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Anti‑deadzone adaptive fuzzy 
dynamic surface control for planar 
space robot with elastic base 
and flexible links
Xiao‑qin Huang 1* & Deng‑feng Huang 2

In order to combat the impact of the dead zone and reduce vibration of the space robot’s elastic base 
and flexible links, the trajectory tracking and vibration suppression of a multi-flexible-link free-
floating space robot system are addressed. First, the elastic connection between the base and the 
link is considered as a linear spring. Then the assumed mode approach is used to derive the dynamic 
model of the flexible system. Secondly, a slow subsystem characterizing the rigid motion and a fast 
subsystem relating to vibration of the elastic base and multiple flexible links are generated utilizing 
two-time scale hypotheses of singular perturbation. For the slow subsystem with a dead zone in 
joint input torque, a dynamic surface control method with adaptive fuzzy approximator is designed. 
Dynamic surface control scheme is adopted to avoid calculation expansion and to simplify calculation. 
The fuzzy logic function is applied to approximate uncertain terms of the dynamic equation including 
the dead zone errors. For the fast subsystem, an optimal linear quadratic regulator controller is used 
to suppress the vibration of the multiple flexible links and elastic base, ensuring the stability and 
tracking accuracy of the system. Lastly, the simulation results verify the effectiveness of the proposed 
control strategy.

Space robots can assist or replace astronauts to complete space on-orbit tasks, and their application can greatly 
improve the efficiency of human exploration of space1–5. Therefore, various space robots have been subjected to 
dynamic control studies by academics6–10. As the requirements for control accuracy are increasing, various flex-
ibilities of space robot become increasingly prominent11–13. The space robot itself is light and has long arms, so 
it will cause flexible vibration during operation. In order to expand the working range of space robots, they are 
installed on a mobile base on the space station, allowing the base to move along the guide rails assembled by the 
truss. Space robots and their payloads are usually large, so during the operation process, the elastic vibrations of 
guide rails are inevitably excited. The coupling relationship between the base and the links, along with the flexible 
vibrations, causes tracking deviation14. Therefore, researchers working in the field of space robot control should 
not only focus on trajectory tracking, but also take vibration suppression of link flexibility and base elasticity 
into consideration in order to achieve high precision control15. Yu et al.16 adopted an adaptive control method to 
achieve trajectory tracking of multi-flexible-link space robot, and applied an optimal control method to achieve 
flexible vibration suppression. Lu et al.17 proposed the criteria for optimally arranging piezoelectric actuators 
in flexible manipulators using the particle swarm optimization algorithm. In order to quickly suppress the flex-
ible vibration, Joono et al.18 created a direct parameter updating rule and regarded the model uncertainty of 
the multi-link flexible robot as a parameter perturbation. Aiming at the coordinated motion between the base’s 
attitude and the joint angle of a flexible space manipulator, Huang et al.19 designed a neural network compensa-
tion control scheme based on hybrid trajectories that reflects both the flexible mode and the rigid body motion 
to actively suppress the flexible vibration. To achieve the desired trajectory tracking and to reduce vibration 
caused by the flexible joint and flexible link, Xie et al.20 proposed a robust fuzzy sliding mode control for the 
flexible link and flexible joint space manipulator system with external interference and uncertain parameters. 
They also developed a speed difference feedback control and a linear quadratic optimal control to do so. Under 
the influence of base elasticity, Liang et al.21 applied a cascade control approach to counteract the influence on 
the flexible joint space robot’s elastic base and flexible joint while disregarding the flexible vibration of the arm. 
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Without knowing anything about the system model, Fu et al.22 designed an input-constrained repetitive learning 
control algorithm for motion and vibration. It successfully reduced the flexible vibration of the base, the arms, 
and the joints while realizing high-precision tracking of periodic signals.

Previous studies are mainly based on the ideal condition of complete joint torque. In fact, the deadzone is a 
common nonlinear characteristic of actuators. The negative effects of the "deadzone" include affecting steady-
state tracking error, producing limit cycle oscillation, and even leading to control failure. Consequently, it is 
necessary to build an appropriate "dead-zone" compensating approach in order to fulfill the high precision 
control requirements of space robots. To completely minimize the impact of the dead zone on the floating 
base plane three-link space manipulator system and to guarantee the successful application of tracking control, 
Zhang et al.23 proposed an adaptive control to approach the upper bound of deadzone characteristics. In order 
to reduce the effect of dead zone on joint input torque, Huang et al.24 introduced a hybrid trajectory control 
method based on a compensator and a recurrent neural network controller. This method increases the precision 
of trajectory tracking while simultaneously achieving trajectory tracking and vibration suppression. Chen et al.25 
addressed a distributed controller which aims to solve the master–slave consistency problem of multiple flexible 
manipulators with undetermined parameters, unidentified disturbances, and actuator dead zone. The suggested 
controller’s convergence along the number of iterations can be accelerated by the dead-time inversion, which 
can also improve control precision.

The backstepping method in26 is an effective method for dynamic control of space robots. However, the prob-
lem of "differential explosion" will arise as a result of the repeated derivation of the virtual control component 
during the backstepping operation. Therefore, Swaroop et al.27 put forward the concept of dynamic surface in 
the research process, designed a first-order low-pass filter to estimate the virtual control component, and solved 
this issue. Fuzzy logic is indeed a powerful technique for handling nonlinear systems with stochastic behavior 
and varying inputs28. Combined with fuzzy logic system, Park et al.29 designed a dynamic surface sliding mode 
control method with a state observer and a parameter estimator. Aiming at the "complexity explosion" problem 
in the design of traditional adaptive backstepping controller, Zhou et al.30 proposed an adaptivefuzzy backstep-
ping controller based on dynamic surface control, which tackled the effect of external interference and modelling 
error of the robot. An adaptive neural network dynamic surface control approach was put out by Lin31, which 
simplified designof the controller. Li et al.32 used a fuzzy neural network disturbance observer to estimate the 
model uncertainty and disturbance of air-breathing hypersonic vehicle, and developed an adaptive dynamic 
surface controller. The dynamic surface control approach developed by Dong33 uses a first-order integral filter 
to determine the derivative of the virtual control, which eliminated the expansion of the differential term and 
simplified the parameter estimation of the controller. The control of a type of single-link manipulator systems 
with random disturbance and numerous restrictions was covered by Guo et al. in their study34. The power index 
term was created to help stability analysis and fixed-time control, and enhanced dynamic surface control technol-
ogy and filtering strategy were also developed. Mohammad et al.35 proposed an intelligent variable impedance 
control method coupled with fuzzy gain dynamic surface to improve the interaction between the robot and the 
unknown changing environment, so that the end effector of the manipulator could track the expected impedance 
distribution in the presence of large disturbance.

The challenge addressed in this paper is how to design a controller for a multi-flexible-link FFSR with elastic 
base, considering the existence of dead zone, so that the system can complete the trajectory tracking and sup-
press the vibration of the flexible links and elastic base, in order to obtain high-precision tracking performance. 
The main contributions are as follows:

1.	 Based on two-time scale assumptions, the system is divided into a slow subsystem representing the rigid 
motion and a fast subsystem describing the flexible vibrations. For the slow subsystem, a dynamic surface 
controller with an adaptive fuzzy approximator is designed to tackle dead zone. The application of dynamic 
surface avoids the calculation expansion caused by backstepping method and reduces the calculation amount.

2.	 The fuzzy logic function approximates the dynamic uncertainty including dead zone error, so that the desired 
point to point trajectory tracking of the base’s attitude and joints angle can be achieved.

3.	 For the fast subsystem, the linear quadratic regulator (LQR) is used to suppress the flexible vibration of the 
base and links concurrently.

There are six sections in this essay. In section "System dynamics equation", the dynamic equations for a 
planar space robot with an elastic base and multiple flexible links are determined. In Section "Decomposition of 
fast and slow systems", based on the singular perturbation method, the system is decomposed into the fast and 
slow subsystems. Section "Design of combined control law" designs an anti-deadzone adaptive fuzzy dynamic 
surface control method for the slow subsystem and a linear quadratic controller for the fast subsystem. Section 
"Simulation experiment" shows the simulation results and analysis comparison of a space robot with an elastic 
base and two flexible links. Section "Conclusions" gives the conclusion.

System dynamics equation
Taking the space robot with elastic base and multi-flexible links as the research object, the system consists of a 
free-floating base B0 and multi-flexible links Bi(i = 1, 2 · · · , n) . The model is shown in Fig. 1. The elasticity of 
the guide rail is simplified as a light spring to represent the elasticity of the base, and the elastic displacement is 
denoted as χ . It is assumed that: (1) the spring is a massless spring; (2) The spring only performs the pulling and 
retracting movement along the axis; (3) Spring elasticity coefficient kχ is constant; (4) The initial displacement 
of the spring is zero.
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Establish the conjoined coordinate Oixiyi of each split Bi(i = 0, 1, . . . , n) , where O0 coincides with the centroid 
Oc0 of B0 , and Oi(i = 1, 2, . . . , n) is the center of the corresponding rotary hinge. The light spring connects O1 
and B0 , the xi(i = 0, . . . , n− 1) axis is collinear with OiOi+1(i = 0, . . . , n− 1) , and the xn axis and Bn are always 
tangent to On . In the initial state, the distance between O1 and O0 is l0 . The length of Bi(i = 1, 2, . . . , n) along the 
xi axis is li . C is the total centre of mass of the system. The mass of the base and the moment of inertia about the 
centre of mass are m0 and J0 , respectively. The translational inertial coordinate system (O − XY) is established 
with any point O in space as the origin.

The links are assumed to be slender and homogeneous, and vibrate transversely in the plane. The bending 
deformations are mainly considered, and the axial and shear deformations are neglected. The linear density of 
flexible arm Bi(i = 1, 2, . . . , n) is ρi(i = 1, 2, . . . , n) , and the bending stiffness of the section is (EI)i . According 
to the theory of vibration mechanics, the flexible links can be thought of as Euler Bernoulli beams, and their 
elastic deformations can be recorded as:

where σi(Xi , t) is the transverse elastic deformation of Bi at section Xi(0 ≤ Xi ≤ li) , ωij(Xi) is the modal function 
of the j th order of Bi , ξij(t) is the modal coordinate corresponding to ωij(Xi) , and κi is the number of truncated 
terms. In this paper, simply supported beams Bi(i = 1, 2, . . . , n− 1) and cantilever beams Bn , respectively, are 
considered.

As shown in Fig. 1, it can be seen that the vector rδi(i = 1, 2, . . . , n) of any point on each flexible link relatives 
to the origin O of the inertial coordinate system (O− XY) can be expressed as:

where exj =

(
cos

(
j∑

k=0

qk

)
sin

(
j∑

k=0

qk

))T

 , and eyj =

(
− sin

(
j∑

k=0

qk

)
cos

(
j∑

k=0

qk

))T

(j = 0, 1, . . . , i).

Then according to the total centre of mass theorem of the system

where m0 +
n∑

i=1
ρi li = M

r0 and rδi(i = 1, 2, . . . , n) are deduced as

(1)σi(Xi , t) =

κi∑

j=1

ωij(Xi)ξij(t)

(2)rδi = r0 + χex0 +

i−1∑

j=0

ljexj + Xiexi + σi(Xi , t)eyi

(3)m0r0 +

n∑

i=1

ρi

∫ li

0
rδidXi = Mrc

(4)r0 = rc +

n∑

j=0

Ljexj +

n∑

j=1

Ln+jeyj

Figure 1.   Space Robot System with Elastic base and Flexible Links.
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where Lj(j = 0, 1, . . . , 2n) are the combined functions of the inertia parameters of the system.
Take the derivative of Eq. (5) to time t  , the velocity vector ṙδi(i = 1, 2, . . . , n) can be obtained.
The total kinetic energy T of the space robot system with elastic base and flexible links can be expressed as:

where T0=
1
2

(
m0ṙ

2
0 + J0q̇

2
0

)
 , and Tδi=

1
2ρi

∫ li
0 ṙ2δidXi(i = 1, 2, . . . , n)

Because the space robot system is in weightlessness in the outer space environment, the total potential energy 
U  of the space robot system with elastic base and flexible links is derived from the sum of the bending strain 
energy of the flexible links and the elastic potential energy of the elastic base:

Without losing of generality, assuming that the initial momentum of the system is zero, that is, ṙc = 0 . The 
dynamic equations of the fully elastic space robot with elastic base and flexible links can be obtained by using 
the Lagrange equation of the second kind:

where q =
[
q0 · · · qn

]T is the rigid generalized coordinate column vector of the base’s attitude and the relative 
rotation angle of the joints of the links,ξ =

[
ξ11, . . . , ξ1κ1 , . . . , ξn1, . . . , ξnκn

]T is the generalized coordinate column 

vector of the flexible modes of the links, δ =
[
ξT χ

]T . M
(
q, δ

)
∈ R

(
n+2+

n∑
i=1

κi

)
×

(
n+2+

n∑
i=1

κi

)

 is a symmetric and 

positive definite mass matrix.h
(
q, δ, q̇, δ̇

)[
q̇T δ̇

T
]T

∈ R
n+2+

n∑
i=1

κi
 is the column vector containing Coriolis force 

and centrifugal force. K ξ = diag
(
k11, . . . , k1κi , . . . , kn1, . . . , knκn

)
∈ R

(
n∑

i=1
κi

)
×

(
n∑

i=1
κi

)

 , kij = (EI)i
∫ li
0 ω′′T

ij ω′′dxi 
is the stiffness matrix of the links. τ ∈ Rn+1 is the torque column vector of the base and links’ joints.

Decomposition of fast and slow systems
During the operation of the space robot, with the movements of links and base, not only do the multiple flexible 
links deform and vibrate, but the base also oscillates. The dynamic model is divided into a slow subsystem of 
rigid motion and a fast subsystem that reflects base elasticity and flexible vibration of links in order to accomplish 
high-precision control and vibration suppression of space robots. As a result, Eq. (5) is written as a block matrix:

w here  Mss  ,  hss ∈ R(n+1)×(n+1) .  Mff  ,  hff ∈ R

(
n∑

i=1
κi+1

)
×

(
n∑

i=1
κi+1

)

 .  Msf = MT
fs ∈ R

(n+1)×

(
n∑

i=1
κi+1

)

 . 

hsf ∈ R
(n+1)×

(
n∑

i=1
κi+1

)

 , hfs ∈ R

(
n∑

i=1
κi+1

)
×(n+1)

.
Because M is a symmetric and positive definite matrix, its inverse exists:

Defining singular perturbation scale factors ε2 = 1/min
{
k11, . . . , k1κ1 , . . . , kn1, . . . , knκn , kχ

}
,and new vari-

able z , K̃
(
zε2 = δ, K̃ = ε2K

)
 . The singular perturbation model of the space robot system with elastic base and 

flexible links can be obtained from Eq. (9):

According to the singular perturbation model of the system in Eqs. (11) and (12), the following combined 
control law is designed:

(5)rδi = rc +

n∑

j=0

Ljexj +

n∑

j=1

Ln+jeyj +

i−1∑

j=0

ljexj + Xiexi + σi(Xi , t)eyi

(6)T=T0+

n∑

i=1

Tδi

(7)U =
1

2

n∑

i=1

(EI)i

∫ li

0

(
∂2σi(Xi , t)

∂X2
i

)2

dXi +
1

2
kχχ

2

(8)M
(
q, δ

)[ q̈
δ̈

]
+ h

(
q, δ, q̇, δ̇

)[ q̇
δ̇

]
+

[
0

K ξ ξ
kχχ

]
=

[
τ
0

]

(9)
[
Mss Msf

Mfs Mff

][
q̈

δ̈

]
+

[
hss hsf
hfs hff

][
q̇

δ̇

]
+

[
0

K ξ ξ
kχχ

]
=

[
τ
0

]

(10)N = M−1 =

[
N ss N sf

N fs Nff

]

(11)q̈ = −(N sshss + N sf hfs)q̇ − (N sshsf + N sf hff )ε
2ż − N sf K̃z + N ssτ

(12)ε2z̈ = −(N fshss + Nff hfs)q̇ − (N fshsf + Nff hff )ε
2ż − Nff K̃z + N fsτ
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where τs is the control torque of the slow subsystem to realize the angle tracking of the base and joints, and τf  is 
the control torque of the fast subsystem to suppress the vibrations caused by the elastic base and multi-flexible-
links at the same time.

In order to deduce the slow subsystem of the space robot with elastic base and flexible links, ε is set to zero 
firstly. Then the slowly varying manifold expression z of the system can be solved from Eq. (12):

where the matrix or variable with the dash "￣" means the corresponding slowly varying component.
Substituting the above equation into Eq. (13) and considering M−1

ss = N ss − N sfN
−1
ff N fs , the slow subsystem 

is obtained:

In order to obtain the fast subsystem, defining new variables, and making p1 = z − z  , p2 = εż , Eq. (12) can 
be rewritten as:

Adding the fast variable time scale ̟ = t/ε , let ε = 0 . Then the dynamic equation of fast subsystem is:

It describes the vibration of the elastic base and flexible links.

Design of combined control law
Design of Anti‑deadzone adaptive fuzzy dynamic surface controller for slow subsystem
The base position and attitude of the space robot are usually adjusted by momentum wheels or reaction jet 
devices. The joint hinges are driven by motors, so there is a dead zone in joint input torque.

Considering dead zone in joint input torque, the slow subsystem can be written as:

where τs =
[
τ 0 DT(τ r)

]T
∈ Rn+1 is the actuator output torque τ 0 of the base and the joints’ actuator output 

torque D(τ r) = [D(τ 1) · · ·D(τn)]
T of the links in the slow subsystem, and D(τ r) is the column vector with the 

dead zone of the joint input torque τ r = (τ 1, . . . , τn)
T.

Since it is typically challenging to acquire the exact parameters of the system dynamics model, let υ1 = q , 
υ̇1 = υ2 = q̇ . Then, the slow subsystem can be written as state equation in the following form:

w h e r e  M̂ss  ,  Ĥ ss  a r e  t h e  n o m i n a l  m o d e l s ,  �M = Mss − M̂ss  ,  �h = hss − ĥss  ,  a n d 

F(υ1,υ2) = M̂
−1

ss (υ1)ĥss(υ1,υ2)υ2 . T� = −�M(υ1)υ̇2 −�h(υ1,υ2)υ2 is the sum of uncertainties. 

��M� ≤ ρM , ��h� ≤ ρh , ρi(i = M, h ) is the normal number.

Dead zone in joint input torque
"Dead zone" refers to the range where change in input has no effect on output. It reflects the input–output rela-
tionship of zero output after the input of joint torque enters the dead zone. When the signal enters the dead zone, 
there will be a certain loss, which will result in the deviation of system control.

The joint input torque is τ r and the joints’ actuator output torque is D(τ r) . The simplified dead zone model 
can be expressed as36:

where bli < 0 and bri > 0 represent the dead zone’s left and right relative widths. mli and mri represent the left and 
right slopes of the dead zone, respectively, mri and mli are specified to be greater than zero.

The difference between input and output of dead zone is expressed as:

(13)τ = τs + τf

(14)z = K̃
−1

N
−1
ff [ − (N fshss + Nff hfs)q̇ + N fsτs]

(15)Mssq̈ + hssq̇ = τs

(16)εṗ2 = −(N fshss + Nff hfs)q̇ − (N fshsf + Nff hff )εp2 − Nff K̃(p1 + z)+ N fsτ

(17)
dp1
d̟

= p2

(18)
dp2
d̟

= −Nff K̃p1 + N fsτf

(19)Mssq̈ + hssq̇ = τs

(20)

{
υ̇1 = υ2

υ̇2 = M̂
−1

ss (υ1)τs − F(υ1,υ2)+ M̂
−1

ss (υ1)T�

(21)D(τi) =





mri(τi − bri) τi ≥ bri

0 bli < τdi < bri

mli(τi − bli) τi ≤ bli
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Therefore, Eq. (20) is rewritten as follows:

where τ c =
[
τ 0 τ

T
r

]T
 is the torque column vector of the base and joints before passing the "dead zone".

Controller design
In this study, the dynamic surface control technique is used to create the virtual control variable and control input 
signal for the space robot’s slow component. This information serves as the foundation for the construction of 
the slow subsystem’s control law τ c , which enables actual trajectory q of the space robot’s rigid motion to follow 
the anticipated trajectory qd despite having an elastic base and flexible links.

The design steps of dynamic face control are as follows:
Step 1: Define the first error surface as:

Design a virtual control variable υ̃2:

where design constant c1>0.
With υ̃2 as the input and υ2d as the new state variable output, a first-order low-pass filter (LPF) is introduced:

where the time η2 > 0.
Step 2: Define the second dynamic surface in order to create the control law of the slow subsystem:

Substituting Eq. (23) into the first derivative of Eq. (27), we can obtain:

In the study, the fuzzy logic system is used to approximate �(A) =
[
0 −DT

�

]T
+ T� , whose exact value 

is unknown.
�(A|W ) is utilized to approximate �(A) , then

where W  is the weight matrix, O(A) = [O1, . . . ,Oγ ]
T is the fuzzy basis vector, and γ is the number of rules. 

A =
[
υT
1 ,υ

T
2 , q

T
d , q̇

T
d

]T
 is the fuzzy basis network input. The fuzzy basis function Ok is expressed as:

Select the Gaussian membership function:

where ajk and bjk represent the Gaussian membership function’s center and breadth, respectively.
The optimal value W∗ of W is a constant matrix and satisfies

where W∗ is bounded, that is, there is a normal number ρW , which satisfies �W� ≤ ρW.
Then �(A) is expressed as follows:

where µ∗ is the approximation error.
The slow subsystem’s control rule is made to:

where Ŵ and µ̂ are the estimated values of W∗ and µ∗ respectively, and c2 > 0.

(22)D� = τ r − D(τ r)

(23)

{
υ̇1 = υ2

υ̇2 = M̂
−1

ss (υ1)τ c − M̂
−1

ss (υ1)
[
0 D

T
�

]T
− F(υ1,υ2)+ M̂

−1

ss (υ1)T�

(24)s1 = υ1 − qd

(25)υ̃2 = q̇d − c1s1

(26)η2υ̇2d + υ2d = υ̃2, υ2d(0) = υ̃2(0)

(27)s2 = υ2 − υ2d

(28)ṡ2 = M̂
−1

ss (υ1)τ c − M̂
−1

ss (υ1)
[
0 D

T
�

]T
− F(υ1,υ2)+ M̂

−1

ss (υ1)T� − υ̇2d

(29)�(A|W ) = WTO(A)

(30)Ok(A1, . . .A4n) =
4n
�
j=1

µFkj
(Aj)

/
γ∑

k=1

4n

�
j=1

µFkj
(Aj)

(31)µFkj
(Aj) = exp

[
−(Aj − ajk)

2
/
2b2ij

]

(32)W∗ = arg min
W∈�W

[
sup
A∈�A

|�(A|W )−�(A)|

]

(33)�(A) = W∗TO(X)+ µ∗

(34)τ c = −c2s2 − s1 − Ŵ
T
O(A)− µ̂+ ĥss(υ1,υ2)υ2d + M̂ss(υ1)υ̇2d



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21604  | https://doi.org/10.1038/s41598-023-48750-w

www.nature.com/scientificreports/

The adaptive regulation law of Ŵ and µ̂ is designed:

where β1 ∈ Rh×h , and β2 ∈ R(n+1)×(n+1) . �1 > 0 , �2 > 0 are the adjustment parameters.

Stability analysis
The Lyapunov theory is used to analyze the semi global stability of the slow subsystem with a dead zone in joint 
input torque.

Define the boundary layer error of slow subsystem:

Substituting the above equation into Eq. (26), we can obtain:

Thus, the first derivative of γ2 is obtained:

where �
(
s1, s2, qd, q̇d, q̈d, γ2

)
 is a nonnegative continuous function matrix.

Using Eqs. (25) – (27) and (37), the first derivative ṡ1 of the first error surface is obtained:

Utilizing Eq. (33) and the control law Eq. (34), substituting them into Eq. (28), ṡ2 is written as follows:

where W̃ = W∗ − Ŵ , and µ̃ = µ∗ − µ̂.
Assuming that q and its speed q̇ can be measured, the tracking error of the slow subsystem is:

Theorem  For the slow subsystem of space robot shown in Eq. (15), by adjusting parameter β1 , �1 , β2 , �2 , c1 , c2 , 
the control law Eq. (34) will make the system semi global ultimately uniformly bounded, that is, e converges to an 
arbitrary small neighborhood of zero.

Proof  Construct the following Lyapunov function V :

where  V  sat is f ies  the  init ia l  condit ion V(0) ≤ ρV  (  ρV  i s  a  posit ive  rea l  number) . 
V1 =

1
2
s
T
1 s1 +

1
2
s
T
2 M̂ss(υ1)s2 +

1
2
γT2γ2 , V2 =

1
2 tr

(
W̃

T
β−1
1 W̃

)
+ 1

2 tr
(
µ̃Tβ−1

2 µ̃
)
.

Find the first derivative of V  with regard to time t :

According to the characteristic that ĥss(υ1,υ2) and 
˙̂
Mss(υ1) satisfy oblique symmetry16: 

1
2
s
T
2

˙̂
Mss(υ1)s2 = s

T
2 ĥss(υ1,υ2)s2 , and Eqs. (39)–(41) are substituted into V̇1 , it is obtained that:

Substituting the adaptive laws Eqs. (35) and (36) into V̇2 , we can get:

Using the Inequalities:

(35)˙̂
W = β1O(A)s

T
2 − �1Ŵ

(36)˙̂µ = β2s2 − �2µ̂

(37)γ2 = υ2d − υ̃2

(38)υ̇2d = −γ2
/
η2

(39)γ̇ 2 = −γ2
/
η2 − q̈d + c1 ṡ1 = −γ2

/
η2 +�

(
s1, s2, qd, q̇d, q̈d, γ2

)

(40)ṡ1 = −c1s1 + s2 + γ2

(41)ṡ2 = M̂
−1

ss (υ1)

{
−c2s2 − s1 + W̃

T
O(A)+ µ̃− ĥss(υ1,υ2)s2

}

(42)e = q − qd

(43)V = V1 + V2

(44)V̇ = s
T
1 ṡ1 + s

T
2 M̂ss(υ1)ṡ2 +

1

2
s
T
2

˙̂
Mss(υ1)s2 + γT2 γ̇ 2 + tr

(
W̃

T
β−1
1

˙̃
W

)
+ tr

(
µ̃Tβ−1

2
˙̃µ
)

(45)

V̇1 = −c1s
T
1 s1 + sT1 s2 + sT1γ2 + sT2

[
−c2s2 − s1 + W̃

T
O(A)+ µ̃

]
− γT2

γ2

η2
+ γT2�

(
s1, s2, qd, q̇d, q̈d, γ2

)

(46)V̇2 = −tr
[
W̃

T
O(A)sT2

]
− tr

(
µ̃Ts2

)
+ tr

(
�1W̃

T
β−1
1 Ŵ

)
+ tr

(
�2µ̃

Tβ−1
2 µ̂

)

(47)tr
(
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1 Ŵ
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2
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(
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Inequality of V̇  can be obtained:

According to Young’s inequality:

where ς > 0.
V̇  is further obtained:

According to ��� ≤ ρ� ( ρ� is a normal number)37, it can be designed that 1
η2

≥ 1
2 +

ρ2�
2ς + b0 ( b0 is a normal 

number), so that:

where α = min {(2c1 − 1), 2c2, 2b0, �1, �2} , and ψ = ς
2 + 1

2 tr
(
�1W

∗T β−1
1 W∗

)
+ 1

2 tr
(
�2µ

*Tβ−1
2 µ∗

)
.

Let α > ψ
/
ρV , then when V = ρV , V̇ ≤ 0 . It can be seen that V ≤ ρV is an invariant set, that is, if V(0) ≤ ρV , 

there is V(t) ≤ ρV for all t > 0.
Solving Eq. (53), we can get:

The above formula shows that V  is finally bounded by ψ/α . Therefore, the system is ultimately uniformly 
bounded semi globally, and e can converge to an arbitrary small neighborhood of zero by adjusting the values 
of parameters β1 , �1 , β2 , �2 , c1 and c2.

Linear quadratic controller for fast subsystem
In this work, the linear quadratic regulator is used to control the fast subsystem of the space robot with elastic 
base and flexible links, so as to actively suppress the vibration of the elastic base and flexible links at the same 
time.

Writing the fast subsystem Eqs. (17) and (18) into the state equation expression, and making the state variable 
P =

[
p1 p2

]T , the Eqs. (17) and (18) are combined as follows:

where A =

[
0 I

−Nff K̃ 0

]
 , B =

[
0
N fs

]
.

Equation (55) demonstrates that the fast subsystem is a linear system, and that the system state variable P can 
be adjusted to zero by using the optimal control method, thereby achieving the suppression of base elasticity and 
flexible links vibration. For a linear system, if the performance index function is defined as the integral of the 
quadratic function with respect to the state variable and the control variable, the system can obtain the optimal 
performance by finding the control τf  when the function takes the minimum value.

The function for the linear quadratic optimal control performance index indicator is presented as follows:

where Q ∈ R

((
n∑

i=1
2κi

)
+2

)
×

((
n∑

i=1
2κi

)
+2

)

 is a symmetric weighted matrix with a positive semi-definite, and 

R ∈ R(n+1)×(n+1) is a symmetric weighted matrix with a positive definite.
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(53)V̇ ≤ −αV + ψ

(54)0 ≤ V ≤ ψ/α + [V(0)− ψ/α]e−αt

(55)Ṗ = AP + Bτ f
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According to the linear quadratic optimal control theory, in order to minimize ϒ , the control quantity should 
be created as follows:

where � fulfills the following Riccati algebraic equation.

Figure 2 shows the block diagram of the control scheme.

Simulation experiment
Taking the space robot model system with elastic base and two flexible links shown in Fig. 3 as an example, the 
numerical simulation experiment is carried out, using a Lenovo Thinkpad X1 with an Intel Core i7-10510U 
processor, 16 GB memory, Windows 11 and MATLAB. The values of parameters for space robot system and 
controller are shown in Table 1. The dynamic surface control with adaptive fuzzy approximator (DSC_wAFA) 
is compared with dynamic surface control without adaptive fuzzy approximator (DSC_woAFA) to evaluate 
performance of the proposed method.

Figures 4, 5 and 6 shows the trajectory tracking of rigid motion of the base ‘s attitude and two joint angles of 
the space robot system using DSC-wAFA and DSC-woAFA in the case of dead zone in joint input torque. When 
the results of the DSC-wAFA is compared with and DSC-woAFA, it is shown that the actual trajectory of the 
base ‘s attitude and two joint angles can track the desired trajectory effectively with proposed control method 
and there is obvious tracking error of two joint angles in the DSC-woAFA system.

(57)τf = −R−1BT�P

(58)�A+ AT�−�BR−1BT�+ Q = 0

Figure 2.   The adaptive fuzzy dynamic surface control scheme for space robot.

q0

q1

q2

χ

Figure 3.   Space Robot System with Elastic base and Flexible Links.
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Figures 7 and 8 show the trajectory tracking errors of the base ‘s attitude and two joint angles utilizing DSC-
wAFA and DSC-woAFA, respectively. It can be seen from the partial enlarged view of Fig. 7 that, after about 18s , 
the steady-state errors of base’s attitude, joint angle 1 and joint angle 2 are within 1.1× 10−3rad , 5× 10−4rad and 
1.1× 10−4 rad respectively. Therefore, the proposed anti-deadzone controller gives satisfactory performance. 
Through comparison, it can be seen that when the dead zone adaptive fuzzy approximator is turned off, the 
tracking error of base’s attitude, joint angle 1 and joint angle 2 are within 1.4× 10−3 rad , 0.03 rad and 0.1 rad 
respectively, and the tracking error of both joints cannot converge due to damage of the deadzone in joint input 
torque of two links.

Table 1.   The values of parameters.

Parameters Value

the distance between O1 and O0 l0 = 1.5m

The length of Bi(i = 1, 2) along the xi axis l1 = 1.5 m , l2 = 1.0 m

The mass of the base m0 = 40 kg

The moment of inertia about the centre of mass J0 = 34.17 kg m2

The linear density of flexible arm Bi(i = 1, 2) ρ1 = 3.5 kg/m , ρ2 = 1.1 kg/m

The bending stiffness of the section (EI)1 = 50 N m2 , (EI)2 = 50 N m2

Spring stiffness coefficient kχ = 500 N/m

The number of fuzzy rules γ = 5

Slow change subsystem regulation parameters: �1 = �2 = 0.01 , β1 = diag{20, . . . , 20} , β2 = diag{0.01, 0.01, 0.01} , 
c1 = 10,c2 = 20

LQR control parameters Q = diag{1, . . . , 1} , R = diag{1, 1, 1}

The expected configuration of the attitude angle terminal 
of the base and the two joints
The initial configuration

qd =
(
−π/4 π/2 π/3

)T
rad

q(0) =
(
−π/4− 0.1 π/2+ 0.2 π/3+ 0.3

)T
rad

The initial displacement of the base spring χ(0) = 0

The number of truncated terms κ1 = κ2=2

Set the track tracking process simulation time t = 20s
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Figure 4.   Trajectory tracking of the base’s attitude.
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Figure 5.   Trajectory tracking of the joint angle 1.
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Figure 6.   Trajectory tracking of the joint angle 2.
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Figure 7.   Trajectory tracking error of DSC-wAFA.
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Figure 8.   Trajectory tracking error of DSC-woAFA.

0 2 4 6 8 10 12 14 16 18 20

t/(s)

-0.15

-0.1

-0.05

0

0.05

0.1

1
1
/(
m
)

DSC-wAFA

DSC-woAFA

Figure 9.   The first mode of flexible link B1.
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Figure 10.   The second mode of flexible link B1.
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Figure 11.   The first mode of flexible link B2.
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Figure 12.   The second mode of flexible link B2.
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Figure 13.   Elastic displacement of the base.
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Figures 9, 10, 11 and 12 shows the flexible modes of two links of the space robot system using DSC-wAFA 
and DSC-woAFA in the case of dead zone. The first mode of B1 attenuates from 0.11m at 1.5s to zero in the 
DSC-wAFA system, but vibrates between ±0.02m after 4s in the DSC-woAFA system. The second mode of B1 
attenuates from 0.005m at 0.2s to zero in the DSC-wAFA system, but vibrates between ±0.012m after 4s in the 
DSC-woAFA system. The first mode of B2 attenuates from 0.027m at 0.7s to zero in the DSC-wAFA system, but 
vibrates between ±0.005m after 4s in the DSC-woAFA system. The second mode of B2 attenuates from 0.008m 
at 0.06s to zero in the DSC-wAFA system, but vibrates between ±0.0005m after 4s in the DSC-woAFA system. 
Figure 13 shows the elastic vibration of the base of the space robot system. The elastic displacement is 0.011m 
at 1.58s and attenuates to zero after 15s in the DSC-wAFA system, but vibrates between ±0.0015m after 4s in 
the DSC-woAFA system. It is demonstrated that, when the rigid motion trajectory is stable in the DSC-wAFA 
system, the elastic oscillation of the base and the vibration of the two flexible links are suppressed by using linear 
quadratic controller. Thus, the effectiveness of the vibration suppression scheme is verified.

Figures 14 and 15 show the control torques of the base ‘s actuator and two joints utilizing DSC-wAFA and 
DSC-woAFA respectively. The control torques converge to zero when the DSC-wAFA system is stable, but are 
oscillating in the DSC-woAFA system.

From the simulation results of the proposed controller, it can be seen that the base’s attitude and the two 
joint angles can track the desired trajectory of rigid motion, and the vibration of elastic base and flexible links 
are damped out at the same time. Therefore, the proposed control scheme can tackle the effect of dead-zone and 
dual vibration effectively, with high tracking accuracy and satisfactory performance.

Conclusions

1.	 Considering the multiple coupling between the elastic base and the flexible links, the dynamic equations of 
the space robot with elastic base and flexible links are derived by integrating the momentum conservation 
relation of the system, the second kind of Lagrange equation and the assumed mode method.

2.	 Based on the singular perturbation method, the system is decomposed into slow and fast subsystems, which 
describe the rigid motion, the base elasticity, and the flexible vibrations of links respectively. For the slow 
subsystem, a dynamic surface controller with adaptive fuzzy approximator is designed when there is dead 
zone in joint input torque. For the fast subsystem, the optimal quadratic controller is adopted. The combined 
control scheme can not only overcome the adverse effects of the dead zone on the system, ensure that the 
space robot system can track the desired trajectory of the rigid motion, but also actively suppress the vibra-
tion of the base elasticity and the flexible links at the same time, overcome the impact of unknown inertia 
parameters, and meet the control requirements.
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Figure 14.   Control torque of DSC-wAFA.
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Figure 15.   Control torque of DSC-woAFA.
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3.	 This paper presents a theoretical exploration and preparatory study. When the hardware conditions and 
relevant assumptions fulfill the requirements, the proposed control scheme can effectively guide and be 
applied to practical systems. Although the focus of this research is on a planar space robot, its applicability 
can be extended to general space robot systems with multiple degrees of freedom.

Data availability
The data presented in this study are available on request from the corresponding author.
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