstrate the ability of deep learning to extract the most significant patterns that characterize 
the different sequences. Although, our model has low specificity than some of the state of the arts techniques, 
but it has outperformed all in terms of sensitivity. It is worth mentioning that sensitivity is more critical than 
specificity. Furthermore, our model has outperformed some of the sate of the art techniques in terms of AUROC 
as well (see Table 3).

The second experiment consists of using the full sequence as input to the model after applying one-hot encod-
ing. Our aim is to perform the experiment in real and most natural way and it is the main focus of this work. 
In real word the length of the underlying RNA sequences is not always 41 nucleotides and also the methylated 
cytosine may not be in the center. The training accuracy and loss and testing ROC and confusion matrix are 
shown in Fig. 7 respectively. It shows the model’s ability to accurately classify the sequence without having a 
methylated cytosine in the center and considering 41 nucleotide length. Our model achieved accuracy up to 
96.10% on test data.

Figure 4.   Evaluation metrics.

Table 2.   Classifier parameters.

Layers Parameters

Input Sequence length = 5000 and 41, dimension = 64;

Convolution layer1 Filters = 128; Filter-length = 21; Activation = relu

Convolution layer2 Filters = 128; Filter-length = 41; Activation = relu

Convolution layer3 Filters = 128; Filter-length = 51; Activation = relu

Concatenate [Convolution layer1, Convolution layer2, Convolution layer3]

Global max pooling –

Dropout 0.5

Output Activation = sigmoid
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Conclusions
Accurate prediction of RNA methylated sequences is necessary for understanding the underlying mechanism of 
the regulation of genes. A convolutional neural network based model was introduced in this work to distinguish 
methylated sequences from non methylated sequences of human genome. The basic purpose of this research was 
to build a sequence based deep learning classifier that can m5c RNA methylation using full length sequences. 
The evaluation of the proposed architecture showed a promising results when compare to the stat-of-the-art 
techniques.In future we aim to focus on providing a web server for the current work. Furthermore, we want to 
extend this work to aberrant methylation classification and prediction.

Figure 5.   Model Architecture.
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(a) Training Accuracy. (b) Training loss.

(c) Testing ROC. (d) Testing Confusion Matrix.

Figure 6.   Performance of our model for training/testing data for 41 nucleotide sequences.

Table 3.   Performance comparison of our model for 41 nucleotide sequences.

Predictor Dataset(m5c)

Performance

Sn Sp Acc AUROC

Identifying RNA 5-methylcytosine –

sites26 via pseudo –

nucleotide compositions H. sapiens 85.00 95.83 90.42 –

iRNA-PseColl27 H. sapiens 75.83 79.17 77.50 –

iRNA-PseColl27 RMbase database 69.89 99.86 92.37 –

Identifying 5-methylcytosine sites in –

RNA sequence using composite encoding –

feature into Chou’s PseKNC29 H. sapiens 90.00 96.66 93.33 –

M5C-HPCR30 H. sapiens and Met1320 90.83 95.00 92.92 –

DeepMRMP12 H. sapiens, M. musculus 47.95 84.69 66.32 –

XGBoost Framework...68 H. sapiens 89 82.0 85.50 0.935

Attention based multi label...69 H. sapiens 92 78.0 85.00 0.910

Our model H. sapiens 96.70 90.00 96.21 0.979
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Data availability
The dataset used in this study is available in the NAR (Neuclic Acid Researcher) Online [https://​acade​mic.​oup.​
com/​nar] repository and it is discussed in the section “Dataset”.
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