
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21772  | https://doi.org/10.1038/s41598-023-48721-1

www.nature.com/scientificreports

Reproducible and clinically 
translatable deep neural networks 
for cervical screening
Syed Rakin Ahmed 1,2,3,4,17*, Brian Befano 5,6,17, Andreanne Lemay 1,7, Didem Egemen 8, 
Ana Cecilia Rodriguez 8, Sandeep Angara 9, Kanan Desai 8, Jose Jeronimo 8, 
Sameer Antani 9, Nicole Campos 10, Federica Inturrisi 8, Rebecca Perkins 11, Aimee Kreimer 8, 
Nicolas Wentzensen 8, Rolando Herrero 12, Marta del Pino 13, Wim Quint 14, 
Silvia de Sanjose 8,15, Mark Schiffman 8 & Jayashree Kalpathy‑Cramer 1,16

Cervical cancer is a leading cause of cancer mortality, with approximately 90% of the 250,000 deaths 
per year occurring in low‑ and middle‑income countries (LMIC). Secondary prevention with cervical 
screening involves detecting and treating precursor lesions; however, scaling screening efforts in 
LMIC has been hampered by infrastructure and cost constraints. Recent work has supported the 
development of an artificial intelligence (AI) pipeline on digital images of the cervix to achieve an 
accurate and reliable diagnosis of treatable precancerous lesions. In particular, WHO guidelines 
emphasize visual triage of women testing positive for human papillomavirus (HPV) as the primary 
screen, and AI could assist in this triage task. In this work, we implemented a comprehensive 
deep‑learning model selection and optimization study on a large, collated, multi‑geography, 
multi‑institution, and multi‑device dataset of 9462 women (17,013 images). We evaluated relative 
portability, repeatability, and classification performance. The top performing model, when combined 
with HPV type, achieved an area under the Receiver Operating Characteristics (ROC) curve (AUC) 
of 0.89 within our study population of interest, and a limited total extreme misclassification rate of 
3.4%, on held‑aside test sets. Our model also produced reliable and consistent predictions, achieving 
a strong quadratic weighted kappa (QWK) of 0.86 and a minimal %2‑class disagreement (% 2‑Cl. D.) of 
0.69%, between image pairs across women. Our work is among the first efforts at designing a robust, 
repeatable, accurate and clinically translatable deep‑learning model for cervical screening.

The flood of artificial intelligence (AI) and deep learning (DL) approaches in recent  years1,2 has permeated 
medicine and medical imaging, where it has had a transformative impact: some AI based algorithms are now 
able to interpret imaging at the level of  experts3,4. This can be attributed to three key factors: (1) a pressing and 
seemingly consistent clinical need; (2) the advancements in and convergence of computational resources, inno-
vations, and collaborations; and (3) the generation of larger and more comprehensive repositories of patient 
image data for model  development5. The nature of clinical tasks performed by AI models has shifted from simple 
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detection or classification to more nuanced versions with direct relevance for risk stratification of patients and 
precision  medicine6.

The advancements made by AI in image classification tasks over the past several years have also reached 
the cervical imaging domain, for instance, as an assistive technology for cervical  screening7. Globally, cervical 
cancer is a leading cause of cancer morbidity and mortality, with approximately 90% of the 250,000 deaths per 
year occurring in low- and middle-income countries (LMIC)8,9. Persistent infections with high-risk human 
papillomavirus (HPV) types are the causal risk factor for subsequent  carcinogenesis10,11. Accordingly, primary 
prevention via prophylactic HPV  vaccination12, and secondary prevention via HPV-based screening for precursor 
lesions (“precancer”) are the recommended preventive  methods13,14. Crucially, screening is the key secondary 
prevention strategy, with the long process of carcinogenic transformation from HPV infection to invasive cancer 
providing an opportunity for detecting the disease at a stage when treatment is preventive or, at least,  curative13.

However, implementation of an effective cervical screening program in LMIC, in line with WHO’s elimina-
tion  targets15, is hindered by barriers to healthcare delivery. Cytology and other current tests are costly and have 
substantial infrastructure requirements due to the need for laboratory infrastructure, transport of samples, 
multiple visits for screening and treatment, and (in the case of cytology) highly trained cytopathologists and 
colposcopists for management of abnormal  results16. As a less resource-intensive alternative, some have estab-
lished screening of the cervix by visual inspection after application of acetic acid (VIA) to identify precancerous 
or cancerous abnormalities via community-based programs, followed by treatment of abnormal lesions using 
thermal ablation or cryotherapy and/or large loop excision of the transformation zone (LLETZ)17,18. The major 
limitation of VIA, however, is its inherently subjective and unreliable nature, resulting in high variability in the 
ability of clinicians to differentiate precancer from more common minor abnormalities, which leads to both 
undertreatment and  overtreatment19,20.

Given the severe burden of cervical cancer and the lack of widely disseminated screening approaches in LMIC, 
a critical need exists for methods that can more consistently, inexpensively, and accurately evaluate cervical 
lesions and subsequently enable informed local choice of the appropriate treatment protocols.

There has been a relative paucity of prior work utilizing AI and DL for cervical screening based on cervical 
images. Crucially, the existing work also largely suffers from overfitting of the model on the training data. This 
leads to apparent initial promise, with either poor performance on or absence of held-aside test sets for evaluat-
ing true model performance. When deployed in different settings, these models fail to return consistent scores 
and accurately detect  precancers21–24. This poses significant concerns when considering downstream deploy-
ment in various LMIC, where model predictions directly inform the course of treatment, and where screening 
opportunities are limited.

In this work, we address the aforementioned concerns through three contributions, which are generalizable 
to clinical domains outside of cervical imaging:

1. Improved reliability of model predictions
  We employ a comprehensive, multi-level model design approach with a primary aim of improving model 

reliability. Model reliability or repeatability, is defined as the ability of a model to generate near-identical pre-
dictions for the same woman under identical conditions, ensuring that the model produces precise, reliable 
outputs in the clinical setting. Specifically, we consider multiple combinations of model architectures, loss 
functions, balancing strategies, and dropout. Our final model selection for the classifier, termed automated 
visual evaluation (AVE), is based on a criterion that first prioritizes model reliability, followed by class dis-
crimination or classification performance, and finally reduction of grave errors.

2. Improved clinical translatability: multi-level ground truth
  The large majority of current medical image classification and radiogenomic pipelines that utilize AI 

and DL, across clinical domains, use binary ground truths. Our clinical intuition from working with binary 
models as well as prior empirical work have informed us that these models frequently fail to capture the 
inherent uncertainty with ambiguous  samples21–24. These uncertain samples are of two intersecting kinds: 
samples that are uncertain to the clinician (“rater uncertainty”) and samples that are uncertain to the model 
i.e., where the model reports low confidence scores (“model uncertainty”); both instances can lead to incor-
rect classification and subsequent misinformed downstream actions for these patients. Crucially, real-world 
clinical oncology samples, across domains such as cervical, prostate and breast, and across hospitals/institu-
tions, include many uncertain  cases25–27. To address both levels of ambiguity, we employ several multi-level, 
ordinal ground truth delineation schemes in our model selection.

3. Improved downstream clinical-decision making: combination of HPV risk stratification with model predic-
tions

  A  number of different cancers have identified “sufficient” causes. Examples across this spectrum range 
from the presence of BRAF V600E mutation for the papillary subtype for  craniopharyngioma28, to the 
presence of BRCA1 or BRCA2 mutations for breast  cancer29–31. Cervical cancer is unique among common 
neoplasms in that HPV is virtually necessary and is present in > 95% of cases. Different HPV types predict 
higher or lower absolute risk, e.g., HPV 16 is the highest risk type, followed by HPV 18, while other types 
pose weaker or no  risk32–34. In our work, we combined HPV typing and its strong risk stratification with 
our visual model predictions, to create a risk score that can be adapted to local clinical preferences for “risk-
action” thresholds. This is generalizable across clinical domains where additional clinical variables and risk 
associations significantly determine patient outcomes.
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Results
In this work, we conducted a comprehensive, multi-stage model selection and optimization approach (Figs. 1, 2), 
utilizing a large, collated multi-institution, multi-device, and multi-population dataset of 9462 women (17,013 
images) (Table 1), in order to generate a diagnostic classifier optimized for (1) repeatability; (2) classification 
performance; and (3) HPV-group combined risk stratification (Fig. 2) (see “Methods”).

Repeatability analysis
Table 2 highlights the summary of the repeatability analysis (Stage I), reporting the mean, median and adjusted 
linear regression β values for QWK. We evaluated the metrics overall and within each design choice category, 

Figure 1.  Model selection and optimization overview. The top panel highlights the five different studies 
(NHS, ALTS, CVT, Biop and D Biop; see Table 1, Supp. Table 1, and Supp. Methods for detailed description 
and breakdown of the studies by ground truth) used to generate the final dataset on the middle panel, which 
is subsequently used to generate a train and validation set, as well as two separate test sets. The intersections of 
model selection choices on the bottom panel are used to generate a compendium of models trained using the 
corresponding train and validation sets and evaluated on the “Model Selection Set”/“Test Set 1”, optimizing for 
repeatability, classification performance, reduced extreme misclassifications and combined risk-stratification 
with high-risk human papillomavirus (HPV) types. “Test Set 2” is utilized to verify the performance of top 
candidates that emerge from evaluation on the “Model Selection Set”/“Test Set 1”. SWT: Swin Transformer; 
QWK: quadratic weighted kappa; CORAL: CORAL (consistent rank logits) loss, as described in the “Methods” 
section.
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dropping the worst performing design choices both overall and within each category. Overall, this resulted in 
19.0% of our design choices being dropped from further consideration (Table 2, shaded in bold; Fig. 3a, muted 
bars). Within each design choice category, this amounted to dropping the design choices that had adjusted linear 
regression β values > 0.06 below reference. Specifically, the design choices that were dropped in Stage 1 include the 
resnest50 architecture, focal and CORAL loss functions, and models trained without dropout. Here, we adopted 
a conservative approach, choosing to keep design choices that resulted in median QWK and corresponding 
adjusted β values that are relatively close and not clearly distinguishable from each other and only dropped the 
clearly worst performing choices; for instance, we decided to keep both the “3 level subsets” (β = − 0.026) and 
the “5 level all patients” (β = − 0.025) design choices within the “Multilevel Ground Truth” design category, and 
pass them through to Stage 3.

Classification performance analysis
Table 3 highlights the summary of the classification performance analysis (Stage II), reporting the median and 
the interquartile ranges for each of our two key classification metrics: (1) Youden’s index and (2) extreme mis-
classifications, as well as the adjusted linear regression β for each design choice. Similar to Stage 1, we evaluated 
the metrics both overall and within each design choice category, dropping the worst performing design choices 
at this stage in a two-level approach.

In the first level, we looked at the Youden’s index across all design choices and dropped the worst performing 
choices; this resulted in 3 choices (SWT architecture, no balancing, 5-level ground truth) or 17.6% of the remain-
ing choices being dropped and amounted to dropping choices that had median Youden’s index of < 150 (Table 3, 
shaded in bold; Fig. 3b, muted bars); this was further supported by other design choices within each design 
choice category having positive adjusted linear regression β values. In the second level, we considered two factors: 
(1) median extreme misclassification percentages (% precancer+ as normal and % normal as precancer+); and 
(2) practical reasons, dropping design choices due to a combination of these two factors. This resulted in three 
balancing strategies (Sampling 1:1:2, 1:1:4 and 2:1:1) and the “3 level subsets” ground truth mapping, or 28.6% 
of the remaining design choices being dropped (Table 3, shaded in italics). Weighted sampling by using preas-
signed label weights per class for the loading sampler (such as 1:1:4) is imprecise since weights are not adjusted 
relative to the dataset-specific class imbalance; this skews the model in making predictions along the lines of 
the assigned weights. This can be seen among the sampling strategies dropped: sampling 1:1:4 had a high rate of 
median % normal predicted as precancer+ (27.4%), while sampling 2:1:1 had a high rate of median % precan-
cer+ predicted as normal (24.3%). The “3 level subsets” ground truth mapping was dropped for practical reasons: 
it was generated from the 5-level map by omitting the GL and GH labels to attempt to generate further distinction 
or discontinuity between the three classes (normal, GM, precancer+) during model experimentation. Both the 
“5-level all patients” and the “3-level subsets” ground-truth mapping are impractical due to the limited clinical 
data (either HPV, histology and/or cytology) we anticipate having available in the field to generate 5 distinct levels 
of ground truth, thereby rendering retraining, validation and implementation of these approaches challenging.

HPV‑group combined risk stratification analysis
Figure 4 and Table 4 highlight the 10 best performing models that emerge following Stages 1, 2 and 3 of our 
model selection approach. All 10 models perform similarly among HPV positive women in the full 5-study set, 
while showing notable differences per study as shown in the NHS subset of the full 5-study set, measured by the 

Figure 2.  Model selection approach and statistical analysis utilized in our automated visual evaluation (AVE) 
classifier. IQR: interquartile range; AUC: area under the receiver operating characteristics (ROC) curve; CI: 
confidence interval.
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combined HPV-AVE AUC. The NHS subset represents women who are closer to a screening population that we 
would expect in the field when considering deployment of our model, since this is a population-based cohort 
 study35; hence AUC on the NHS subset represents a truer metric for model comparison. The models in Fig. 4a 
and Table 4 are in decreasing order of AUC on the HPV positive NHS subset. Figure 4b plots the ROC curves 
for each of the top 4 out of the 10 models highlighted in Table 4 and Fig. 4a, highlighting (1) HPV risk-based 
stratification; (2) model stratification; and (3) combined stratification incorporating both HPV risk and model 
predicted class.

Classification and repeatability analysis: “test set 2”
Figure 5a and Table 5 highlight the additional classification (1. % precancer+ as normal and 2. % normal as 
precancer+), and repeatability (1. % 2-class disagreement and 2. QWK) metrics from the predictions of each of 
the top 10 models on “Test Set 2”, while Fig. 6 takes a deeper look by comparing individual model predictions 
across 60 images for these top 10 models on “Test Set 2”. The top 10 models that pass through all stages of our 
model selection approach utilize the following configurations:

• Architecture: densenet121 or resnet50

Table 1.  Baseline characteristics of women in each of the ground truth categories. Baseline characteristics 
of women in each of the ground truth categories, highlighting proportions by histology, cytology, human 
papillomavirus (HPV) type, study, as well as age and # images/woman. The detailed study descriptions and 
ground truth assignment by study can be found in Supp. Table 1 and in the Supp. Methods section. CIN: 
cervical intraepithelial neoplasia; AIS: adenocarcinoma in situ; ASC-H: atypical squamous cells, cannot rule 
out high grade squamous intraepithelial lesion; HSIL: high-grade squamous intraepithelial lesion; LSIL: low-
grade squamous intraepithelial lesion; ASCUS: atypical squamous cells of undetermined significance; SD: 
standard deviation; IQR: interquartile range.

Characteristics

Ground truth categories

no. (%)

Normal (N = 6092) Gray low (N = 867) Gray middle (N = 918) Gray high (N = 529) Precancer+ (N = 1056)

Histology

 Cancer 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 23 (2.2%)

 CIN3/AIS 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 571 (54.1%)

 CIN2 0 (0.0%) 0 (0.0%) 1 (0.1%) 66 (12.5%) 456 (43.2%)

 < CIN2 873 (14.3%) 467 (53.9%) 580 (63.2%) 280 (52.9%) 6 (0.6%)

 No histology 5219 (85.7%) 400 (46.1%) 337 (36.7%) 183 (34.6%) 0 (0.0%)

Cytology

 ASC-H/HSIL 0 (0.0%) 164 (18.9%) 110 (12.0%) 481 (90.9%) 647 (61.3%)

 LSIL 0 (0.0%) 220 (25.4%) 586 (63.8%) 15 (2.8%) 209 (19.8%)

 ASCUS 4288 (70.4%) 95 (11.0%) 222 (24.2%) 19 (3.6%) 112 (10.6%)

 Normal 1801 (29.6%) 386 (44.5%) 0 (0.0%) 11 (2.1%) 67 (6.3%)

 Other/missing 3 (0.0%) 2 (0.2%) 0 (0.0%) 3 (0.6%) 21 (2.0%)

HPV type

 16 0 (0.0%) 95 (11.0%) 172 (18.7%) 174 (32.9%) 507 (48.0%)

 18, 45 0 (0.0%) 66 (7.6%) 141 (15.4%) 54 (10.2%) 123 (11.6%)

 31,33,35,52,58 0 (0.0%) 187 (21.6%) 346 (37.7%) 174 (32.9%) 312 (29.5%)

 39,51,56,59,68 0 (0.0%) 130 (15.0%) 250 (27.2%) 59 (11.2%) 78 (7.4%)

 Negative 6087 (99.9%) 382 (44.1%) 6 (0.7%) 68 (12.9%) 26 (2.5%)

 Missing 5 (0.1%) 7 (0.8%) 3 (0.3%) 0 (0.0%) 10 (0.9%)

Study

 NHS 4518 (74.2%) 114 (13.1%) 127 (13.8%) 34 (6.4%) 173 (16.4%)

 ALTS 943 (15.5%) 231 (26.6%) 314 (34.2%) 171 (32.3%) 363 (34.4%)

 CVT 424 (7.0%) 297 (34.3%) 208 (22.7%) 49 (9.3%) 195 (18.5%)

 Biop 66 (1.1%) 51 (5.9%) 63 (6.9%) 32 (6.0%) 132 (12.5%)

 D Biop 141 (2.3%) 174 (20.1%) 206 (22.4%) 243 (45.9%) 193 (18.3%)

Age (30–49)

 Mean (SD) 34.5 (6.8) 30.7 (5.8) 30.1 (5.0) 30.3 (5.4) 30.6 (5.6)

 Median (IQR) 33 (29–40) 29 (26–33) 29 (26–32) 29 (26–32) 29 (26–33)

# images/woman

 Mean (SD) 1.9 (0.3) 1.4 (0.6) 1.6 (0.6) 1.6 (0.6) 1.7 (0.6)

 Median (IQR) 2 (2–2) 1 (1–2) 2 (1–2) 2 (1–2) 2 (1–2)
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• Loss function: quadratic weighted kappa (QWK) or cross-entropy (CE)
• Balancing strategy: remove controls or balanced sampling
• Dropout: Monte-Carlo (MC) dropout (spatial)
• Multi-level ground truth: 3 level all patients (Normal, Gray Zone, Precancer+)
• Model type: multiclass classification

Based on the individual performances of the models in terms of degree of extreme misclassifications and 
repeatability (Table 5, Fig. 5a) and additional risk stratification (Table 4, Fig. 4), our best performing model 
(# 36) has the smallest rate of overall extreme misclassifications (5.9% precancer+ as normal, 4.2% normal as 
precancer+), one of the highest repeatability performance (repeatability QWK = 0.8557, 0.69% 2-class disagree-
ment on repeat images across women), and the highest additional risk stratification in the NHS subset of the full 
5-study dataset, our screening population (difference between HPV-AVE combined AUC and HPV AUC = 0.164). 
Among the top 10 models, model # 36 utilizes the following unique design choices:

• Architecture: densenet121
• Loss function: quadratic weighted kappa (QWK)
• Balancing strategy: remove controls

Figure 5b highlights key performance metrics of the top ranked model (# 36) on “Test Set 2”, as captured by 
the corresponding (i) ROC curves, (ii) confusion matrix, (iii) histogram of the model predicted score and (iv) 
Bland–Altman plot. The ROC curve in (i) demonstrates excellent discrimination of the normal (class 0) and 
precancer+ (class 2) categories, with corresponding AUROC’s of 0.88 (class 0 vs. rest) and 0.82 (class 2 vs. rest) 
respectively. This is reinforced by the confusion matrix in (ii), which highlights a total extreme misclassifica-
tion (extreme off diagonals) rate of only 3.4%, and by the histogram in (iii), which illustrates the strong class 
separation in model predicted score ; specifically, (iii) highlights that the model confidently predicts the largest 
clusters of each of the three ground truth classes correctly as shown by the peaks around score 0.0, 1.0 and 2.0. 
Finally, the Bland–Altman plot in (iv) highlights the model performance in terms of repeatability: each point 
on this plot refers to a single woman, with the y-axis representing the maximum difference in the score across 
repeat images per woman, and the x-axis plotting the mean of the corresponding score across all repeat images 

Table 2.  Repeatability analysis. Repeatability analysis on “Model Selection Set”/“Test Set 1”, highlighting 
quadratic weighted kappa (QWK) summary statistics—mean, median with interquartile range (IQR) and 
adjusted linear regression (LR) β values—for design choices within each design choice category for our 
automated visual evaluation (AVE) classifier. Rows in bold indicate design choices filtered out at this stage due 
to poor repeatability. SWT: Swin Transformer; CORAL: CORAL (consistent rank logits) loss, as described in 
the “Methods” section; ref: reference category. **indicates significance at the 0.05 level.

Design choice category Design choices

QWK summary

Mean (SD) Median (IQR) Adjusted LR β

Architecture

densenet121 0.743 (0.062) 0.748 (0.719–0.786) − 0.016

resnest50 0.675 (0.069) 0.649 (0.630–0.743) − 0.083**

resnet50 0.752 (0.048) 0.760 (0.736–0.776) − 0.018

SWT 0.743 (0.079) 0.748 (0.671–0.815) ref

Loss function

Cross entropy 0.725 (0.069) 0.738 (0.671–0.771) − 0.039**

Focal 0.717 (0.070) 0.730 (0.654–0.773) − 0.078**

QWK 0.779 (0.042) 0.782 (0.752–0.809) ref

CORAL 0.678 (0.056) 0.649 (0.636–0.729) − 0.069**

Balancing strategy

Balanced loss 0.703 (0.107) 0.751 (0.647–0.769) − 0.053**

Balanced sampling 0.729 (0.057) 0.735 (0.675–0.781) − 0.046**

Remove controls 0.775 (0.054) 0.777 (0.744–0.809) ref

Sampling 1:1:2 0.744 (0.055) 0.758 (0.728–0.783) − 0.042**

Sampling 1:1:4 0.776 (0.033) 0.772 (0.752–0.798) − 0.026

Sampling 2:1:1 0.764 (0.017) 0.762 (0.750–0.778) − 0.045

None 0.706 (0.069) 0.721 (0.638–0.749) − 0.019

Dropout

No Dropout 0.663 (0.072) 0.649 (0.620–0.723) − 0.088**

Train Dropout only 0.725 (0.058) 0.738 (0.681–0.759) − 0.035**

Monte Carlo Dropout 0.760 (0.059) 0.772 (0.733–0.802) ref

Multilevel ground truth

3 level all patients 0.740 (0.068) 0.752 (0.719–0.780) ref

3 level subsets 0.707 (0.070) 0.709 (0.637–0.778) − 0.026**

5 level all patients 0.705 (0.064) 0.721 (0.650–0.748) − 0.025
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per woman. Repeatability is evaluated using the 95% limits of agreement (LoA), highlighted by the blue dotted 
lines in (iv) on either side of the mean (central blue dotted line); for model # 36, the 95% LoA is quite narrow, 
with most points clustered around 0 on the y-axis suggesting that score values of the model on repeat images 
taken on the same visit for each woman are quite similar; here, the 95% LoA adjusted for the number of classes 
and presented as a fraction of the possible value range is 0.240 (± 0.038).

Figure 6 reinforces the validity of our approach for model selection and optimization by providing a detailed 
comparison of model performance at the individual image level, with the top models performing desirably with 
respect to the clinical problem we are aiming to address. Incorporation of a gray zone class, together with MC 
dropout and loss functions that penalize misclassifications between the extreme classes ensures that we deal 
with ambiguity with cases at the class boundaries. For instance, among these randomly selected 60 images, the 
best performing model (# 36) has the lowest rate of extreme misclassifications (none), while predicting a wide 

Figure 3.  (a) Median quadratic weighted kappa (QWK) and adjusted linear regression (LR) β across the 
various design choices, as part of the repeatability analysis. (b) Median Youden’s index, median % precancer+ as 
normal (% p as n) and median % normal as precancer+ (% n as p), with the corresponding adjusted LR β values 
across the various design choices (after filtering for repeatability), as part of the classification performance 
analysis. Muted bars indicate design choices dropped at each stage. All results are from the “Model Selection 
Set”/“Test Set 1”. SWT: Swin Transformer; CORAL: CORAL (consistent rank logits) loss, as described in the 
“Methods” section; ref: reference category.
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enough gray zone that adequately encapsulates the clinical ambiguity with uncertain cases: these are cases for 
which even clinically trained colposcopists and gynecologic oncologists would find determination of precan-
cer+ status challenging.

Discussion
Despite the advancements made by AI in clinical classification tasks, key concerns hindering model deployment 
from bench to clinical practice include model reliability and clinical translatability. An incorrect, unreliable, or 
unrepeatable model prediction has the potential to lead to a cascade of clinical actions that might jeopardize the 
health and safety of a patient. Therefore, it is essential that models designed with the goal of clinical deployment 
be specifically optimized for improved repeatability and clinical translation.

Our work addresses these concerns of reliability and clinical translatability. We optimize our model selection 
approach with improved repeatability as the primary stage (Stage I) of our selection criterion—ensuring that 
only design choices that produce repeatable, reliable predictions across multiple images from the same woman’s 
visit, are passed through to the next stage of evaluation for classification performance. Our work builds on 
prior work highlighting improvements in repeatability of model predictions made by certain design  choices36,37. 
Our work also stands out among the paucity of current approaches that have utilized AI and DL for cervical 
 screening21–24; as aforementioned, these are largely plagued by overfitting and no consideration of repeatability. 
The dearth of work investigating repeatability of AI models designed for clinical translation in the current DL 
and medical image classification literature has meant that no rigorous study, to the best of our knowledge, has 

Table 3.  Classification performance analysis. Classification performance analysis on “Model Selection 
Set”/“Test Set 1”, highlighting Youden’s index (YI) and extreme misclassification statistics—median with 
interquartile range (IQR) and adjusted linear regression (LR) β values—for design choices within each design 
choice category for our automated visual evaluation (AVE) classifier, after filtering for repeatability (Table 2). 
Rows in bold indicate design choices filtered out at this stage due to poor classification performance (as 
captured by the Youden’s index). Rows in italics indicate design choices subsequently filtered out due to a 
combination of poor classification performance (as captured by the rate of extreme misclassifications) and/or 
practical reasons. SWT: Swin Transformer; ref: reference category. **indicates significance at the 0.05 level.

Design choice 
category Design choices

Youden’s index (YI)

Extreme misclassifications

% precancer+ as normal % normal as precancer+ 

Median (IQR) Adjusted LR β Median (IQR) Adjusted LR β Median (IQR) Adjusted LR β

Architecture

densenet121 154.5 (151.5–
156.3) 6.6** 17.0 (10.9–

23.2) − 6.5** 10.3 (6.8–13.6) − 3.6

resnet50 155.7 (151.7–
157.9) 8.3** 15.6 (11.6–

23.9) − 4.9** 9.3 (5.7–12.2) − 5.4**

SWT 146.3 (134.7–
148.0) ref 16.3 (13.0–

56.5) ref 9.5 (4.7–14.6) ref

Loss Function
Cross entropy 151.6 (144.1–

155.7) ref 17.4 (11.2–
37.3) ref 10.2 (5.3–14.5) ref

QWK 155.6 (153.7–
157.6) 3.4 16.3 (11.6–

21.0) − 4.8** 9.7 (7.6–11.7) − 0.9

Balancing 
strategy

Balanced loss 151.6 (142.3–
154.4) 4.2 4.3 (3.6–5.8) − 35.2** 18.8 (10.3–

23.0) 13.6**

Balanced 
sampling

155.3 (153.3–
157.8) 10.5** 14.5 (13.0–

18.1) − 26.3** 10.3 (8.7–11.9) 4.9**

Remove con-
trols

156.0 (153.5–
156.9) 2.7 13.8 (10.9–

18.1) − 26.6** 7.7 (4.2–10.3) 2.9

Sampling 1:1:2 155.0 (153.6–
156.0) 5.4 16.3 (12.0–21.4) − 21.0** 14.1 (11.3–

17.4) 10.1**

Sampling 1:1:4 156.2 (151.4–
158.4) 8.2** 9.8 (6.2–14.1) − 26.4** 27.4 (15.9–

38.5) 21.6**

Sampling 2:1:1 154.0 (152.9–
154.5) 5.0 24.3 (23.2–25.0) − 12.7** 9.6 (7.4–11.4) 4.2

None 144.1 (135.2–
148.9) ref 40.6 (37.0–

55.8) ref 5.0 (2.3–6.6) ref

Dropout

Train Dropout 
only

153.5 (148.8–
155.7) ref 18.8 (12.3–

25.4) ref 10.3 (6.7–14.1) ref

Monte Carlo 
Dropout

155.0 (146.0–
157.2) 0.5 14.5 (9.4–22.5) − 2.5 9.7 (5.1–14.2) − 0.7

Multilevel 
ground truth

3 level all 
patients

154.7 (151.6–
156.8) 9.4** 15.9 (10.5–

23.6) − 3.0 10.8 (6.8–15.2) 3.1

3 level subsets 154.2 (153.0–
156.7) 8.5** 19.9 (18.1–23.2) 6.0 11.1 (9.5–13.4) 5.9**

5 level all 
patients

141.8 (135.3–
151.8) ref 13.4 (10.9–

50.7) ref 6.2 (4.8–9.5) ref
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Figure 4.  (a) Difference between HPV+ AVE combined AUC and HPV-only AUC in the HPV positive NHS 
subset for top 10 models on the “Model Selection Set”/“Test Set 1” (b) Receiver operating characteristics (ROC) 
curves for each of the top 4 best performing models in the HPV positive NHS subset of the full dataset The 
plotted lines indicate (1) HPV AUC, (2) AVE AUC and (3) combined HPV-AVE AUC, for models (i) 36, (ii) 
65, (iii) 34, and (iv) 81. HPV: human papillomavirus; AVE: automated visual evaluation, which refers to the 
classifier; AUC: area under the ROC curve.
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employed repeatability as a model selection criterion. We posit that our work could motivate further efforts to 
include repeatability as a key criterion for clinical AI model design.

Subsequent design choices of our work are optimized to improve clinical translatability. Prior  work21–24 
has shown us that while binary classifiers for cervical image-based cervical precancer+ detection can achieve 
competitive performance in a given internal seed dataset, they translate poorly when tested in different settings; 
uncertain cases can be misclassified, and predictions tend to oscillate between the two classes. This oscillation 
phenomenon could prevent a precancer+ woman from accessing further evaluation (i.e., false negative) or direct 
a normal woman through unnecessary, potentially invasive tests (i.e., false positive). False negatives are espe-
cially problematic in LMIC where screening is limited and represent a missed opportunity to detect and treat 
precancer via excisional, ablative, or surgical methods, in order to avert cervical  cancer13,38. We further assess 
the importance of our multi-class approach and incorporation of MC dropout by highlighting the comparison 
between binary and three-class models, with and without MC dropout, in terms of key classification and repeat-
ability metrics on “Test Set 2” in Table 6. Table 6 highlights that three-class models perform better than binary 
models in terms of both repeatability and classification metrics, while MC dropout improves repeatability. This 
is conceptually justified since a three-level ground truth with a quadratic weighted kappa loss function that 
penalizes misclassification between the boundary classes is designed to limit extreme classifications; we find 
this to be true in our case. Furthermore, MC dropout is a model regularization technique known to prevent 
overfitting, and we find that it also improves  repeatability36. By incorporating a multi-class approach and a loss 
function that heavily penalizes extreme misclassifications, we improve reliability of the model-predicted normal 
and precancer+ categories, and further ensure that women ascribed to the intermediate classes are recommended 
for additional clinical evaluation.

Finally, our assessment of model performance was based on its ability to stratify precancer+ risk within each 
of the four risk-based HPV groupings (Stage III of our model selection approach, as described in “Methods”). For 
our model to successfully be used in a triage setting, it must do more than mimic the risk stratification of HPV 
groupings, it must order risk within each HPV-type group correctly. Given the high negative predictive value of 
HPV, we believe that our model can act as an effective triage tool for HPV positive women.

Our prior work has informed us that the HPV positive women in the NHS subset better represent a typical 
screening population: specifically, the NHS subset represents women who tested HPV-positive in any given 
population with an intermediate HPV  prevalence35. The other 4 subsets within the full 5-study dataset comprise 
of women referred from HPV-based/cytology-based referral clinics: this represents a colposcopy population, 
which has a higher disease prevalence. We optimize each stage (I, II and III) of our model selection approach 
on the full 5-study dataset to better capture the variability in cervical appearance on imaging. At the end of this 
selection, we find that our top models do not perform meaningfully differently among HPV positive women in 
the full 5-study dataset, highlighted by similar HPV-AVE AUC values across the models in the “HPV positive 5 
study” column on Table 4. For the final selection of the top candidates, given our goal of using AVE as a triage 
tool for HPV positive women in a screening setting, we therefore narrow our focus to the combined HPV-AVE 
AUC in the NHS HPV positive subset (“HPV positive NHS” column on Table 4; Fig. 4) for each model on the 
“Model Selection Set”/“Test Set 1” and confirm performance of the top candidates on an additional held-aside 
test set, “Test Set 2” (see “Methods”, Table 5 and Fig. 5a).

Table 4.  Selection of top individual models with best additional risk stratification. Performance of top 
individual models following human papillomavirus (HPV) group combined risk stratification (Stage III of 
model selection) on “Model Selection Set”/“Test Set 1”, within the HPV-positive full-dataset and HPV-positive 
NHS subset. The models are in decreasing order of area under the receiver operating characteristics (ROC) 
curve (AUC) on the human papillomavirus (HPV) positive NHS subset of the full dataset. AVE: automated 
visual evaluation, which refers to the classifier; CI: confidence interval. a Difference = Combined HPV + AVE 
AUC minus HPV-only AUC.

Model # Loss Architecture
Balancing 
strategy

Additional risk stratification

HPV positive 5-study (full dataset) HPV positive NHS subset

HPV + AVE AUC Differencea 95%CI HPV + AVE AUC Differencea 95%CI

36 QWK densenet121 Remove controls 0.683 0.019 0.009–0.041 0.887 0.164 0.086–0.261

65 CE resnet50 Balanced loss 0.684 0.020 0.008–0.041 0.862 0.139 0.064–0.233

34 QWK densenet121 Balanced sam-
pling 0.677 0.013 0.004–0.031 0.859 0.137 0.063–0.234

81 QWK resnet50 Balanced sam-
pling 0.681 0.018 0.006–0.039 0.859 0.136 0.061–0.239

79 CE resnet50 Remove controls 0.677 0.014 0.002–0.029 0.825 0.102 0.031–0.189

77 CE densenet121 Remove controls 0.689 0.025 0.011–0.049 0.814 0.091 0.033–0.191

76 QWK resnet50 Remove controls 0.677 0.013 0.003–0.029 0.807 0.084 0.028–0.184

28 CE densenet121 Balanced loss 0.709 0.046 0.027–0.074 0.798 0.076 0.023–0.152

63 CE resnet50 Balanced sam-
pling 0.688 0.024 0.012–0.049 0.789 0.067 0.024–0.171

30 CE densenet121 Balanced sam-
pling 0.702 0.038 0.022–0.068 0.788 0.065 0.018–0.160



11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21772  | https://doi.org/10.1038/s41598-023-48721-1

www.nature.com/scientificreports/

Figure 5.  (a) Classification and repeatability results on “Test Set 2” for top 10 best performing models, 
highlighting the % precancer+ as normal (%p as n) and % normal as precancer+ (%n as p) (left), the % 2-class 
disagreement between image pairs across women (middle), and the quadratic weighted kappa (QWK) values 
on the discrete class outcomes for paired images across women (right) for each model. (b) Representative plots 
for the top performing model (# 36) on “Test Set 2”—(i) Receiver operating characteristics (ROC) curves for 
the normal vs rest (Class 0 vs. rest) and precancer+ vs. rest (Class 2 vs. rest) cases, (ii) confusion matrix, (iii) 
histogram of model predicted continuous score , color coded by ground truth, and (iv) Bland Altman plot of 
model predictions, color coded by ground truth: each point on this plot refers to a single woman, with the y-axis 
representing the maximum difference in the score across repeat images per woman, and the x-axis plotting the 
mean of the corresponding score across all repeat images per woman.
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Despite the multi-institutional, multi-device and multi-population nature of our final, collated dataset; the 
use of multiple held-aside test sets; and the exhaustive search space utilized for our algorithm choices, our work 
may be limited by sparse external validation. Forthcoming work will evaluate our model selection choices on 
several additional external datasets, assessing out-of-the-box performance as well as various transfer learning, 
retraining and generalization approaches. Future work will additionally optimize our final model choice for use 
on edge devices, thereby promoting deployability and translation in LMIC.

In this work, we utilized a large, multi-institutional, multi-device and multi-population dataset of 9,462 
women (17,013 images) as a seed and implemented a comprehensive model selection approach to generate a 
diagnostic classifier, termed AVE, able to classify images of the cervix into “normal”, “gray zone” and “precan-
cer+” categories. Our model selection approach investigates various choices of model architecture, loss func-
tion, balancing strategy, dropout, and ground truth mapping, and optimizes for (1) improved repeatability; (2) 

Table 5.  Classification and Repeatability results on Test Set 2 for top performing models. Classification and 
repeatability results on “Test Set 2” for top 10 best performing models, highlighting % precancer + as normal 
(% p as n) and % normal as precancer + (% n as p), the % 2-class disagreement between image pairs across 
women (% 2-Cl. D.), and the quadratic weighted kappa (QWK) values on the discrete class outcomes for 
paired images across women, for each model. EM: extreme misclassifications.

Model # Loss Architecture Balancing Strategy

Classification (EM) Repeatability

% p as n % n as p %2-Cl. D QWK

36 QWK densenet121 Remove controls 5.85% 4.16% 0.69% 0.856

65 CE resnet50 Balanced loss 6.43% 9.26% 2.48% 0.819

34 QWK densenet121 Balanced sampling 11.11% 3.64% 1.10% 0.833

81 QWK resnet50 Balanced sampling 5.85% 5.97% 0.96% 0.839

79 CE resnet50 Remove controls 8.19% 1.30% 0.41% 0.855

77 CE densenet121 Remove controls 15.20% 1.73% 0.55% 0.833

76 QWK resnet50 Remove controls 10.53% 3.72% 0.69% 0.840

28 CE densenet121 Balanced loss 2.92% 13.77% 3.99% 0.774

63 CE resnet50 Balanced sampling 11.70% 4.24% 2.20% 0.789

30 CE densenet121 Balanced sampling 18.71% 6.67% 3.44% 0.783

Figure 6.  Model level comparison across top-10 best performing models on “Test Set 2”. 60 images were 
randomly selected from “Test Set 2” (see “Methods”: “Statistical analysis” section) and arranged in order of 
increasing mean score within each ground truth class in the top row (labelled “Ground Truth”). The model 
predicted class for the top 10 models for each of these 60 images is highlighted in the bottom rows, where the 
images follow the same order as the top row. The color coding in the top row represents ground truth while in 
the bottom 10 rows represent the model predicted class. Green: Normal, Gray: Gray Zone, and Red: Precancer+, 
as highlighted in the legend. Each image corresponds to a different woman.
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classification performance; and (3) high-risk HPV-type-group combined risk-stratification. Our best performing 
model uniquely (1) alleviates overfitting by incorporating spatial MC dropout to regularize the learning process; 
(2) achieves strong repeatability of predicted class across repeat images from the same woman; (3) addresses 
rater and model uncertainty with ambiguous cases by utilizing a three-level ground truth and QWK as the loss 
function to penalize extreme (between boundary class) misclassifications; and (4) achieves a strong additional 
risk-stratification when combined with the corresponding HPV type group within our screening population 
of interest. While our initial goal is to implement AVE primarily to triage HPV positive women in a screening 
setting, we expect our approach and selected model to also provide reliable predictions for images obtained in 
the colposcopy setting. Our model selection approach is generalizable to other clinical domains as well: we hope 
for our work to foster additional, carefully designed studies that focus on alleviating overfitting and improving 
reliability of model predictions, in addition to optimizing for improved classification performance, when decid-
ing to use an AI approach for a given clinical task.

Methods
Overview
This study set out to systematically compare the impact of multiple design choices on the ability of a deep neural 
network (DNN) to classify cervical images into delineated cervical cancer risk categories. We combined images of 
the cervix from five studies (Supp. Table 1) into a large convenience sample for analysis. We subsequently labelled 
the images into three distinct multi-level ground truth labelling approaches: (1) a 5-level map, which included 
normal, gray-low (GL), gray-middle (GM), gray-high (GH), and precancer+ (termed “5 level all patients”); (2) a 
3-level map which combined the intermediate three labels (GL, GM, GH) into one single gray zone (termed “3 
level all patients”); and (3) an additional 3-level map which excluded the GL and GH labels, and considered only 
the normal, GM and precancer+ labels (termed “3 level subsets”). The choice of multi-level ground truth labelling 
for model selection was motivated by our previous work and intuition revealing the failure of binary models, as 
well as our specific clinical use case. Table 1 highlights the population level and dataset level characteristics for our 
final, collated dataset used for training and evaluation, highlighting the distribution of histology, cytology, HPV 
types, population-level study, age, and number of images per patient within each of the five ground truth classes.

We subsequently identified four key design decision categories that were systematically implemented, inter-
sected, and compared. These included: model architecture, loss function, balancing strategy, and implementation 
of dropout, as highlighted in Fig. 1. The choice of balancing strategy for a particular model determined the ratios 
of randomly chosen train and validation sets used during training. We subsequently trained multiple classifiers 
using combinations of these design choices and generated predictions on a common test set (“Model Selection 
Set”/“Test Set 1”) which was used to compare and rank models based on repeatability, classification performance, 
and HPV type-group combined risk stratification. Finally, we confirmed the performance of the top models on 
a second held-aside test set (“Test Set 2”) to mitigate the impact of chance on the best performing approaches.

Dataset
Included studies
Cervical images used in this analysis were collected from five separate study populations labelled NHS, ALTS, 
CVT, Biop and D Biop (Table 1; Fig. 1). Detailed descriptions for each study can be found in the supplementary 
methods section. The final dataset was collated into a large convenience sample comprising of a total of 17,013 
images from 9,462 women.

Table 6.  Classification and Repeatability metrics comparing binary with multiclass models, both with and 
without Monte Carlo (MC) dropout. Comparison of binary and multiclass models on “Test Set 2”, highlighting 
relevant classification metrics (% p as n: % precancer+ as normal; % n as p: % normal as precancer+; and % ext. 
mis.: % extreme misclassifications) and repeatability metrics (% ext. dis.: % extreme disagreement i.e. extreme 
disagreement between image pairs across women; QWK: quadratic weighted kappa; and 95% LoA: 95% limits 
of agreement on a Bland Altman plot, highlighting the continuous score repeatability). All four models: binary, 
binary with Monte-Carlo (MC) dropout, three-class and three-class with MC dropout incorporate the same 
configurations as the top performing model (#36), with the only exception being the presence or absence MC 
dropout and whether the models output binary or three-class predictions (as indicated by the corresponding 
name). All three-class models were trained using the “3 level all patients” ground truth mapping (normal, gray 
zone, precancer+), while the binary models were trained on binary (normal, precancer+) ground truths. The 
metrics highlighted here indicate that three-class models perform better than binary models in terms of both 
repeatability and classification metrics, while MC dropout improves repeatability.

Model

Classification Repeatability

% ext. mis %p as n %n as p % ext. dis QWK 95% LoA

Binary 21.83% 32.16% 20.66% 12.50% 0.621 0.617

Binary-MC 25.74% 26.90% 25.61% 11.14% 0.704 0.366

Three-class 5.87% 8.77% 7.27% 0.95% 0.796 0.470

Three-class-MC (#36) 3.44% 5.85% 4.16% 0.69% 0.856 0.240
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Analysis population
The convenience sample was split using random sampling into four sets for use in the evaluation of algorithm 
parameters. For the initial splits, women were randomly selected into either training, validation, or test (“Model 
Selection Set”/“Test Set 1”), at a rate of 60%, 10%, and 20% respectively. An additional hold-back test set (“Test 
Set 2”) of 10% of the total women was selected and used to confirm the findings of the best models from “Model 
Selection Set”/“Test Set 1”. All subsets maintained the same study and ground truth proportions as the full set 
(Table 1, Supp. Table 2). All images associated with the selected visit for each woman were included in the set 
for which the woman was selected; 7359 women (77.8%) had ≥ 2 images. For a woman identified as precancer or 
worse (precancer+), the visit at or directly preceding the diagnosis was selected, for women identified as any of 
the gray zone categories (GL, GM, GH), the visit associated with the abnormality was selected, and for a woman 
identified as normal, a study visit, if there were more than one, was randomly selected for inclusion.

Disease endpoint definitions
Ground truth classification in all studies was based on a combination of histology, cytology, and HPV status with 
emphasis on strictly defining the highest and lowest categories while pushing marginal results into the middle 
categories. When referral colposcopy lacked cytology or HPV testing the results from the preceding referral 
screening visit were used. Ground truth classification was generally consistent across studies; however, the mul-
tiple cytology results available in NHS allowed for slightly different classifications. In all studies, histologically 
confirmed cancer, cervical intraepithelial neoplasia (CIN) 3, or adenocarcinoma in situ (AIS) was considered as 
precancer+ regardless of referral cytology or HPV, while oncogenic HPV-positive-CIN2 was also considered as 
precancer+. In NHS, women with 2 or more high grade squamous intraepithelial lesion (HSIL) cytology results 
that tested positive for HPV 16 were classified as precancer+. In all studies, images identified as atypical squa-
mous cells of undetermined significance (ASCUS) or negative for intraepithelial lesion or malignancy (NILM) 
with negative oncogenic HPV, or as NILM with missing HPV test were labelled as normal. All other combina-
tions were labelled as equivocal called gray zone, with finer distinctions made for the five-level ground truth 
classification, splitting the gray zone further into GH, GM, and GL based on specific combinations of cytology 
and HPV (Supp. Table 1).

Ethics
All study participants signed a written informed consent prior to enrollment and sample collection. All five 
studies were reviewed and approved by multiple Institutional Review Boards including those of the National 
Cancer Institute (NCI), National Institutes of Health (NIH) and within the institution/country where the study 
was conducted. All methods were performed in accordance with the relevant guidelines and regulations.

Model
Algorithm design
A compendium of models were trained using a combination of different architectures, model types, loss func-
tions, and balancing strategies. All models were trained for 75 epochs with a batch size (BS) of 8, a learning rate 
(LR) of  10–5, and an LR scheduler (ReduceLRonPlateau) with default parameters; the LR scheduler reduced the 
LR by a factor of 10 if no improvement was seen in the validation metric for 10 epochs. We used the summed 
normal and precancer AUC on the validation set as the early stopping criterion during training. We conducted 
preliminary experimental runs to investigate LR, BS and number of epochs (NE); our choices of a low LR with an 
LR scheduler, optimal BS and NE optimized model performance, training time, and available memory capacity, 
and ensured that all our models reached convergence. Before training, all images were cropped with bounding 
boxes generated from a  YOLOv539 model trained for cervix detection, resized to 256 × 256 pixels, and scaled to 
intensity values from 0 to 1. During training, affine transformations were applied to the image for data augmenta-
tion. We initialized all runs with ImageNet pretrained weights. The following popular classification architectures 
were selected based on literature review and preliminary experiments indicating acceptable baseline performance: 
 ResNet5040,  ResNest5041,  DenseNet12142, and Swin  Transformer43.

Four different loss functions were evaluated, three for classification models and one for ordinal models. 
For the classification models, we trained with standard cross entropy (CE), focal (FOC, Eq. 1)44, and quadratic 
weighted kappa (QWK, Eq. 2)45 loss functions, while all ordinal models leveraged the CORAL loss (Eq. 3)46. 
QWK is based on Cohen’s Kappa coefficient; unlike unweighted kappa, QWK considers the degree of disagree-
ment between ground truth labels and model predictions and penalizes misclassifications quadratically. Relevant 
equations are highlighted below:

Here, αt is a weighting factor used to address class imbalance, also present in standard cross-entropy loss 
implementations, γ ≥ 0 is a tunable focusing parameter and pt is the predicted probability of the ground truth 
class. We used values of αt = 0.25 and γ = 2 , as reported and optimized in previous  work44. Preliminary experi-
ments were also conducted, iterating across αt = 0.25, 1, and inverse class frequency as well as iterating across 
γ = 1.5, 2, 3 and 4 , before arriving at the optimal choices of αt = 0.25 and γ = 2 . The preliminary experiments 
and the rationale for the choices are highlighted in Fig. 7.

(1)FOC
(
pt
)
= −αt

(
1− pt

)γ
log

(
pt
)

pt =

{
p, forclass = 1
1− p, otherwise
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Here, ω is the weight matrix for quadratic penalization for every pair i, j  ( ωij =
(i−j)2

(C−1)2
 ), C is the number of 

classes, O is the confusion matrix represented by the matrix multiplication between the true value and prediction 
vectors, and E is the outer product between the true value and prediction vectors.

Here σ is the sigmoid function, ŷ is the model’s output, and y is the level-encoded ground truth.
Three balancing strategies were evaluated to deal with the dataset’s class imbalance: weighting the loss func-

tion, modifying the loading sampler, and rebalancing the training and validation sets. These strategies were only 
applied during the training process and were compared against training without balancing. To emphasize the least 
frequent labels, one approach was to apply weights to the loss function in proportion to the inverse of the occur-
rence of each class label. A second approach was to reweight the loading sampler to present images associated 
with each label equally as well as with specific weights—2:1:1, 1:1:2, or 1:1:4 (Normal : Gray Zone : Precancer+). 
The final balancing strategy, henceforth termed “remove controls”, involved randomly removing “normal” (class 
0) women from the training and validation sets and reallocating them to “Model Selection Set”/“Test Set 1”, in 
order to better rebalance the training and validation set labels; in this approach, a total of 2383 women (4555 
images) from the initial train set, and 410 women (780 images) from the initial validation set were reallocated 
to the test set. The final class balance in the train and validation sets for the “remove controls” balancing strat-
egy amounted to ~ 40% normal: 40% gray zone (including GL, GM, and GH): 20% precancer+ (Supp. Table 3).

Finally, we evaluated multiple approaches to dropping layers during training to alleviate overfitting and 
regularize the learning process by randomly removing neural connections from the  model47. Spatial dropout 
drops entire feature maps during training: a rate of 0.1 was applied after each dense layer for the DenseNet mod-
els, and after each residual block for the ResNet and ReNest models. The Swin Transformer models were used 
as implemented  in43. Monte Carlo (MC) dropout was additionally implemented, which can be thought of as a 
Bayesian  approximation48 generated by enabling dropout during inference and averaging 50 MC samples. MC 
models in this work refer to models trained using dropout combined with the inference prediction derived from 
the 50 forward passes. Additionally, we conducted 20 repeats of individual model runs and plotted histograms 
highlighting the distribution of standard deviation of the model predicted continuous score and class at the image 
level in Fig. 8. The variability between repeats is negligible, as highlighted on Fig. 8.

Statistical analysis
Our model selection approach (Fig. 2) consisted of three stages, each utilizing model predictions from the “Model 
Selection Set”/“Test Set 1”. After selection of the 10 best models following stage III, we further evaluated their 
performance in “Test Set 2” to confirm results from the “Model Selection Set”/“Test Set 1”.

In Stage I of our model selection approach, we evaluated models based on their ability to classify pairs of 
cervical images reliably and repeatedly, termed the repeatability analysis. We calculated the QWK values on 

(2)QWK =

∑
i,j ωijOij∑
i,j ωijEij

(3)Lcoral = log(σ (ŷ))y + log(1− σ(ŷ))(1− y)

Figure 7.  Preliminary experiments investigating various values for the αt and γ parameters in the focal 
loss equation, highlighting the rationale behind optimized values of αt = 0.25 and γ = 2 , which were also 
reported as optimized values in Lin et al.44 Here, we iterated across αt = 0.25, 1, and inverse class frequency  
("weights") and γ = 1.5, 2, 3 and 4 . Both (a) and (b) illustrate Bland–Altman plots (top panel) and continuous 
score histograms (bottom panel), highlighting both repeatability and relative class discrimination across the 
various parameter choices. In (a), γ is held constant, and αt (0.25, inverse class frequency) and the method of 
reduction (mean, sum) are iterated. In (b), αt and the method of reduction are held constant, while γ (1.5, 2, 3, 
4) is iterated. Overall, the results indicate that increasing γ leads to improved repeatability (as indicated by the 
narrower 95% limit of agreement (LoA) on the Bland Altman plot) but slightly poorer class discrimination (as 
indicated by the narrower score range in both the Bland Altman plot and the histogram); changing αt and/or the 
method of reduction has relatively less effect on repeatability and class discrimination. The best overall balance 
between the two is achieved with αt = 0.25 and γ = 2 , consistent with Lin et al.44.
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the discrete class outcomes for paired images from the same woman and visit for all models, calculating the 
mean, median, and inter-quartile range of the QWK for each design choice. We subsequently ran an adjusted 
multivariate linear regression of the median QWK vs. the various design choice categories and computed the β 
values and corresponding p-values for each design choice, holding the design choice with the highest median 
QWK within each design choice category as reference. This allowed us to gauge the relative impacts from the 
various design choices within each of the model architecture, loss function, balancing strategy, dropout, and 
ground truth categories.

In Stage II of our approach, we evaluated classification performance based on two key metrics: (1) Youden’s 
index, which captures the overall sensitivity and specificity, and (2) the degree of extreme misclassifications; 
this is termed the classification performance analysis. We computed both sets of metrics for each of the design 
choices within each design choice category. Our choice to include misclassification of the extreme classes (i.e., 
precancer+ classified as normal or extreme false negative, and normal classified as precancer+ or extreme false 
positive) as metrics was motivated by the importance of these metrics for triage  tests49. Similar to the repeatability 
analysis, we calculated the mean, median, and interquartile ranges for these metrics, as well as conducted separate 
multivariate linear regressions of each of the three median statistics vs. the various design choices categories; we 
computed the β values and corresponding p-values holding the design choice with the lowest median Youden’s 
index within each design choice category as reference. This allowed for comparison across design choices overall 
and within each design choice category.

In Stage III of our model selection approach, we selected the best individual models determined by their 
ability to further stratify the risk of precancer associated with each of four groups of oncogenic high-risk HPV-
types. HPV screening is known to have an extremely high negative predictive  value50,51, and our approach was 
motivated by the goal of designing an algorithm to triage HPV positive primary screening. The HPV types were 
grouped hierarchically in four groupings, in order of decreasing  risk52: (1) HPV 16; (2) HPV 18 or 45; (3) HPV 
31, 33, 35, 52, 58; and (4) HPV 39, 51, 56, 59, 68. In order to assess the ability of a model to further stratify HPV 
associated risk, we ran logistic regression models on a binary precancer+ vs. < precancer variable. These models 
were adjusted for hierarchical HPV type group and the model predicted class. We subsequently calculated the dif-
ference in AUC between the model adjusted for both predicted class and HPV type group and the model adjusted 
only for HPV type group and highlighted the 10 models with the best additional stratification (Table 4, Fig. 4).

Finally, we computed additional classification performance metrics (1. % precancer+ as normal; and 2. % 
normal as precancer+), and repeatability metrics (1. the % 2-class disagreement between image pairs; and 2. 
QWK values, on the discrete class outcomes for paired images across woman) for each of the top 10 models 
on “Test Set 2” (Table 5, Fig. 5), in order to further confirm the performance of these models. Additionally, to 
aid better visualization of predictions at the individual model level, we generated Fig. 6 which compares model 
predictions across 60 images for each of the top 10 models. To generate this comparison, we first summarized 
each model’s output as a continuous severity score . Specifically, we utilized the ordinality of our problem and 
defined the continuous severity score as a weighted average using softmax probability of each class as described 
in Eq. (3), where k is the number of classes and pi the softmax probability of class i.

score =

k∑

i=0

pi × i

Figure 8.  Histograms highlighting the distribution of standard deviations of the model continuous score (top) 
and model predicted class (bottom) at the image level across 20 runs, for each of two representative models, 
where (a) model # 36 and (b) model # 77. For both models (a) and (b), model predictions are derived from 
“Model Selection Set”/“Test Set 1” (left) and “Test Set 2” (right) respectively. These results indicate that model 
predictions are consistent across repeat runs, within each model configuration and test set; this is highlighted by 
the large density of standard deviations of the model predicted class at the image level near 0 (meaning that for 
a given model configuration, the predicted class of an image remains relatively constant across repeat runs) and 
the small maximum standard deviation around 0.08 – 0.1 (meaning that the model predicted continuous score 
of an image also changes minimally across repeat runs, and certainly not enough to propagate to a resulting 
change in predicted class).
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Put another way, the score is equivalent to the expected value of a random variable that takes values equal 
to the class labels, and the probabilities are the model’s softmax probability at index i corresponding to class 
label i . For a three-class model, the values lie in the range 0 to 2. We next computed the average of the score for 
each image across all 10 models and arranged the images in order of increasing score within each class. From 
this score-ordered list, we randomly selected 20 images per class, maintaining the distribution of mean scores 
within each class, and arranged the images in order of increasing average score within each class in the top row 
of Fig. 6, color coded by ground truth. We subsequently compared the predicted class across the 10 models for 
each of these 60 images (bottom 10 rows of Fig. 5), maintaining the images in the same order as the ground truth 
row and color-coded by model predicted class. This enabled us to gain a deeper insight and to compare model 
performance at the individual image level.

Data availability
The code used to train and generate results can be found at https:// github. com/ QTIM- Lab/ cervi cal_ cancer. For 
requesting materials, please contact Syed Rakin Ahmed. The cervical datasets are not publicly accessible due to 
patient privacy restrictions but may be made available upon reasonable request.
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