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Prioritizing biomaterials for spinal 
disc implants by a fuzzy AHP 
and TOPSIS decision making 
method
Hossein Ansaripour 1,2*, Kim Lars Haeussler 1, Stephen J. Ferguson 2 & Markus Flohr 1

Considerable research has been focused on identifying the optimum biomaterial for spine implants. 
New technologies and materials have allowed surgeons to better grasp the biomechanical principles 
underpinning implant stability and function. An optimal biomaterial for total disc replacement 
(TDR) should include essential characteristics such as biocompatibility, long-term durability, the 
capacity to withstand mechanical stresses, and economic viability. Our research has focused on 
six biomaterials for TDR, including Ti–6Al–4V, CoCr alloy, stainless steel 316L, zirconia toughened 
alumina (ZTA), polyether ether ketone (PEEK) and ultra-high-molecular weight polyethylene 
(UHMWPE). Ten common properties, i.e., the Young’s modulus, density, tensile strength, the 
expense of the manufacturing process, the cost of raw material, wear rate, corrosion resistance, 
thermal conductivity, fracture toughness and compressive strength were utilized to assess these six 
different materials. The purpose of this study was to evaluate and rank the six alternative biomaterials 
proposed for use in the endplates and articulating surface of a spinal TDR. To accomplish this, a 
multi-criteria decision-making approach, namely the fuzzy analytic hierarchy process (fuzzy AHP) and 
the Technique of Order Preference by Similarity to Ideal Solution (TOPSIS) was adopted to solve the 
model. For validation and robustness of the proposed method, sensitivity analysis was performed, 
and comparison was performed with fuzzy-VIKOR and fuzzy-MOORA methods. In light of the study’s 
results, ZTA and Ti–6Al–4V were identified as the best suited materials for the articulating surface and 
endplates, respectively, in a spinal disc implant.

The first lumbar disc replacement in 1960 was a steel ball inserted between two vertebrae, which resulted in 
several postoperative  complications1. In the 1980s, implants evolved from a stainless steel ball to two steel or 
titanium plates with a polyethylene sliding core in  between2. The SB Charite prothesis was an evolution of such 
an implant, consisting of two chromium–cobalt plates and a mobile polyethylene core, with the aim to mimic 
the natural kinematics of the  disc3. Plates with a central titanium stem were incorporated into the ProDisc-L, 
developed in  19894. For the cervical site, the ProDisc-C implant was developed, consisting of a UHMWPE core 
and CoCr alloy endplates combined with a rough titanium surface coating to promote bone  growth5. The Mobi-C 
cervical disc prosthesis was a further innovation, consisting of three components: two metal plates (composed 
of CoCr alloy) covered with a hydroxyapatite coating (to facilitate bone grafting) and a polyethylene plate in the 
 center6. More recently, TDRs with ceramic components have been introduced due to its great wear resistance 
and  biocompatibility7.

Current total disc replacements (TDR) seek to restore mobility and quality of  life8. From a meta-analysis, 
TDRs had a relatively low rate of complications after 5-years for lumbar TDR (0–16.7%) and cervical TDR 
(0–4.0%)9. Nonetheless, Virk et al.10 conducted a cross-sectional analysis of TDR complications by querying 
the MAUDE (Manufacture and User Facility Device Experience) database and alternative summary reporting 
(ASR) data. Migration, insertion issues, neck pain, heterotopic ossification, and radiculopathy were identified as 
complications. Some of these issues may be attributable to the materials utilized to construct TDRs.

TDRs require materials to demonstrate biocompatibility and biostability, but the challenge of finding an opti-
mal material lies in identifying a material with the appropriate Young’s modulus, stiffness, wear rate, corrosion, 
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and fatigue resistance, to name just a few  characteristics11. Accurate material selection based on established 
criteria is challenging, and we are frequently confronted with a plethora of options while making a decision. For 
instance, osseointegration is one of the desired properties of biomaterials, as it enables the implant to bond with 
the surrounding host bone. However, if this material is used for articulating surfaces, it can stimulate heterotopic 
ossification and impair its function. Furthermore, the chosen materials must lead to technological solutions that 
are affordable and can be put into practice with reasonable expenditure on materials development and manu-
facturing of products required by the application.

Multi-criteria decision-making (MCDM) provides a strategy for addressing difficulties involving the selection 
from a finite number of alternatives, including those with the same  attributes12. This method determines how 
attribute data should be handled to reach a  solution13. MCDM is divided into three parts: selection of alternatives 
and criteria, determination of weight criteria, and ranking of  alternatives14. Several popular options including 
weighted product method (WPM), technique for order preference by similarity to ideal solution (TOPSIS), 
Vise Kriterijumska Optimizacija Kompromisno Resenje (VIKOR) method, analytical hierarchy process (AHP), 
complex proportional assessment (COPRAS) and multi-objective optimization on the basis of ratio analysis 
(MOORA), and the preference ranking organization method for enrichment evaluations (PROMETHEE), were 
used in previous  studies15–24. Recently, multi-criteria decision analysis has been widely utilized in numerous 
scientific fields, including product design, transportation, manufacturing, human resource management, quality 
control, marine application, and renewable  energy25–27. Sen et al.28 used Type-2 fuzzy AHP-ARAS (additive ratio 
assessment) to select the best parametric combination of the wire electrical discharge machining. The objective 
of their research was to minimize costs and human effort associated with the machining process of nickel-based 
 alloys28. Hussain et al.29 developed a robust MCDM considering the non-deterministic nature of decision maker 
along with the vagueness in decision. They assessed ratings of alternatives versus criteria using parametric 
interval valued intuitionistic fuzzy number (PIVIFN)29. In their proposed model, the aggregated decision matrix 
was converted into a matrix which indicated the relative benefit for not selecting the alternative with the lowest 
benefit or highest  cost29. The other study employed AHP in conjunction with COPRAS and TOPSIS to deter-
mine the optimal type of carbon nanotube under grey  environment30. They stated that different methodologies 
may show different outcomes. Therefore, validation of the results is required for making the  decision30. Yadav 
et al.31 proposed the hybrid preference selection index (PSI)-TOPSIS approach for effective material selection in 
marine applications. According to their findings, the PSI method is relevant when there is difficulty in assessing 
the relative importance of variables and the TOPSIS method proficiently deals with the physical attributes and 
the number of available  alternatives31. Gangwar et al.32 used an adaptive neuro-fuzzy inference system (i.e., a 
combination of fuzzy logic and neural networks) to find the optimal combination of reinforcement materials 
enhancing wear resistance.

Chowdary et al.21 also used the combination of fuzzy AHP-TOPSIS to assess and rank some alternative 
materials for biomedical engineering applications, including joint replacement, bone plates, and dental implants. 
Yadaw et al.33 performed hybrid AHP-TOPSIS to predict the best formulation of dental restorative composite 
materials. The other study used PSI as an MCDM method to identify the optimal formulation and ranking of 
ceramic particulates for dental restorative composite  materials34. The authors also suggested that the utilization of 
PSI can be advantageous for material scientists when making decisions, as it helps address the inherent conflicts 
arising from diverse material  sets34. The FAHP-FTOPSIS, Entropy-VIKOR, and AHP-MOORA methods were 
also employed as novel approaches to ascertain the weight criteria and rank the alternatives of dental restorative 
composite  materials35–37.

In the review of available and related literature, very few studies on material selection in biomedical engineer-
ing applications were found. Moreover, biomedical applications serve separate and distinct functions. For better 
prioritization, it is suggested that biomaterials be classified uniquely for each application. For instance, TDR 
requires both good articulation and anchorage to vertebrae. Moreover, the selection process extends beyond 
merely considering quantitative criteria. By incorporating qualitative parameters alongside quantitative ones, a 
more comprehensive evaluation can be achieved.

This study aimed to implement a decision-making process for the biomaterial selection of endplates and 
articulating surfaces in spinal disc prosthesis. In this context, a combination of analytical hierarchy process 
(AHP) and fuzzy set was used to specify the relative importance of the evaluation criteria. The precise specifica-
tion of criteria importance was fine-tuned to the unique requirements of endplates and articulating surfaces. In 
line with the complex and nuanced demands of spinal disc prosthesis, we also integrated qualitative criteria into 
our approach, enabling a more thorough assessment. The TOPSIS approach then ranked the candidate materi-
als based on their weighted criteria derived from the fuzzy AHP process. Furthermore, sensitivity analysis was 
performed, and a comparison was conducted with fuzzy-VIKOR and fuzzy-MOORA methods to substantiate 
the reliability and consistency of this decision-making process’s outcomes.

Materials and methods
Fuzzy analytical hierarchy process (fuzzy AHP)
The AHP process is a decision-making technique designed to solve problems by decomposing them, grouping 
them, and then organizing them hierarchically. The method involves a comparison of criteria paired with a 
predetermined measuring scale to identify priority criteria. Since the primary input of the AHP approach is the 
perception of the experts, retrieval decisions are subjective. This technique additionally considers consistency of 
data with inconsistency  bounds38. However, the accuracy of data and, consequently, the results will be impacted 
by a high degree of uncertainty and doubt in the evaluation process. Hence, the AHP process was extended based 
on the fuzzy logic theory. The fuzzy AHP approach is utilized similarly to the AHP method. The only difference 
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is that the fuzzy AHP method transforms the AHP scale into a fuzzy triangle scale for priority access. The fol-
lowing stages were taken sequentially for the development of the fuzzy AHP method.

Define the problem
The problem was defined according to the criteria used to determine an appropriate material for endplates and 
articulating surfaces in TDR. In general, Fig. 1 illustrates the workflow of the decision-making process utilized 
in this paper. In this study, six biomaterials were considered as alternatives for TDR, including Ti–6Al–4V, CoCr 
alloy, stainless steel 316L, zirconia toughened alumina (ZTA), polyether ether ketone (PEEK), and ultra-high-
molecular weight polyethylene (UHMWPE). Ten common properties, including the Young’s modulus (GPa), 
density (g/cm3), tensile strength (MPa), the expense of the manufacturing process (qualitative), the cost of raw 
material (qualitative), wear rate (qualitative), corrosion resistance (qualitative), thermal conductivity (W/mK), 
fracture toughness (Mpa√m), and compressive strength (MPa), were considered the main criteria for material 
selection in TDR applications (Table 1). The quantitative data was extracted from published  sources21, 39–46. 
Due to a lack of comprehensive data and variations in measuring and testing methodologies for wear and cor-
rosion studies, qualitative data was assigned on a numeric scale to these  parameters47–53. According to Table 1, 
the lowest and highest values demonstrate the best wear rate and corrosion resistance performance for each 
material, respectively. Typically, manufacturers ascertain the costs associated with the manufacturing process. 

Figure 1.  Decision-making process.
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In addition to additive manufacturing, casting, extrusion, CNC, and injection molding are among the many 
procedures available. For instance, certain manufacturers might select the expensive injection molding method 
for production, whereas others might opt for the comparatively less expensive additive manufacturing method. 
The cost of raw materials is also established by the suppliers, and the quotations provided by different suppliers 
may differ, thereby complicating the task of determining an exact cost for each material. As a consequence, we 
consulted with some specialists at CeramTec and endeavored to assign a realistic metric value to these criteria. 
The highest value in Table 1 corresponds to the highest cost. It is worth noting that the material properties in 
Table 1 particularly for ZTA were based on published data and there was no evidence that this ZTA was used for 
implants. However, these information are useful for design guidance.

Create a comparison matrix
The pair-wise comparison matrix is simple, has a strong position for the consistency framework, obtains other 
information that may be required with all possible comparisons, and is able to analyze the overall priority sen-
sitivity for changes in consideration. Equation (1) is utilized to define pair-wise comparisons.

where  wi and  wj are weights for the criterion i and the criterion j, n denotes the number of compared criteria, and 
 aij is the ratio of criterion i’s weight to criterion j’s weight. The scale of relative relevance for constructing a pair-
wise comparison matrix is depicted in Table 2. Table 3 indicates the pair-wise comparison matrix constructed 
in this paper. The following rules were taken into account when constructing the pair-wise comparison matrix:

• If the element on the left of the pair-wise comparison matrix is more important than the element on the right, 
a positive integer (from 1 to 9) is placed in the cell; conversely, the reciprocal value of the integer is entered 
(Table 3).

• The relative importance of each element relative to itself is one; hence, the diagonal of the matrix contains 
only ones (Table 3).

After determining the comparison of its criterion, each column is normalized into matrix form by dividing 
each value in column i and row j by the sum of its column (see Eq. 2).

(1)aij =
wi

wj
, i, j = 1, 2, . . . , n,

Table 1.  Objective data of the attributes of alternative biomaterials for TDR  application21, 39–45. E and ρ 
represent the Young’s modulus and density, respectively. For the qualitative  parameters47–53, the highest 
intensity is 5, while the lowest intensity is 1.

Material E (GPa) Ρ (g/cm3)
Tensile 
strength (MPa)

Expense of 
manufacturing 
process 
(qualitative)

Cost of raw 
material 
(qualitative)

Wear rate 
(qualitative)

Corrosion 
resistance 
(qualitative)

Thermal 
conductivity 
(w/mK)

Fracture 
toughness 
(MPa/√m)

Compressive 
strength 
(MPa)

ZTA 338 4.30 350 5 2 1 5 24 6 2758

CoCr alloy 220 8.77 1403 3 4 2 3 14.8 100 1296

Ti–6Al–4V 114 4.42 940 3 3 3 4 7.2 91 1172

Stainless steel 
316L 193 8 485 2 1 4 2 16.3 95 620

UHMWPE 1 0.95 21.4 2 1 5 5 0.48 6.41 13.8

PEEK 3.6 1.32 80 3 5 5 5 0.25 6.76 124

Table 2.  Scale of relative importance in AHP scale and fuzzy AHP scale.

Definition Intensity of relative importance in AHP scale
Intensity of relative importance in triangular fuzzy 
number (TFN) scale

Equal importance 1 (1,1,1)

Moderate importance 3 (2,3,4)

Strong importance 5 (4,5,6)

Very strong importance 7 (6,7,8)

Extreme strong importance 9 (9,9,9)

Intermediate values

2 (1,2,3)

4 (3,4,5)

6 (5,6,7)

8 (7,8,9)
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Consistency evaluation
To calculate the value of consistency, the eigenvector, which is the weighted value of the criterion, must be first 
recognized. The eigenvector is calculated by Eq. (3):

where  weigvec is the eigenvector, âi is the sum of the matrix normalization values in each row and is divided by the 
number of criterion (n). Then the largest eigenvalue (λmax) is obtained by multiplying the number of columns 
with the main eigenvector  (weigvec) (Eq. 4). Then the consistency index and consistency ratio are calculated by 
Eqs. (5) and (6).

where CI and CR denote the consistency index and consistency ratio, respectively. To obtain the consistency 
ratio (CR), CI is divided by the ratio index RI (see Table 4) for the same sized matrix. Saaty et al.38 provided a 
comparison of the consistency index with a ratio index (RI) value (Table 4). This value relies on the order of the 
matrix (n). It is worth mentioning that CR should be around 10% or less to be acceptable. If the CR falls outside 
of this range, the participants’ evaluations should be revised (Fig. 1).

(2)aij =
aij

∑

aij
∀i, j.

(3)weigvec =
âi

n
, ∀i,

(4)�max =
∑

j

(
∑

i

aij × weigvec j
),∀i, j,

(5)CI =
�max − n

n− 1
,

(6)CR =
CI

RI
,

Table 3.  The AHP pair-wise comparison matrix for design of (a) the articulating surface and (b) the endplate. 
In these tables, C1 = Young’s modulus, C2 = density, C3 = tensile strength, C4 = expense of manufacturing 
process, C5 = cost of raw material, C6 = wear rate, C7 = corrosion resistance, C8 = thermal conductivity, 
C9 = fracture toughness, and C10 = compressive strength.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

(a)

 C1 1.00 5.00 3.00 2.00 2.00 0.20 0.20 7.00 2.00 1.00

 C2 0.20 1.00 0.20 0.16 0.16 0.13 0.13 4.00 0.20 0.18

 C3 0.33 5.00 1.00 2.00 2.00 0.18 0.18 7.00 0.60 0.50

 C4 0.50 6.25 0.50 1.00 1.00 0.20 0.20 7.00 0.50 0.50

 C5 0.50 6.25 0.50 1.00 1.00 0.20 0.20 7.00 0.50 0.50

 C6 5.00 7.69 5.55 5.00 5.00 1.00 1.00 8.00 5.00 5.00

 C7 5.00 7.69 5.55 5.00 5.00 1.00 1.00 8.00 5.00 5.00

 C8 0.14 0.25 0.14 0.14 0.14 0.13 0.13 1.00 0.14 0.14

 C9 0.50 5.00 1.67 2.00 2.00 0.20 0.20 7.14 1.00 0.50

 C10 1.00 5.55 2.00 2.00 2.00 0.20 0.20 7.14 2.00 1.00

(b)

 C1 1.00 7.00 4.00 5.00 5.00 8.00 1.00 7.00 4.00 4.00

 C2 0.14 1.00 0.20 0.16 0.16 5.00 0.13 4.00 0.20 0.18

 C3 0.25 5.00 1.00 2.00 2.00 7.00 0.18 7.00 0.60 0.50

 C4 0.20 6.25 0.50 1.00 1.00 5.00 0.20 7.00 0.50 0.50

 C5 0.20 6.25 0.50 1.00 1.00 5.00 0.20 7.00 0.50 0.50

 C6 0.13 0.20 0.14 0.20 0.20 1.00 0.13 0.50 0.18 0.18

 C7 1.00 7.69 5.55 5.00 5.00 7.69 1.00 8.00 5.00 5.00

 C8 0.14 0.25 0.14 0.14 0.14 2.00 0.125 1.00 0.14 0.14

 C9 0.25 5.00 1.67 2.00 2.00 5.55 0.20 7.14 1.00 0.50

 C10 0.25 5.55 2.00 2.00 2.00 5.55 0.20 7.14 2.00 1.00
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Triangular fuzzy number (TFN)
In general, two primary types of fuzzy membership functions are commonly employed, namely triangular and 
trapezoidal. Among them, triangle membership functions are frequently favored. The main rationale for utilizing 
triangular fuzzy sets over trapezoidal ones is in their inherent simplicity and ease of  computation27, 54. Moreover, 
while dealing with subjective and imprecise information, the utilization of the triangular fuzzy set demonstrates 
its efficacy in developing decision-making  problems27, 54.

The fuzzy AHP scale has three values, namely, the lowest value (lower, L), the middle value (median, M), and 
the highest value (upper, U) (Fig. 2). The AHP comparison value is transformed to the fuzzy AHP scale value 
considering the scale of relative importance in Table 2 and according to the following equations:

Calculate the weight value of the fuzzy vector
According to the aggregated pair-wise comparison matrix, the geometric mean (r) for the  ith criterion is calcu-
lated as follows:

ri represents the fuzzy geometric mean value for the  ith criterion, which is calculated by multiplying the fuzzy 
numbers ( aij according to Eq. 7) in each row (i.e., lower values multiplied by lower values, middle values multi-
plied by middle values, and higher values multiplied by higher values in each row). The mean value is then rooted 
by the number of criteria in each row (m). Then the fuzzy weight  (WF) for the  ith criterion is calculated as follows:

To calculate the weight factor of each criterion ( WFi ), first all geometric mean values  (ri) are summed together 
(i.e., lower values summed together, middle values summed together, and upper values summed together). The 
resultant value is then reciprocated and multiplied by the fuzzy geometric mean value of each criterion ( ri).To 
get a crisp numerical value for fuzzy weights ( WFi ), the de-fuzzification approach is conducted by calculating 
the center of area (COA):

Finally, the normalized weight is computed through dividing the weight factor of each criterion by the sum 
of the weight factors.

(7)aij in Fuzzy AHP =















�

aij − 1, aij , aij + 1
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aij in AHP > 1
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1
aij
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1
aij

� , 1
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1
aij
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 0 < aij in AHP < 1
.

(8)ri =

( m
∏

j=1

aij

)

1
m

.

(9)WFi = ri × (

n
∑

i=1

ri)

−1

.

(10)WFi = (Li ,Mi ,Ui),

(11)DEFuzzyweight = COA =
Li +Mi + Ui

3
.

Table 4.  Ratio index (RI)38.

n 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

Figure 2.  Triangular fuzzy set.
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TOPSIS
The logic of TOPSIS is based on the concept that the selected option should have the shortest geometric distance 
from the best solution and the furthest geometric distance from the worst  solution55. The TOPSIS process can 
be encapsulated in six steps as follows.

Step 1 The evaluation matrix (A) is created according to the M alternatives (biomaterials in Table 1) and N 
attributes (parameters in Table 1):

Step 2 The evaluation matrix is normalized by dividing the value of each criterion ( aij ) by the root sum squared 
of the criteria in each column as follows:

Step 3 The weighted normalized decision matrix is obtained by multiplying the normalized decision matrix 
( αij ) by its associated normalized fuzzy AHP weights ( wj):

Step 4 Determine the best (b) and worst (w) alternative (A) for each attribute ( X):

Step 5 The Euclidean distance between the target alternative ( Xij ) and the best ( Xb
j  ) and worst ( Xw

j  ) alterna-
tive is respectively calculated:

Db
i  denotes the Euclidean distance between the target alternative and the best alternative, and Dw

i  indicates 
the Euclidean distance between the target alternative and the worst alternative.

Step 6 The relative closeness  (Si) to the ideal solution is calculated and the performance order is ranked. The 
relative closeness of each alternative can be expressed as:

Si lies between 0 and 1, and the greatest value means the better performance of the alternatives. Hence, 
the highest relative closeness value has been taken as the best alternative for endplate and articulating surface 
applications.

Sensitivity analysis and method validation
A sensitivity analysis of the results was conducted by varying the weights of each criterion in order to deter-
mine its impact on ranking. It also reveals whether the ranking orders remain consistent despite weight criteria 
variations. In addition to fuzzy AHP, four more possible ways were considered to identify the weight factors 
of criteria. Initially, equal weight factors were considered for all criteria. Afterwards, the criteria were divided 
into three groups (i.e., most beneficial, beneficial, and least beneficial criteria). These classifications were made 
as each material property has a unique effect on the performance of an articulating surface or endplate. Table 5 
shows how both articulating surface and endplate case studies are grouped. Sequentially, the weight factors were 
assigned as follows:

• 33% most beneficial, 33% beneficial, and 33% least beneficial criteria.
• 40% most beneficial, 40% beneficial, and 20% least beneficial criteria.
• 50% most beneficial, 40% beneficial, and 10% least beneficial criteria.

(12)A = (aij)M×N
.

(13)αij =
aij

√

∑M
i=1 (aij)

2
.

(14)Xij = αij × wj .

(15a)Xb
j = MaxAi=1Xij , if the maximumvalue is a desired value,

(15b)Xb
j = MinAi=1Xij , if the minmumvalue is a desired value,

(16a)Xw
j = MinAi=1Xij if the minimumvalue is not a desired value,

(16b)Xw
j = MaxAi=1Xij if the maximumvalue is not a desired value.

(17)Db
i =

√

√

√

√

N
∑

j=1

(Xij − Xb
j )

2
,

(18)Dw
i =

√

√

√

√

N
∑

j=1

(Xij − Xw
j )

2
.

(19)Si =
Dw
i

Db
i + Dw

i

.
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To validate the potential of hybrid fuzzy AHP-TOPSIS methodology in suitable biomaterial selection, the 
results were also compared with fuzzy-VIKOR56 and fuzzy-MOORA57 methodologies.

Postprocessing
Multi-criteria decision analysis (i.e., fuzzy AHP-TOPSIS) was used to determine the material for the design of 
endplate and bearing surfaces in TDR. This is a useful tool that may be applied to a variety of intricate decisions. 
Case studies determine the structure of the comparison matrix in the fuzzy AHP process. Wear rate and corrosion 
resistance are most relevant for articulating surfaces, while Young’s modulus and corrosion resistance are most 
important for the endplates (Table 3). Since density and thermal conductivity were assessed to be of moderate 
importance to the designs, they were assigned the lowest relative weights (Table 3). The other attributes, which 
play a major role in TDR design, were assigned strong relative importance (Table 3).

In the TOPSIS process, the attributes including Young’s modulus, density, expense of manufacturing process, 
the cost of raw material, and wear rate are considered beneficial with lower values, while the others, including 
tensile strength, corrosion resistance, thermal conductivity, fracture toughness, and compressive strength, are 
advantageous with higher values (Table 1). These specifications enable the determination of the best and worst 
alternatives for each attribute.

The calculations provided by the fuzzy AHP-TOPSIS methods were performed by developing a custom 
Python code (Python 3.8.5 programming language) in which all the data of materials and their properties were 
specified. The data can be introduced into the program manually or via a table file, depending on the preference. 
If the constructed pair-wise comparison matrix is inconsistent during the fuzzy AHP procedure, the program 
requests the adjustment of the pair-wise comparison matrix until consistency is achieved (Figs. 3, 4).

Results
Fuzzy AHP weighting factors
To establish normalized weights, the fuzzy AHP method was implemented. In this process, first an AHP pair-wise 
comparison matrix was determined as depicted in Table 3 for the design of the articulating surface and endplate.

According to the AHP pair-wise comparison matrices (Table 3), the consistency ratios for the articulating 
surface and endplate were 0.077 and 0.094, respectively (Fig. 4). This means that the consistency of each opinion 
was considered acceptable, with lower than the inconsistency threshold value (0.1).

The AHP pair-wise comparison matrices were transformed into TFN scales (according to Eq. 7) upon accept-
ance of the consistency ratio, and then the normalized fuzzy AHP weight factor was determined for each attribute 
(Table 6).

Rank establishment by TOPSIS
All the criteria used for ranking the biomaterials had different units and dimensions. They need to be normal-
ized by using Eq. (13). The normalized criteria values were then converted into normalized weighted values by 
multiplying with weights using Eq. (14). These normalized weight matrices for the design of the articulating 
surface and endplate are shown in Table 7.

After calculating the normalized weighted values, Eqs. (17)–(19) were used to calculate separation measures 
and relative closeness values (Table 8, Figs. 5, 6, 7). From these relative closeness values, the ranking was given, 
and the alternatives were prioritized (Table 8, Fig. 7). Based on the ranking results shown in Fig. 7 and Table 8, 
ZTA had the highest relative closeness value for the design of an articulating surface, whereas Ti–6Al–4V had 
the highest relative closeness value for the design of an endplate in TDR applications.

Ranking validation and sensitivity analysis
The obtained ranking of proposed hybrid fuzzy AHP-TOPSIS was compared with fuzzy-VIKOR and fuzzy-
MOORA approaches reported in Table 9. Accordingly, the ranking order for different alternative biomaterials 
was nearly similar when solved with other methods. Therefore, it can be concluded that proposed hybrid fuzzy 
AHP-TOPSIS method can be successfully implemented for selection of biomaterials based on given criteria with 

Table 5.  Classification of criteria according to their level of importance for the function of the articulating 
surface and endplate.

Most beneficial criteria Beneficial criteria Least beneficial criteria

Articulating surface Wear rate
Corrosion resistance

Young’s modulus
Tensile strength
Expense of manufacturing process
Cost of raw material
Fracture toughness
Compressive strength

Density
Thermal conductivity

Endplate Young’s modulus
Corrosion resistance

Tensile strength
Expense of manufacturing process
Cost of raw material
Fracture toughness
Compressive strength

Density
Wear rate
Thermal conductivity
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high accuracy. The slight observed variations can be attributed to data normalization techniques and mathemati-
cal foundations employed by each method.

The sensitivity analysis was performed to further improve and validate the results of biomaterial selection pro-
vided by the proposed fuzzy AHP-TOPSIS method (Fig. 8, Table 10). From Fig. 8 and Table 10, it was evident that 
criteria weight variation can alter the ranking of each alternative. For an articulating surface (Fig. 8a, Table 10a), 
it was found that the A1 alternative (ZTA) had the highest relative closeness in 4 trials out of 5 experiments. In 
contrast, the A5 alternative (PEEK) and A6 alternative (stainless steel 316L) had the lowest relative closeness 
across most trials. For the endplate (Fig. 8a, Table 10a), it was found that the A3 alternative (Ti–6Al–4V) had the 
highest relative closeness in 4 trials out of 5 experiments. In contrast, the A1 alternative (ZTA) and A6 alternative 
(stainless steel 316L) had the lowest relative closeness across most trials. Hence, the sensitivity analysis justifies 
that the alternative A1 (ZTA) and alternative A3 (Ti–6Al–4V) can be selected as the top priority (80%) material 
for the design of the articulating surface and endplate, respectively. The final ranking is based on the outcomes 
of fuzzy AHP-TOPSIS and can be expressed as:

• A1 (ZTA) > A2 (CoCr alloy) > A3 (Ti–6Al–4V) > A4 (UHMWPE) > A5 (PEEK) > A6 (stainless steel 316 L) 
for articulating surface.

Figure 3.  The initial segment of the Python function requests the number of attributes and the relative 
importance of each attribute in relation to the others so that a pair-wise comparison matrix can be generated.
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Figure 4.  A part of the Python function produces a pair-wise comparison matrix, assesses consistency index, 
selects ratio index based on attribute count, and calculates consistency ratio for (a) articulating surfaces and 
(b) endplates. It compares the consistency ratio to the 0.1 threshold. If the values were below the threshold, a 
message says the pair-wise comparison matrix is reasonably consistent and evaluates fuzzy weight factors for 
each criterion. Otherwise, it requests an adjustment of the pair-wise comparison matrix until consistency is 
reached.
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Table 6.  The normalized fuzzy AHP weights for each criterion in design of (a) the articulating surface 
and (b) the endplate. In these tables, Cw1 = young’s modulus weight factor, Cw2 = density weight factor, 
Cw3 = tensile strength weight factor, Cw4 = expense of manufacturing process weight factor, Cw5 = cost of raw 
material weight factor, Cw6 = wear rate weight factor, Cw7 = corrosion resistance weight factor, Cw8 = thermal 
conductivity weight factor, Cw9 = fracture toughness weight factor, and Cw10 = compressive strength weight 
factor.

Cw1 Cw2 Cw3 Cw4 Cw5 Cw6 Cw7 Cw8 Cw9 Cw10

(a)

 Normalized fuzzy AHP weights 0.095 0.018 0.063 0.058 0.058 0.264 0.264 0.012 0.076 0.092

(b)

 Normalized fuzzy AHP weights 0.245 0.025 0.086 0.070 0.070 0.015 0.269 0.015 0.095 0.110

Table 7.  Normalized weighted matrix for design of (a) articulating surface and (b) endplate.

E (GPa) ρ (g/Cm3)

Tensile 
strength 
(MPa)

Expense of 
manufacturing 
process 
(qualitative)

Cost of raw 
material 
(qualitative)

Wear rate 
(qualitative)

Corrosion 
resistance 
(qualitative)

Thermal 
conductivity 
(w/mK)

Fracture 
toughness 
(MPa√m)

Compressive 
strength 
(MPa)

(a)

 ZTA 0.070 0.006 0.012 0.037 0.015 0.030 0.129 0.009 0.003 0.076

 CoCr alloy 0.045 0.012 0.049 0.022 0.031 0.059 0.078 0.005 0.046 0.036

 Ti–6Al–4V 0.023 0.006 0.033 0.022 0.023 0.089 0.104 0.003 0.042 0.032

 Stainless steel 
316L 0.039 0.011 0.017 0.015 0.008 0.118 0.052 0.006 0.044 0.017

 UHMWPE 0.0002 0.001 0.0007 0.015 0.008 0.148 0.129 0.0002 0.003 0.0004

 PEEK 0.0007 0.002 0.003 0.022 0.039 0.148 0.129 0.00009 0.003 0.003

(b)

 ZTA 0.180 0.008 0.017 0.045 0.019 0.002 0.132 0.011 0.003 0.091

 CoCr alloy 0.117 0.016 0.067 0.027 0.037 0.003 0.079 0.007 0.057 0.043

 Ti–6Al–4V 0.061 0.008 0.045 0.027 0.028 0.005 0.106 0.003 0.052 0.039

 Stainless steel 
316L 0.103 0.015 0.023 0.018 0.009 0.007 0.053 0.008 0.055 0.021

 UHMWPE 0.0005 0.002 0.001 0.018 0.009 0.008 0.132 0.0002 0.004 0.0005

 PEEK 0.002 0.002 0.004 0.027 0.047 0.008 0.132 0.0001 0.004 0.004

Table 8.  The separation measures and the relative closeness for design of (a) articulating surface and (b) 
endplate. Db

i , D
w
i  and Si represent the best Euclidean distance, the worst Euclidean distance, and relative 

closeness respectively. Bold emphasizes best ranked biomaterials for (a) articulating surface and (b) endplate.’

D
b

i
D
w

i
Si Ranking

(a)

 ZTA 0.093 0.163 0.637 1

 CoCr alloy 0.089 0.122 0.578 2

 Ti–6Al–4V 0.085 0.111 0.566 3

 Stainless steel 316L 0.142 0.074 0.343 6

 UHMWPE 0.155 0.111 0.418 4

 PEEK 0.156 0.105 0.403 5

(b)

 ZTA 0.196 0.126 0.391 6

 CoCr alloy 0.141 0.119 0.459 4

 Ti–6Al–4V 0.090 0.153 0.630 1

 Stainless steel 316L 0.154 0.108 0.411 5

 UHMWPE 0.125 0.202 0.617 2

 PEEK 0.127 0.196 0.607 3
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• A3 (Ti–6Al–4V) > A4 (UHMWPE) > A5 (PEEK) > A2 (CoCr alloy) > A6 (stainless steel 316 L) > A1 (ZTA) 
for endplate.

According to the ranking validation and sensitivity analysis, it can be confirmed that hybrid fuzzy AHP-
TOPSIS is effective and robust in material selection for spinal disc implants.

Discussion
TDR typically achieves motion preservation by articulating surfaces, which are susceptible to wear under repeti-
tive motion and  loading58. Polymeric debris generated by metal on polymer bearing surfaces can result in oste-
olysis and implant  loosening59. While metal on metal bearing surfaces have superior wear properties, high metal 
concentrations and nanodebris can lead to local and systemic  effects59. Ceramic on ceramic bearing surfaces 
showed less wear debris with lower biological reactivity due to their outstanding tribological properties and 
excellent  biocompatibility60. In this study, ZTA also proved to be the optimal material for designing articulating 
surfaces in TDR applications. The most prevalent metallic biomaterials, namely CoCr alloy and Ti–6Al–4V, were 
afterwards ranked second and third, respectively. Even though ZTA has better biocompatibility and tribological 
qualities than CoCr alloy and Ti–6Al–4V, these materials were relatively close (Fig. 7, Table 8). It was justifiable 

Figure 5.  The Euclidean distance between the target alternative and (a) the best alternative, and (b) the worst 
alternative for articulating surfaces. The least distance to the best alternative and the greatest distance to the 
worst alternative are preferred, in that order.
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that the technique offered a tradeoff between desired parameters. In this instance, ZTA’s lower fracture toughness, 
greater Young’s modulus, and more expensive manufacturing process cost contributed to a similar performance 
score for the design of articulating surfaces as compared to CoCr alloy and Ti–6Al–4V.

The higher Young’s modulus of biomaterials compared to cortical bone can lead to stress shielding, the 
remodeling-induced reduction of bone due to the removal of mechanical stress from the bone by an  implant61. 
It is essential to achieve initial and long-term stability at the bone-implant interface to avoid these complica-
tions by considering materials with similar modulus to bone, adequate osseointegration and osseoconductivity, 
high fracture toughness, and corrosion resistance. In this investigation, Ti–6Al–4V was demonstrated to be the 
optimal alternative material for designing TDR endplates. Then, UHMWPE and PEEK followed closely behind 
Ti–6Al–4V in terms of performance. Although PEEK’s elastic modulus was comparable to that of cortical bone, 
it was ranked third in this study. This placement was influenced by the PEEK’s greater cost of raw materials, 
lower fracture toughness, compressive and tensile strengths. However, the difference in relative closeness between 
PEEK and Ti–6Al–4V was not considerable, and they can be utilized interchangeably (Fig. 7, Table 8). It was 
somewhat unexpected that ZTA came in last in the ranking. The ZTA ranking could be justified by the material’s 
high Young’s modulus, high cost, and low fracture toughness.

In addition to the factors outlined in Table 1, osseointegration, CT and MRI compatibility, and the risk 
of implant-related infections play key roles in the selection of biomaterials. Lee et al.62 conducted an in-vitro 

Figure 6.  The Euclidean distance between the target alternative and (a) the best alternative and (b) the 
worst alternative for endplates. The least distance to the best alternative and the greatest distance to the worst 
alternative are preferred, in that order.
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evaluation of the biological response of cells to different biomaterials, including ZTA, PEEK, silicon nitride (SN) 
and surface-textured silicon nitride (ST-SN) and Ti–6Al–4V. compared to Ti–6Al–4V, they found that all other 
materials generally demonstrated lower osteoclastic activity and inflammatory response. They also demonstrated 
that ZTA and SN enhanced osteogenic differentiation and actin  length62. Moreover, ceramic biomaterials are 
more compatible with CT and MRI than metals, which can result in problematic artefacts, or frequently used 
polymers that are radiolucent. Consideration of these characteristics in the decision-making process will alter 
the relative closeness of biomaterials, particularly for ZTA. Notably, only a small number of these characteristics 
are available for several of the materials evaluated in this work. Therefore, it is recommended to undertake more 
in-vitro research addressing the evaluation of material biocompatibility and include the results in the process 
of material selection.

Figure 7.  Ranking graph which is derived from the result of relative closeness for design of (a) articulating 
surface and (b) endplate in TDR applications.
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The decision-making procedure revealed that the biomaterial ranking varies depending on the function. 
According to this approach, the combination of these materials could be effective in reducing clinical issues 
including inflammatory response, heterotopic ossification, dislocation, and migration. However, this combination 
must be technologically feasible for production. Recently, the Simplify® Cervical Artificial Disc has completed 
review for premarket approval for use in patients suffering from radiculopathy or  myelopathy63. This implant was 
composed of two PEEK endplates and a ceramic core (ZTA). The external surface of the endplates was coated 
with titanium to promote bone formation and facilitate attachment to the vertebrae located above and below 
the implant. The materials employed in this implant were consistent with the outcomes of fuzzy AHP-TOPSIS. 
However, longitudinal clinical evidence is required for a complete knowledge of the efficacy of both the logical 
method and the implant.

Ghaleb et al.67 evaluated numerous alternatives based on process agility, computing complexity, and the num-
ber of possible processes and criteria for manufacturing process application. Based on computational complexity, 
they determined that VIKOR outperformed TOPSIS and AHP. In terms of decision-making agility, the TOPSIS 
and VIKOR approaches were more applicable, although the rankings derived by AHP, TOPSIS, and VIKOR for 
the selection of manufacturing processes were nearly  identical67. In our study, the proposed fuzzy AHP-TOP-
SIS outcome was also compared with fuzzy-VIKOR and fuzzy-MOORA methods (Table 9). Accordingly, ZTA 
obtained the highest ranking across all the approaches for the selection of the articulating surface material. In 
terms of the endplate, Ti–6Al–4V exhibited the highest ranking according to the fuzzy AHP-TOPSIS and fuzzy 
MOORA methodologies. However, it obtained the second highest ranking according to fuzzy-VIKOR method, 
indicating a nearly same ranking across all approaches. Furthermore, the sensitivity analysis was performed to 
validate the outcomes obtained by the fuzzy AHP-TOPSIS method. When the results of the sensitivity analysis 
were evaluated collectively (Fig. 8, Table 10), they were overall consistent with one another. Nonetheless, a mod-
erate difference was observed, revealing that the opinions of experts could affect the outcomes.

In the literature, several different approaches have been proposed for material selection, including MOORA, 
AHP, COPRAS, VIKOR, and TOPSIS. However, preference ranking organization method for enrichment evalua-
tion (PROMETHEE) is one of a new ranking method which is considered as simple in conception and computa-
tion compared to many other MCDM  methods64. PROMETHEE focuses on pair-wise comparisons to establish 
outranking relationships between alternatives and facilitates both partial and complete ranking of  alternatives65. 
It also provides a superior visual representation during the concluding phase of the problem-solving process 
in comparison to alternative MCDM methods like  AHP66. Several MCDM methods necessitate significantly 
more inputs than  PROMETHEE66. For future research, it is advisable to employ the PROMETHEE approach to 
prioritize spinal implant biomaterials and subsequently compare the obtained findings with those derived from 
other MCDM methods, such as fuzzy AHP-TOPSIS.

Conclusion
This study emphasized the necessity of a unique and justified selection of biomaterials in accordance with their 
intended purpose during the early stage of development. The technique enables the consideration of multiple 
qualitative and quantitative criteria throughout the material selection process for a particular design. Moreover, 
it avoids later costs and delays and generates ideas through a systematic search of biomaterials. However, the 
assignment of acceptable numerical values for qualitative criteria necessitates a review of the relevant literature 
and consultation with industry sector experts in order to minimize bias or individual opinion in the results. Fur-
thermore, it requires a thoughtful selection of criteria, as this selection also has a direct impact on the outcome.

Table 9.  Comparison of fuzzy AHP-TOPSIS (proposed method) with fuzzy-VIKOR56 and fuzzy-MOORA57 
methodologies. Bold emphasizes best ranked biomaterials for (a) articulating surface and (b) endplate.

Fuzzy AHP-TOPSIS (proposed) Fuzzy-VIKOR56 Fuzzy-MOORA57

(a)

 ZTA 1 1 1

 CoCr alloy 2 3 3

 Ti–6Al–4V 3 2 2

 Stainless steel 316L 6 6 5

 UHMWPE 4 4 4

 PEEK 5 5 6

(b)

 ZTA 6 5 6

 CoCr alloy 4 4 4

 Ti–6Al–4V 1 2 1

 Stainless steel 316L 5 6 5

 UHMWPE 2 1 2

 PEEK 3 3 3
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Figure 8.  Sensitivity analysis for (a) articulating surface, and (b) endplate. p1 = equal weight factors, p2 = 33% 
most beneficial, 33% beneficial, and 33% least beneficial, p3 = 40% most beneficial, 40% beneficial, and 20% least 
beneficial, p4 = 50% most beneficial, 40% beneficial, and 10% least beneficial, and p5 = fuzzy AHP weight factors.
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