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First‑passage‑time statistics 
of growing microbial populations 
carry an imprint of initial conditions
Eric W. Jones 1*, Joshua Derrick 2, Roger M. Nisbet 3, William B. Ludington 2,4 & David A. Sivak 1

In exponential population growth, variability in the timing of individual division events and 
environmental factors (including stochastic inoculation) compound to produce variable growth 
trajectories. In several stochastic models of exponential growth we show power‑law relationships that 
relate variability in the time required to reach a threshold population size to growth rate and inoculum 
size. Population‑growth experiments in E. coli and S. aureus with inoculum sizes ranging between 1 
and 100 are consistent with these relationships. We quantify how noise accumulates over time, finding 
that it encodes—and can be used to deduce—information about the early growth rate of a population.

Bacteria divide, viruses replicate, and yeast cells bud, leading (if unimpeded) to exponential growth. Since divi-
sion events are generally not evenly separated in time, even identically prepared systems will give rise to variable 
growth trajectories. Unconstrained environmental factors like stochastic inoculation further amplify this vari-
ability. Traditionally, the study of noisy population growth has maintained a focus on population  abundance1,2; 
for example, the 1943 Luria-Delbrück experiment used variation in the abundance of phage-resistant bacteria 
at a given time to deduce that bacteria mutate independent of selective  pressures3.

In this paper we offer an alternative approach by characterizing noisy population growth in terms of a popu-
lation’s temporal variation, specifically the temporal standard deviation (TSD), the standard deviation of the 
distribution of times at which a growing population first hits a threshold number. We apply stochastic models of 
exponential growth to relate the TSD at large thresholds to the inoculum size and growth rate, deriving power-law 
relationships that match direct experimental tests in Escherichia coli and Staphylococcus aureus.

The processes of bacterial growth and division have been extensively  modeled4–10 and empirically 
 characterized11,12 over the past century. Especially over the last 15 years, experiments that enable the high-
throughput, long-term observation of  bacteria13,14 have advanced the fine-grained modeling of bacterial 
 division15–17. In this paper, we propose that temporal variation is a natural lens for examining and quantifying 
the noisy growth of replicate bacterial populations.

The initial conditions of a population affect its subsequent growth. Conversely, statistics of noisy abundance 
trajectories report on a population’s early growth conditions, though the precise interpretation of these statistics 
depends on a specified stochastic growth model. We first analyze two analytically tractable models of exponen-
tial growth: (i) the simple birth process, perhaps the most basic stochastic model of exponential growth, which 
assumes that each individual divides according to a Poisson process; and (ii) a model in which inoculum sizes 
are drawn from a Poisson distribution and growth dynamics are deterministic. Identical power-law relationships 
between TSD, inoculum size, and growth rate are derived for these two models. Then, we numerically examine 
age-structured population-growth models that account for an organism’s age. Last, we present bacterial growth 
experiments that complement and empirically ground these power-law relationships, demonstrating that statistics 
reporting on the temporal variation provide practical biological insights.

As a tangible example, consider milk  spoilage19–21. Milk spoilage occurs when the exponential growth of a 
contaminant bacteria reaches some threshold population density. In a refrigerator at 5 °C, the common bacterial 
contaminant Listeria monocytogenes divides every ∼ 17  h22. It is straightforward to measure the distribution of 
times at which a number of identically prepared containers of milk spoil: if properly refrigerated, pasteurized 
milk has a shelf life (time to reach a bacterial concentration of 20,000 CFU/mL23) ranging from 10 to 21 days 
post  processing18. Figure 1 shows simulated abundance trajectories for the simple birth process modeling the 
growth of L. monocytogenes, which indicate that a liter of milk inoculated by a single bacterium has a shelf life 
of roughly 17 days with a 3.7-day range, while a liter of milk inoculated by 100 bacteria has a shelf life of 12 days 
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with a 0.3-day range. Nearly 4 days of the variation in the timing of milk spoilage can be accounted for by the 
simple birth process. The remaining variation must be generated by other environmental factors. Food-processing 
engineers that decompose noise into its constitutive processes might learn whether variability is inevitable or 
whether it can be mitigated.

Results
Models of exponential growth
Simple birth process
First, consider a simple birth process in which each individual divides according to a Poisson process with rate 
µ . This model was first solved in 1939, then subsequently used as a model of bacterial  growth4,24,25. This analyti-
cally tractable model permits direct calculation of statistics that report on the population’s temporal variation, 
namely the temporal variance σ 2

t  and the temporal standard deviation σt (TSD).
For a population of n individuals, the probability Bn per unit time that an individual will divide (convention-

ally the “birth rate” in Markov-process  literature26) is

The probability Pt(n | n0) that the population consists of n individuals at time t, given an inoculum of n0 individu-
als, is governed by the master equation

In Pt(n | n0) , n is the random variable with normalization 
∑∞

n=0 Pt(n | n0) = 1 . Using generating  functions4,24, 
the solution is

for binomial coefficient 
(i
j

)

≡ i!/j!(i − j)! . The first two cumulants are the average abundance

which grows exponentially, and the variance

The first-passage-time distribution PFP� (t | n0) is the distribution of times at which a population with inoculum 
size n0 first reaches �  individuals27. Since the simple birth process yields monotonic abundance trajectories, the 
reaction probability R�(t | n0) that at time t the population size is greater than or equal to population threshold 
� is related to the first-passage-time probability PFP� (t | n0):

(1)Bn = µn.

(2)
d

dt
Pt(n | n0) = µ(n− 1)Pt(n− 1 | n0)− µnPt(n | n0).

(3)Pt(n | n0) =

(

n− 1

n0 − 1

)

e−µn0t(1− e−µt)n−n0 ,

(4)�n� = n0e
µt ,

(5)�(n− �n�)2� = n0e
µt(eµt − 1).

Figure 1.  Intrinsic variability contributes to the reported 11-day variation in the shelf life of milk. Abundance 
trajectories from a simple birth process modeling the growth of L. monocytogenes, a common milk contaminant 
that divides roughly every 17 h, inoculated with a single individual (black) or 100 individuals (gray). The 
measured 10–21 day shelf life of milk is reported in  Ref18.
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Therefore,

yielding (Supplementary Information, Section A)

The mean first-passage time �t�� | n0 to reach threshold � starting from n0 individuals is (SI, Section B) 

 The temporal variance σ 2
t ≡

〈

(t − �t�)2
〉

� | n0
 is (SI, Section B)

and therefore the temporal standard deviation is 

 This exact relationship between TSD, growth rate, and inoculum size for the simple birth process is plotted in 
Fig. 2 (red curve).
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Figure 2.  Temporal standard deviation (TSD) scales inversely with the square root of inoculum size for five 
models of stochastic exponential growth. For each model, inocula are either exact or Poisson-distributed, and 
growth either obeys the simple birth process (SBP), deterministic exponential growth, or age-structured growth. 
The growth rate µ for the simple birth process and deterministic growth is 1.66/hr, corresponding to a 25-min 
division time. The division-time distribution for the age-structured population-growth model has a 25-min 
mean division time and a 22% coefficient of variation (Fig. S1). At least n = 2, 000 replicates were simulated for 
each model and inoculum size. Error bars, which are typically smaller than the corresponding symbol, show 
95% confidence intervals (Methods). For Poisson-distributed inocula, the x-axis reports the zero-truncated 
mean inoculum size. Lines are a guide to the eye.
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The mean first-passage time (9a) and the temporal variance (10) can alternatively be solved by leveraging the 
Markovianity of the simple birth process: a population of size n experiences an exponentially distributed wait-
ing time with mean 1/µn before an individual in the population divides, and the variance of this waiting-time 
distribution is 1/(µn)2 . Waiting times are independent, so moments of the first-passage-time distribution are 
simply the sum of the moments of the waiting-time distributions. However, this approach does not immediately 
provide the first-passage-time distribution Eq. (8).

Poisson‑distributed inocula undergoing deterministic exponential growth
Departing from the assumption that populations are initialized with exactly n0 individuals, we next consider 
populations with Poisson-distributed inocula that grow deterministically. This scenario is relevant because bac-
terial inoculation in our experiments—performed by pipetting a fixed volume of a dilute solution of bacte-
ria—resulted in Poisson-distributed inocula (Fig. S2). Populations with Poisson-distributed inocula are more 
variable than populations that are exactly inoculated, as variability in the inoculum size propagates through the 
growth dynamics.

As before, replicate populations give rise to a distribution of abundance trajectories. We exclusively consider 
trajectories with nonzero inoculum sizes such that the probability Pn0(k) of starting with k individuals is

corresponding to mean inoculum size n0/(1− e−n0) for Poisson shape parameter n0.
We consider deterministic population growth

a simplifying assumption that implies the abundance n(t) takes on non-integer values. The random variable

is the first-passage time at a threshold � given that the inoculum size is a random variable M. The temporal 
standard deviation can be computed exactly, albeit opaquely:

This temporal standard deviation is plotted as a function of mean inoculum size in Fig. 2 (blue circles).
To obtain the TSD at large n0 , first note that for large n0 the Poisson distribution Eq. (12) is well-approximated 

by a normal distribution with mean n0 and variance n0 , and the quantity 1− e−n0 is well-approximated by 1. 
Then, the “delta method”28,29 gives access to the mean and variance of the random variable T(M) in terms of 
cumulants of M: 

 and 

 where the higher-order terms depend on third and higher cumulants of M that vanish when M is normally 
distributed.

Therefore, for large n0 , TSD and inoculum size are related by:

This is the same relationship between TSD, inoculum size, and growth rate as for the simple birth process with 
exact inoculation, Eq. (11b).

Age‑structured population growth
Organismal division is carefully choreographed, and we next turn to models that resolve some of the structure 
of individual division events. We performed agent-based simulations of age-structured population growth in 
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which division-time distributions fully describe the timing of division events (Methods). To be precise, this 
model is a type of Bellman-Harris stochastic branching  process30. We used an approximately normal division-
time distribution with 25-minute mean and 22% coefficient of  variation4. Inoculated individuals were assumed 
to be at a random time along their division cycle.

From these simulated abundance trajectories, TSDs were evaluated at a threshold of 500 individuals and are 
plotted as gold stars in Fig. 2. While the more complicated structure of this population-growth model prevents 
analytic examination, the scaling of TSD with inoculum size visually follows the -1/2 power law predicted by 
the simple birth process and by Poisson-distributed inocula with exponential growth.

Comparing models of population growth
Last, we simulated models for every combination of inoculation (exact or Poisson-distributed) and population 
growth (simple birth process, deterministic, or age-structured) (Methods). Figure 2 shows numerically calculated 
TSDs for Poisson-distributed inocula obeying the simple birth process (purple diamonds), and for Poisson-
distributed inocula undergoing age-structured growth (green triangles).

The models showcased in Fig. 2 ostensibly describe the same organism, but differ in their biological assump-
tions about inoculation and growth. The relationships between TSD and inoculum size quantify the effects of 
these assumptions on observed temporal variation. In particular, we found that the relationship between TSD 
and inoculum size for a biologically faithful model that captured stochasticity in inoculation and growth (green 
triangles) was similar to the relationship for the simple birth process (red line).

The mean trajectories of the different stochastic growth models—unlike the temporal variation—are nearly 
indistinguishable for a given inoculum size, highlighting an advantage of noise-based analyses. For example, 
TSDs for age-structured growth are ∼ 5 times smaller than for the simple birth process, a consequence of the fact 
that tighter division-time distributions give rise to less variable growth  trajectories4. Especially for organisms 
with constrained division-time distributions, the noise from Poisson inoculation dominates the noise due to 
growth, which explains why the blue circles and green triangles are so similar in Fig. 2. For exactly inoculated 
populations, broadening the age-structured division-time distribution from 22% coefficient of variation to 100% 
interpolates between the gold stars and red line; similarly, for Poisson-distributed inocula, it interpolates between 
the green triangles and purple diamonds.

Temporal variances approximately add: the temporal variance of populations with Poisson-distributed inocula 
that follow the simple birth process is roughly the sum of the temporal variance of exactly inoculated populations 
growing according to the simple birth process and the temporal variance of populations with Poisson-distributed 
inocula and deterministic growth.

We have used mathematical models of varying resolution to describe population growth, trading off biological 
realism for analytic tractability. For example, the simple birth process assumes that a bacterium’s age is irrelevant 
to its division, but it can be solved exactly. Going forward, we focus on the relationship Eq. (11a) between TSD 
and inoculum size for the simple birth process (red line), but emphasize that we would reach similar conclu-
sions—at the price of analytic tractability—if we instead used the relationship for Poisson-distributed inocula 
and age-structured population growth (green triangles).

Bacterial growth experiments
To empirically test the relationship between TSD and inoculum size, we measured the growth of E. coli and 
S. aureus. At least 30 biological replicates were prepared for each inoculum size and grown over one or two 
days. Inoculum sizes were set by pipetting a dilute solution of bacteria growing in mid-log phase into a 96-well 
plate. Spot plating the same volume of this dilute solution established mean inoculum sizes and confirmed that 
inoculum sizes were Poisson distributed (Fig. S2). Bacterial abundance was inferred by measuring the optical 
density of each well every 2 min.

Figures 3a,b show representative subsets of abundance trajectories for E. coli and S. aureus, respectively. 
Bacteria grow exponentially until they reach an optical density of ∼0.2, then grow more slowly until the popula-
tion enters stationary phase. During the exponential-growth phase, each individual’s growth rate is ∼2/hour ( ∼
20–30-min division times). Figure 3c shows the distribution of growth rates across replicates, calculated as the 
slope of the log-transformed optical-density time series evaluated at a threshold optical density of 0.03 (Meth-
ods). Measuring the growth rate µ at an optical density of 0.02 increases its value by 15%, while evaluating it at 
0.05 decreases its value by 10%.

Lag phase, the time period during which bacteria do not divide after being transferred to a new environment, 
could in principle affect the temporal variation of a growing  population31–33. However, we expect lag phase did not 
significantly impact our experiments: in our setup, bacteria in log phase (exponential growth) were back-diluted 
into fresh and otherwise-identical media so that their growth never halts (Methods). To check this expectation, 
for each inoculum size in Fig. 3a we calculated that the time required to reach an OD threshold of 0.03 ( ∼ 107 
CFUs) assuming deterministic exponential growth with 1.8/hr growth rate and no lag phase exceeded the aver-
age empirically observed times by 30–60 minutes (Methods). A significant lag phase, by comparison, would 
imply that the first-passage time for the deterministic model without lag phase is shorter than the empirically 
observed time.

Equation (11a) predicts that the temporal standard deviation for the first-passage time to threshold � asymp-
totes to a constant value for � � 50 . Figure 3d confirms this prediction: the TSD is approximately the same for 
threshold optical densities 0.01–0.3 (corresponding to millions to tens of millions of bacteria).

Bacterial growth experiments were performed for 35 inoculum sizes, yielding 1381 total growth curves. Fig-
ure 4 shows how TSDs depend on inoculum size in units of hours (inset) and in units of division times (main 
figure). An organism’s division time is defined as ln(2)/µ for growth rate µ : at 37 °C, E. coli and S. aureus have 
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Figure 3.  Empirical analyses of bacterial growth trajectories. (a, b) Measured abundance trajectories in E. coli 
and S. aureus as functions of time for different mean inoculum sizes. (c) Distribution of log-phase growth rates 
pooled across replicates and inoculum sizes, evaluated at an optical density of 0.03 (Methods). (d) Temporal 
standard deviations as functions of threshold optical density for different mean inoculum sizes.

Figure 4.  Temporal standard deviation scales inversely with the square root of the inoculum size in bacterial 
growth experiments. Temporal standard deviations for a total of 35 inoculum sizes in E. coli and S. aureus, in 
units of division times (at least 15 replicates per inoculum size, average 40). (inset) TSDs plotted in units of 
hours. The theoretical TSD for a given inoculum size [red line, Eq. (11a)] derived for the simple birth process 
lies under every experimental measurement (not a fit). Population-growth experiments were noisier than the 
limit of the simple birth process. Error bars indicate 68% confidence intervals of the mean (Methods). (inset) 
Red lines from top to bottom calculated with growth rates from E. coli at 25 °C, E. coli at 37 °C, and S. aureus 
at 37 °C; the shaded red regions take into account variation in measured growth rates (as shown in Fig. 3c), 
depicting theoretical TSDs for which growth rates differ by up to one standard error of the mean from their 
mean.
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division times of ∼ 22 minutes, and at 25 °C E. coli has a division time of ∼ 50 minutes (Methods). Presenting the 
data in terms of division times rather than hours collapses the TSDs of E. coli at 25 °C onto the TSDs of E. coli 
at 37 °C in Fig. 4.

In the stochastic growth models considered in Fig. 2, noise in abundance trajectories is generated either by 
variability in the timing of division events or by variability in inoculum size. In practice, abundance trajectories 
are additionally buffeted by noise sources that the stochastic growth models do not account for. Most noise 
sources will make replicate trajectories more variable, thereby increasing their TSD: differing media conditions, 
temperature fluctuations, or lag phase could each act as a dispersive noise source. Other focusing noise sources, 
for example when mother and daughter cells have strongly anticorrelated division times, can reduce the vari-
ability among replicate  trajectories34.

In Fig. 4, the temporal standard deviation predicted by the simple birth process (red line) lies below all 
35 experimentally tested inoculum sizes (colored symbols). This, our main empirical result, provides strong 
experimental support for the relationship (11a) as a lower bound to the temporal variation of an exponentially 
growing population. The deviations between measured and predicted TSDs reflect noise sources that are not 
captured by the stochastic growth model, and indicate that dispersive noise sources outweigh any focusing ones.

Accumulation of temporal variation
For the simple birth process, contributions to the temporal variance [Eq. (10)] fall off as the inverse square of 
the population size. This inverse-square trend is also numerically observed in exactly inoculated age-structured 
population-growth models (Fig. S3). For populations with Poisson-distributed inocula the stochastic process of 
inoculation spontaneously generates temporal variation. Thus, the largest contributions to temporal variation 
occur at small population sizes, which means that the growth rate at small population sizes should be made 
manifest in the noise.

Changing perspective from small population sizes to early times, we next quantify the time scale over which 
temporal variance accumulates in a growing population. We consider a two-step growth process. First, a popu-
lation with inoculum size n0 grows until a time t according to the simple birth process, yielding a distribution 
Pt(n | n0) over abundances N(t). Second, at time t population growth becomes deterministic and exponential 
(and hence this stage of growth does not contribute to the temporal variance). We define the random variable 
T[N(t)] to be the first-passage time for such deterministic exponential growth to reach a threshold � given that 
the inoculum size is a random variable N(t),

where we assume the threshold � is much larger than any abundance N(t) before deterministic growth begins.
The mean 〈N(t)〉 and variance �N(t)2� − �N(t)�2 of the simple birth process are known [Eqs. (4) and (5)], 

so the variance of this first-passage-time distribution may be computed with the delta method (17a), yielding

For t ≫ 1/µ , this recovers to leading order the relationship (11b) for the simple birth process between temporal 
standard deviation and inoculum size. Strikingly, comparing Eq. (20) to Eq. (10) (which was derived for growth 
that exclusively obeys the simple birth process), after a single division time ln(2)/µ the temporal variance reaches 
half of its asympotic value. Temporal variation is rapidly accumulated at early times (while populations are still 
small).

Growth‑rate inference
Rearranging Eq. (11a), for a given inoculum size n0 and experimentally measured TSD σt at large threshold � , 
a noise-based estimate µ̂ of the growth rate is

This estimate assumes that growth follows the simple birth process and that no other sources of noise are present; 
any noise sources that are not accounted for by the stochastic growth model will bias this estimate. Figure 4 
shows that measured TSDs were larger than the TSDs predicted by the simple birth process, which we interpret 
as the presence of dispersive noise sources that increased the variability of replicate trajectories. Due to this, in 
our case the estimated growth rate µ̂ will be a lower bound for the actual growth rate µ.

Since most noise accumulates at small population sizes, the noise-based estimate µ̂ should be dominated by 
the growth rate at small population sizes. This meets an important need in microbial ecology experiments, which 
is to measure the growth rate of strains before they significantly change the media. Contemporary approaches 
quantify growth rates in small bacterial populations by directly observing the spatiotemporal dynamics of bacte-
ria at sub-100nm spatial resolution, requiring cutting-edge microscopy and analysis  methods35,36. By contrast, µ̂ 
depends exclusively on quantities that are straightforward to measure with standard microbiology lab equipment 
(namely, microplate readers and materials for colony-forming-unit counting assays). This noise-based technique 
opens the door to experiments that assess the characteristics of small cellular populations using standard optical-
density measurements.
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As a proof of concept, we applied this method to our noisy bacterial growth trajectories. Figure 5a compares 
the growth-rate estimate µ̂ for each organism, growth condition, and inoculum size to the measured growth rate 
(i.e., slope of log-transformed optical-density time series) of each organism and growth condition. The measured 
rate exceeded the greatest of the estimates by 19% in E. coli at 37 °C, 51% in E. coli at 25 °C, and 71% in S. aureus 
at 37 °C. To probe how confidence in the estimation of µ̂ depends on the number of replicate growth trajectories, 
we bootstrap resampled a set of 47 abundance trajectories with mean inoculum size 2.8 in Fig. 5b.

Desynchronization of division times
Finally we sought to understand when age-structured population growth becomes indistinguishable from the 
simple birth process, a crossover that helps to explain why TSDs of the two models have the same scaling behav-
ior for large inoculum sizes in Fig. 4. This crossover occurs when growth-rate oscillations in the age-structured 
model (corresponding to initially synchronized division events) desynchronize, at which point the population 
grows at a constant exponential  rate37.

In Supplementary Information Section C, we consider a deterministic age-structured population-growth 
model and apply Laplace-transform methods to determine the decay rate of growth-rate oscillations. For a 
division-time distribution with 25-min mean and 22% coefficient of variation, the growth dynamics of a single 
inoculum asymptote to pure exponential growth after ∼ 3 division cycles (Fig. S1). Our bacterial optical-density 
measurements have a resolution of 0.001 ( ∼ 3× 105 CFUs, corresponding to ∼ 18 division cycles), which suggests 
that such measurements cannot resolve any abundance oscillations predicted by age-structured growth models. 
Said another way, after a few division cycles one may approximate the growth dynamics of age-structured growth 
by a simple birth process.

We note that the deterministic age-structured model we consider ignores correlations between mother and 
daughter generation times, which have been empirically observed in  bacteria38. Models that include cell-size 
control can extend the predicted persistence time of growth-rate  oscillations39. In the future, time-lapse micros-
copy of entire bacterial populations could be used to directly observe the desynchronization of populations with 
small inoculum sizes.

Discussion
Stochastic population growth, by its nature, produces a distribution of abundance trajectories over  time40. For 
exponentially growing populations, the mean trajectory of this distribution contains information about the 
population growth rate, given by the slope of the log-transformed trajectory. We demonstrated in this paper 
that the temporal standard deviation is a second statistic that reports on the population growth rate. Temporal 
variation is especially informative when the birth rate is much larger than the death rate; temporal variation is 
less meaningful when populations fluctuate about a steady-state abundance or go  extinct26.

Traditionally it has been difficult to measure the growth rate of bacteria at small population sizes without 
expensive microscopy equipment, since conventional optical-density measurements are unable to resolve growth 
at small  scales35,36,41,42. Addressing this need, our noise-based inference method suggests that the temporal 

Figure 5.  Noise-based estimation of growth rates. (a) Growth-rate estimates µ̂ for each organism, growth 
condition, and inoculum size, and assuming that growth follows a simple birth process, are plotted as red dots. 
Measured growth rates (black points, as in Fig. 3c) are calculated as the slopes of log-transformed abundance 
trajectories. (b) Precision of growth-rate inference, calculated by bootstrapping the abundance trajectories for 
E. coli at 37 °C with mean inoculum size 2.8 [blue star in (a)]. Error bars for measured (a) and estimated (b) 
growth rates show 68% confidence intervals from n=5000 bootstrap resamples per data point.
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standard deviation at a large population threshold (easily calculated with optical-density measurements) can be 
related to the growth rate at small population sizes.

Temporal variation is a natural and useful description of noisy population growth. It does not depend on the 
conversion factor between optical density and CFUs, saving experimental effort. The population dynamics of 
colonizing species during microbiome assembly are  stochastic43 and could be characterized in terms of temporal 
variation. The lower bound for the noise in S. aureus growth suggests a lower bound on the variation in times at 
which patients develop symptoms from the virulent hospital pathogen methycillin-resistant S. aureus (MRSA) 
following  exposure44.

In an era of high-throughput biological experiments, noise-based analyses are becoming increasingly valu-
able. In this paper we found a signal in the noise that relates growth rate, inoculum size, and temporal standard 
deviation in exponentially growing systems. Leveraging this relationship, in well-controlled bacterial growth 
experiments we demonstrated a proof of concept for the noise-based inference of population growth rate, setting 
the stage for future statistical analyses of noisy population growth.

Methods
Bacterial growth experiments
Either E. coli strain MG1655 or S. aureus strain NCTC 8532 was grown overnight in lysogeny broth (LB), then 
back diluted 1:1000 and grown to a 600nm optical density (OD600) of 0.5. At this optical density bacterial growth 
is in mid-log phase. Serial dilutions were performed to obtain a culture with cell concentrations between 1 and 
150 CFU per 2 µ L. This cell culture was subsequently used to inoculate bacterial growth experiments (e.g., those 
in Fig. 3a,b) by pipetting 2 µ L of cell culture into 198 µ L of LB media. Pipetting was performed with the Rainin 
Pipet-Lite Multi Pipette L8-20XLS+, accurate to ±0.2µ L. For each cell-culture concentration, 42 replicates were 
inoculated on the same 96-well plate to reduce variation, with 6 wells left as blank controls; each 96-well plate 
was inoculated with two sets of bacterial growth experiments. Plates were sealed with a “breathe-easy” with small 
holes poked in it to increase oxygen. Preparation and inoculation of 96-well plates was performed at 24.6 °C 
(room temperature). Preparing each batch of experiments (consisting of three 96-well plates) took ∼ 15 minutes 
from start to finish, with inoculations for each inoculum size spanning ∼ 3 min from start to finish.

Plates were grown in a Biotek Epoch 2 plate reader for 24 h at 37 °C (or 25 °C) with continuous orbital shak-
ing. Optical-density readings at OD600 were taken every two or 3 min. When E. coli was grown at 25 °C, the 
time in the plate reader was extended to 48 h. By the Beer-Lambert law, bacterial population size and OD600 
are linearly correlated in the sensitivity range of the plate reader (>0.01 OD)45. Optical-density measurements 
therefore serve as a proxy for bacterial population size.

Measurement of inoculum size
For each concentration of cell culture, the distribution of the number of bacteria pipetted into each well of the 
96-well plate (i.e., the inoculum size) was inferred by spot plating identical volumes of cell culture on LB-agar 
 plates46. Colonies were counted after 16 h of growth. For each concentration of cell culture, the inoculum size is 
roughly Poisson-distributed (Fig. S2). The mean n0 of nonzero inoculum sizes is utilized in Figs. 3 and 4.

Lag phase
For the three inoculum sizes in Fig. 3a we do not find evidence of a significant lag phase: the calculated time for 
a model of deterministic exponential growth with no lag phase to reach an optical density of 0.03 ( ∼ 1.4× 107 
CFUs) exceeded the mean observed time by 30 min for n0 = 80.7 ; by 36 min for n0 = 16.1 ; and by 59 min for 
n0 = 1.8.

This analysis required a standard curve to convert optical density measurements to CFUs, measured by spot 
plating following serial  dilution47. For this standard curve, measured optical densities spanned from 0.01 to 0.6, 
and measured CFUs spanned from 6× 106 to 2× 108 . For each cell-culture concentration, measurements were 
performed for 7 biological replicates. Based on linear regression, an OD of 0.03 corresponds to ∼ 1.4× 107 CFUs.

Bacterial strains
The MG1655 strain of E. coli (ATCC 700926) was obtained from the Broderick lab at Johns Hopkins University. 
The NCTC 8532 strain of S. aureus (ATCC 12600) was obtained from the Saleh lab at Johns Hopkins University. 
Cultures were obtained by streaking from glycerol stocks onto LB-agar plates and grown for 16 h at 37 °C.

Criteria for omission of growth curves
Bacterial growth curves were omitted from analysis if: (i) a well was missing an air puncture, causing anerobic 
growth (3/1439 replicates omitted), (ii) a well was contaminated (2/1439 replicates omitted), or (iii) raw OD600 
after 1 h of growth was above 0.125, indicating initial condensation or measurement error (47/1439 replicates 
omitted). In total, these exclusion criteria led to the omission of 4% (52/1439) of growth trajectories. Figure S4 
shows all raw growth curves, with omitted curves in red.

Removing optical‑density background
The measurement background—corresponding to the light occluded by solution (not bacteria) in a well—was 
subtracted from each optical-density time-series. The background was calculated as the mean optical density at 
time 0 for each 96-well plate, and ranged from an optical density of 0.099–0.121. Figures 3a,b show representa-
tive background-subtracted optical-density measurements. For reference, empty dry wells yield optical-density 
measurements of 0.005.



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:21340  | https://doi.org/10.1038/s41598-023-48726-w

www.nature.com/scientificreports/

Growth‑rate calculation
For a particular bacterial growth curve, the growth rate µ is determined by linearly regressing the log-transformed 
background-subtracted optical-density trajectory. Operationally, the growth rate at a given time t0 is calculated 
as the slope of the best-fit line for the 30-min window centered at t0 . A single growth rate was calculated for each 
organism and growth condition, defined as the average growth rate across replicates and inoculum sizes evaluated 
at times t0 when optical-density trajectories reach threshold optical density 0.03: E. coli at 37 °C grows at µ = 1.8
/hr, E. coli at 25 °C grows at µ = 0.8/hr, and S. aureus at 37 °C grows at µ = 2.0/hr. The growth rate is relevant 
for plotting TSDs in units of division time in Fig. 4, since an organism’s division time is defined as ln(2)/µ.

Population‑growth models
For each population-growth model plotted in Fig. 2, a set of integer inoculum sizes ranging from 1 to 30 were 
simulated. Models with Poisson-distributed inocula used this integer inoculum size as the Poisson shape param-
eter; the subsequent zero-truncated Poisson distribution has a larger mean inoculum size, giving rise to non-
integer mean inoculum sizes. The simple birth process with exact inoculation (red) and deterministic exponential 
growth with Poisson-distributed inocula (blue) were computed exactly with Eqs. (10a) and (S26), respectively.

The age-structured population-growth model with exact inoculation (gold) was simulated in an agent-based 
manner. Inoculated individuals were assumed to be at a random point along their division cycle, so their first 
division event was set to a random time uniformly drawn from [0, (ln 2)/µ ]. Thereafter, after each division event, 
the two resulting individuals each randomly drew their next division time from a division-time distribution that 
is determined by a 20-stage growth process (in which reaching the next stage of development is a Poisson process 
with constant rate): specifically, this growth process yields a division-time distribution given by a chi-squared 
distribution χ2(40)4, linearly rescaled so the mean division time was 25 min. Simulated TSDs were calculated 
at a threshold of 500 individuals.

Lastly, simple-birth-process simulations with Poisson-distributed inocula (purple) were performed by draw-
ing 2000 inoculum sizes from an appropriate Poisson distribution, then performing stochastic simulations using 
the Python function birdepy.simulate.discrete. For each set of simulations (gold, green, purple), 95% 
confidence intervals were computed by bootstrapping using the Python function scipy.stats.bootstrap.

Deterministic model of age‑structured growth
Simulations of the deterministic age-structured population-growth model displayed in Fig. S1 were performed 
using the Mathematica functions TransferFunctionModel, TransferFunctionPoles, and 
NInverseLaplaceTransform.

Software
Analyses were performed with Python (version 3.9.7) and Mathematica (version 12.1.0.0).

Data availability
Raw data from bacterial growth experiments and software that recreates the main text figures are available online 
at GitHub: https://github.com/erijones/intrinsic_variation.
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