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Effective hybrid search technique 
based constraint mixed‑integer 
programming for smart home 
residential load scheduling
Esam H. Abdelhameed 1*, Samah Abdelraheem 2,3, Yehia Sayed Mohamed 3 & 
Ahmed A. Zaki Diab 3

In this paper, the problem of scheduling smart homes (SHs) residential loads is considered aiming to 
minimize electricity bills and enhance the user comfort. The problem is addressed as a multi‑objective 
constraint mixed‑integer optimization problem (CP‑MIP) to model the constrained load operation. 
As the CP‑MIP optimization problem is non‑convex, a novel hybrid search technique, that combines 
the Relaxation and Rounding (RnR) approach and metaheuristic algorithms to enhance the accuracy 
and relevance of decision variables, is proposed. This search technique is implemented through two 
stages: the relaxation stage in which a metaheuristic technique is applied to get the optimal rational 
solution of the problem. Whereas, the second stage is the rounding process which is applied via 
stochastic rounding approach to provide a good‑enough feasible solution. The scheduling process 
has been done under time‑of‑use (ToU) dynamic electricity pricing scheme and two powering modes 
(i.e., powering from the main grid only or powering from a grid‑tied photovoltaic (PV) residential 
power system), in addition, four metaheuristics [i.e., Binary Particle Swarm Optimization (BPSO), 
Self‑Organizing Hierarchical PSO (SOH‑PSO), JAYA algorithm, and Comprehensive Learning JAYA 
algorithm (CL‑JAYA)] have been utilized. The results reported in this study verify the effectiveness of 
the proposed technique. In the 1st powering mode, the electricity bill reduction reaches 19.4% and 
20.0% when applying the modified metaheuristics, i.e. SOH‑PSO and CL‑JAYA, respectively, while 
reaches 56.1%, and 54.7% respectively in the 2nd powering scenario. In addition, CL‑JAYA superiority 
is also observed with regard to the user comfort.

Abbreviations
DSM  Demand side management
SHs  Smart homes
PV  Photovoltaic
ToU  Time-of-use dynamic electricity pricing
RnR  Relaxation and rounding approach
HEMS  Home energy management system
BPSO  Binary particle swarm optimization
SOH-PSO  Self-organizing hierarchical PSO
CL-JAYA   Comprehensive learning JAYA 
RES  Renewable energy sources
DAP  Day-ahead pricing
CPP  Critical peak pricing
RTP  Real-time pricing
PAR  Peak-to-average ratio
GA  Genetic algorithm
WDO  Wind driven optimization
BFA  Bacterial foraging optimization
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EVs  Electric vehicles
LOT  Length of operation time
SOC  State-of-charge
MIP  Mixed-integer problem
CP  Constraint programming
RnR  Relaxation and rounding scheme
LP  Linear programing

List of symbols
Li, Lu,Lf   Set of interruptible, uninterruptible, and fixed loads
L  Set of the SH’s residential loads
Efh(t),Eih(t),Euh(t)  Hourly power consumed by all the fixed, all the interruptible, and all the uninterruptable 

loads, respectively
Elf (t),Eli(t),Elu(t)  Power rating of each fixed, interruptible, and uninterruptable loads
EfD,EiD,EuD  Daily consumed power by fixed, interruptible, and uninterruptable loads
ETH(t)  Hourly energy required by all the SH’s loads
ETD  Daily total energy required by all the SH’s loads
Sl(t)  ON–OFF state function of SH’s loads
EcG(t)  The imported energy from the utility grid at a time-slot t
ES(t), EcS(t),ESS(t)  The total generated solar energy, the consumed solar energy by the SH’s loads, the sur-

plus solar energy at a time-slot t
CT  The total cost of the electricity supplied by the utility at any time-slot t
CTD  The daily cost of the electricity delivered by the utility
ξ(t)  The dynamic pricing signal
DT  The total delay time of all loads
Te,uns  The ending times of load task in case unscheduled scenario
Te,sch  The ending time of load task in case scheduled scenario
Tuser  The allowed time period in which the load should complete its task
Ts  The sampling time
S  The feasible region of the decision variables
Sr  The relaxed region of the decision variables
J(t)  The objective function of the scheduling problem
x∗i   Solutions of the relaxed problem
x̃i  The approximate solution of the original problem
w1, w2  Weight in objective function
Xi
j,,k,X

i+1
j,k   Position vector of kth particle at i and i + 1 iterations

Vi
j,,k,V

i+1
j,k   Position vector of kth particle at i and i + 1 iterations

r1  r6 : Random numbers between 0 and 1.
c1,c2  Two parameters to pull the current solution for the local and the global best positions
w  Weight of the particle’s momentum
z  Standard normal random variable
τj,k,i  The kth candidate for the jth decision variable during the ith iteration
τj,k,i′  The updated value of τj,k,i

Energy is one of the worthy resources in everyday life. However, human consumption of energy, i.e., energy 
demand, increases gradually over time. In 2020, global residential building’s operations accounts for 22 percent of 
global energy  consumption1,2, which is considered a large part of the overall percentage of energy consumption. 
High energy consumption of residential buildings has critical consequences on the economy and grid reliability. 
In this aspect, more enhanced management methodologies should be adopted to overcome such challenge. In 
the literature this problem has been handled via integrating Demand Side Management (DSM) systems with the 
traditional grids to transfer the traditional power networks into smart ones. This transition is combined with 
integrating Renewable Energy Sources (RES) into the grid, leading to offer number of advantages like increased 
efficiency and sustainability of the  grid3. Recently, Smart home (SH) technologies have been presented as a 
promising solution to conventional power system problems. Smart homes with appropriate sizing and efficient 
energy management systems have the ability to solve such problems, leading to more efficient, reliable, sustain-
able and low carbon energy infrastructures. Further, due to their features, i.e., home automation, security, energy 
efficiency, productivity enhancement, user comfort enhancement, and energy savings, SHs technologies have a 
potential spread in the upcoming  future4,5.

It is noticed from the literature that, for managing the energy consumption in the smart grids, applicable 
dynamic pricing schemes were introduced instead of the flat rate pricing schemes. These electricity tariffs offer 
different time-based pricing rates e.g. Time-of-Use (ToU) pricing, Real-Time Pricing (RTP), Critical Peak Pric-
ing (CPP), and Day-Ahead Pricing (DAP)6–9. In ToU pricing scheme, the price rate varies related to the time in 
the day, whereas, the rate in DAP pricing is provided by utilities depending on deals for setting supply–demand 
balance in hourly intervals. However, the price rate in RTP scheme is the rate of real electric power delivery 
varying from hour to hour.

The demand side management is considered a key technology in the SHs and smart grids for providing 
economic electricity bills, and enhancing the user  comfort10. Energy demands can be managed efficiently by the 
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DSM through sharing the allowed real-time information between the consumer, residential power system, and 
the utility grid, which helps in keeping the supply and demand of electricity in balance with consideration of the 
dynamic electricity tariff and user comfort. Through DSM adaptation, the customers have the ability to reduce 
their energy consumption during on-peak periods and shift it to the non-peak periods in response to dynamic 
pricing rates, which is called demand  response11–13. The demand response program has two major features: the 
first one arises from utility viewpoint as providing the Peak-to-Average Ratio (PAR) minimization capability 
resulting in more stability of the grid, while the second feature is allowing the consumers to consume their 
high-peak energy during low-peak hours of the grid leading to low electricity  bills13,14. In the literature, many 
recent works have been conducted on DSM and SHs technologies discussing how to keep control on electricity 
consumption through optimal design and programming. All these studies have common objectives of mini-
mizing costs, reducing PAR, maximizing customer comfort, reducing carbon emissions (based on RES integra-
tion into the smart grid). Whereas several solutions were introduced to address the SHs’ appliance scheduling 
problem based on metaheuristic optimization techniques.  In13,14, the authors suggested efficient integration of 
RESs with battery storage systems for solving the energy management issue, and reducing electricity bills, PAR 
and carbon emissions. The obtained load scheduler and controllers of the energy storage system management 
were designed depending on metaheuristic techniques i.e., the genetic algorithm (GA), wind driven optimiza-
tion (WDO), BPSO, bacterial foraging algorithm (BFA), and hybrid approach of GA, WDO, and PSO.  In15, for 
getting the DSM objectives, the authors introduced optimal home energy management controllers. The study 
was done on a single and multiple homes under the RTP and Critical Peak Pricing (CPP) schemes. The authors 
designed the controller based on constrained optimization utilizing heuristic algorithms i.e., GA, WDO, harmony 
search algorithm (HSA), and the genetic harmony search algorithm which enhanced the search efficiency and 
dynamic capability to obtain better solutions comparing to the other techniques. The authors  in16 applied a Home 
Energy Management System (HEMS) based on a pricing-based demand response considering user satisfaction. 
The authors incorporated various household appliances; in addition they involved energy storage system and 
distributed energy resources. Further, they developed an adequate energy consumption model for different SHs’ 
appliances; the introduced HEMS offered solutions with various user satisfaction levels.  In18, BFA and PSO-based 
energy management system were utilized in the DSM framework to accomplish its objectives. Sattarpour et al.19 
suggested multiple integration linear programming approaches for residential loads scheduling. The main objec-
tives of the study were the cost reduction and load curve linearization, however, user comfort was not taken into 
consideration. The authors  of20 suggested GA to implement optimal DSM strategies for SHs’ energy demand 
management. The authors discussed the operational power of household appliances; however no RESs were 
considered in this study. The obtained results were compared to those of WDO, GA outperforms the WDO in 
terms of energy cost and PAR reduction which are reduced by 29.0% and 36.2%, respectively.  In21, a smart load 
management system based on evolutionary techniques was suggested to schedule the energy of a residential SH 
in response to a Time-of-Use (ToU) dynamic pricing rate. The authors introduced a model for the smart HEMS 
where the evolutionary techniques were implemented to solve the scheduling problem for two different operating 
scenarios: the 1st is supplying the SH from the utility grid only whereas the 2nd scenario depends on integrating 
a photovoltaic (PV) system to the residential microgrid.  In22, a programmable energy management controller 
based on heuristic approaches was presented to simultaneously regulate energy consumption in residential 
buildings for reducing PARs, carbon emissions, and user discomfort. The proposed building model depends on 
PV panels as a renewable energy source. The authors suggested different heuristic optimization techniques for 
the controller design such as GA, BPSO, ACO, WDO, BFA, and hybrid GA-PSO. In order to manage the power 
usage of IoT-enabled residential building smart appliances, reduce electricity bill, and enhance user comfort, 
the authors  of23 suggested a wind-driven bacterial foraging scheme, which is a combination of two algorithms 
i.e., wind-driven optimization (WDO) and bacterial foraging optimization (BFO).

Motivated by the aforementioned literature works and aiming for home automation, economic electricity 
bills and user comfort, this study targets designing an optimized load scheduler for smart homes. The designed 
systems have been simulated under ToU dynamic pricing scheme. Besides, a PV residential power system has 
been integrated to the SHs’ powering network to reduce the dependability on the utility grid and confirm the 
effectiveness of renewable resources utilization on achieving the research objectives. The main contributions of 
this research can be summed up as follows:

(1) For reducing the electricity cost while enhancing the consumers comfort, this paper studies the employ-
ment of combined mixed-integer programming with constraint programming (CP-MIP) on the problem 
of smart home residential loads scheduling to optimally estimate a day-ahead scheduling of the residential 
loads while modeling the constraints of the load operation.

(2) As the CP-MIP is a non-convex optimization problem, a novel hybrid search technique has been employed. 
This technique combines Relaxation and Rounding (RnR) approach and metaheuristic algorithms and is 
implemented through two stages: the relaxation stage, in which a metaheuristic algorithm is applied to 
get the optimal rational solution of the problem, whereas, the second stage is the rounding process which 
is applied via stochastic rounding approach to provide a good-enough feasible solution of the scheduling 
problem.

(3) Two modified metaheuristics approaches are applied on the relaxation and rounding scheme i.e., Self-
Organizing Hierarchical PSO (SOH-PSO) and Comprehensive Learning JAYA algorithm (CL-JAYA), while 
the obtained results are compared with those of the original algorithms i.e., the Binary Particle Swarm 
Optimization (BPSO), and the JAYA algorithm.

(4) Incorporating plug-in electric vehicles (EVs) as electrical loads of future smart homes with real-time charg-
ing profiles. The EVs are modeled as fixed and interruptible loads for fast and normal charging, respectively.
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(5) The proposed approach is appealing not just for smart homes load scheduling problem, but for any mixed-
integer real-world applications.

The rest of this article is organized as follows: Section “Architecture of the proposed smart HEMS” presents a 
study on the smart home technology and the architecture of the proposed smart HEMS including modeling of 
the residential Loads, EVs, PV system, user comfort, and the pricing rates. The design of smart scheduler includ-
ing the problem formulation and the proposed solution is described in Section “Formulation of load scheduling 
problem”, whereas in Section “Proposed smart load scheduling design methodology”, the proposed relaxation 
and rounding technique for smart scheduler design is discussed. In Section “Modified metaheuristics for the 
scheduling problem”, modified optimization techniques for smart load scheduling are provided. Section “Results 
and discussion” discusses the simulation results. Finally, the research is concluded in Section “Conclusion”.

Architecture of the proposed smart HEMS
As stated previously, smart home technology has been raised as a solution for the traditional power plant issues 
seeking to reach future smart cities. The consumed energy in the SHs is managed via scheduling the control-
lable loads according to a smart scheduler built in the HEMS i.e., the designed DSM functions to schedule the 
connection times (ON–OFF operation) of specific controllable loads that are comprised in the SHs. Commonly, 
in addition to the smart scheduler, the overall HEMS architecture includes smart meters and smart sensors, 
as depicted in Fig. 1, which are mostly utilized in monitoring and controlling the energy consumption in SHs 
depending on collecting energy data, performing energy analysis, and consequently managing the energy usage 
of different controlled appliances. In addition, plug-in EVs which are considered basic electrical loads of future 
SHs are considered in this study. The smart meters perform advanced functions such as power quality monitor-
ing and supplying real-time information to utility and users via bi-directional communication i.e., providing 
the pricing rates and load demand signals transformation between the user and the utility. Sensors embedded in 
the appliances provide the required information for managing the consumed  energy24; information flow signals 
are indicated as dash-dot black lines in the figure. The smart scheduler controls the SHs’ electric loads, i.e., the 
controlled appliances and plug-in EVs, relying on the pricing rate signal, load demand, and customer prefer-
ences, the control signals are indicated in the figure as dashed blue lines. The smart scheduler collects ToU tariff 
signal information as well as power flow to be inputs of the optimization techniques which are designed to get 
the best solution that meets the scheduling objectives. Depending on the energy-supplying scenario, the energy 
demand is met by the utility grid (1st powering scenario) or on-grid PV system (2nd powering scenario). The 
power flow is indicated in Fig. 1 as solid black lines. In the following, more details concerning the modeling of 
the understudy problem are discussed.

Residential loads in a typical smart home
The residential electrical loads of a smart home can be classified based on the manner of their operation as 
schedulable and non-schedulable loads. The non-schedulable loads (fixed loads) are those loads that their opera-
tion does not accept interruption or shifting processes i.e., their Length of Operation Time (LOT) and its starting 
times cannot be changed. In other words, On/Off operation of the fixed loads is done according the as-needed 
basis, i.e., at the request of the user, which means they have unpredictable operating patterns. Laptops, print-
ers, lights, refrigerator, and hairdryers are examples of these loads. In counterpart, the schedulable loads are 
controllable loads and have predictable operating patterns. Washing machines, cloth dryer, and water heater, 
and air conditioners are examples of the schedulable loads. Moreover, in accordance with the impact of supply 
interruption on tasks, the schedulable loads can be categorized into interruptible (elastic loads) and uninter-
ruptible loads. The interruptible loads are those loads that can be shifted or interrupted during the operating 
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Figure 1.  Smart HEMS overall architecture.
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time, such as dish washers, water heaters, washing machines, and clothes dryers. These loads have unidentified 
but limited LOTs which is determined by the smart scheduler. Whereas, the uninterruptible schedulable loads 
are those loads that can be delayed or advanced but do not accept to be interrupted during the operating time 
as they have identified LOTs, such as ovens and fans. Smart schedulers have to schedule these loads between 
customer’s predefined time-slots, accordingly, DSM techniques must be developed to manage complexities of 
the scheduling process, such as operation time intervals, and to provide the ability to process different types of 
controllable loads with varying features, such as power consumption, LOTs, and pattern of  operation21. In this 
research, the optimal scheduling process includes all the schedulable load types i.e., the interruptible and the 
uninterruptible appliances in addition to normal charging plug-in EVs, which have been addressed as inter-
ruptible electric loads. However, the non-schedulable loads such as fixed appliances and fast charging plug-in 
EVs, which has been addressed as fixed electric load, have not been considered during the optimization process.

According to the predefined user’s needs and constraints, the scheduling process is applied during N-hours 
time duration, which can be expressed as, t ∈ τ = {1, 2, . . . . . . . . . ,N} . The understudy SH is designed to con-
tain diverse sets of loads e.g., a set Li = {li1, li2, . . . . . . . . . , lin} of the interruptible loads where |Li| = n , a set 
Lu = {lu1, lu2, . . . . . . . . . , lum} of the uninterruptible loads where |Lu| = m , and a set Lf = {lf 1, lf 2, . . . . . . . . . , lfq} 
of the fixed loads where 

∣
∣Lf

∣
∣ = q . Subsequently, the total loads can be grouped in one set L = Lf ∪ Li ∪ Lu where 

|L| = n+m+ q . Each load l ∈ L has its own demanded energy for completing its task under predefined operat-
ing conditions. For a day-ahead estimated scheduling of the residential loads, the value of N has been taken as 
24 i.e., the scheduling process is adjusted as 24-h time duration with hourly sampling. The equations used to 
model the scheduling problem in this study, i.e., Eqs. (1) to (13), are modified versions of those found in the 
 literature15,17. Description of all utilized residential loads and their power ratings, daily usage, and allowed period 
of operation according to user preferences are given in Table 1. The total power consumed by all the fixed loads, 
all the interruptible loads, and all the uninterruptable loads at a time-slot t ∈ τ (i.e., hourly consumed power) 
can be expressed by Eqs. (1), (2), and (3), respectively.

where Elf  represents the power rating of each fixed load l ∈ Lf  , Eli represents the power rating of each interrupt-
ible load l ∈ Li , Elu represents the power rating of each uninterruptible load l ∈ Lu , and Sl(t) is the ON–OFF 
status of the load at the time-slot t ∈ τ , which can be defined by (4),

The hourly consumed energy by all residential loads ETH(t) can be defined at a time-slot t ∈ τ as:

where the daily consumed energy by all residential loads ETD is given as:

(1)
Efh(t)

∣
∣
t∈τ

=

∑

l∈Lf

Elf · Sl(t)

(2)Eih(t)|t∈τ =

∑

l∈Li

Eli · Sl(t)

(3)Euh(t)|t∈τ =

∑

l∈Lu

Elu · Sl(t)

(4)Sl(t) =

{
0 if the load isOFF
1 if the load isON

(5)ETH (t)|t∈τ = Efh(t)+ Eih(t)+ Euh(t)

Table 1.  Parameters of the household smart loads.

Loads Power rating (kw) Daily usage (hrs) Non-scheduled operating pattern Operating time window for the scheduling process

Non-schedulable loads

 Lights 1.5 24 All the day 1:00 am:12:00 pm

 Refrigerator 1 24 All the day 1:00 am:12:00 pm

 Nissan EV Shown in Fig. 2 1 8:00 am:9:00 am 1:00 am:12:00 pm

Schedulable un-interruptible loads

 Oven 3 3 [1:00 pm:4:00 pm] 12:00 am:8:00 pm

 Fan 0.7 6 [1:00 pm:7:00 pm] 1:00 am:12:00 pm

 AC 5 11 [2:00 pm:1:00 pm] 1:00 am:8:00 pm

Schedulable interruptible loads

 Washing machine 1 3 [2:00 am:3:00 am, 2:00 pm:4:00 pm] 1:00 am:12:00 pm

 Cloth dryer 4 8 [2:00 am:6:00 am, 10:00 am:12:00 am, 10:00 pm:12: pm] 1:00 am:12:00 pm

 Water heater 4.5 8 [2:00 am:3:00 am, 5:00 am:6:00 am, 9:00 am:10:00 am, 6:00 
pm: 11:00 pm] 1:00 am:12:00 pm

 Tesla EV Shown in Fig. 2 5 [6:00 pm:11:00 pm] 1:00 am:12:00 pm
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The daily power consumed by all the fixed loads, all the interruptible loads, and all the uninterruptable loads 
are given by Eqs. (5), (6), and (7), respectively.

Electric vehicles as future loads of smart homes
Demand for integrating plug-in EVs chargers into power grids becomes essential nowadays as the EVs are 
expected to be typical loads in power systems in the near future. When an average-use EV is considered, for 
example a 25 km daily travel range with a 0.1428 kWh/km energy consumption rate, the estimated daily energy 
consumption is 3.57 kWh. When this EV is charged at 6 kW power, it is found that, one average-use EV is power 
consumer compared to home electric appliances, e.g., air conditioners and water  heaters25. Given this, EVs inte-
gration into microgrids necessitates proper attention in order to reduce its impact on the power grid stability. 
For domestic outlet charging and standard charging stations (less than 5 kW on-board chargers), EVs can be 
charged in a few hours, usually overnight. Recharging EVs with a domestic plug into a regular residential home 
socket may take 8 to 10 h. Whereas charging at standard station installed at home, EVs may take 4 to 6 h. More 
powerful stations (5 to 50 kW on-board chargers), called semi-fast charging station, have the ability to reduce 
the charging time compared to recharging at home, i.e., the full charge range takes around one and half hour. 
While in order to cut down the charging time greatly, fast charging mode is required in which high-power sta-
tions (at least 50 kW off-board chargers) can charge an EV efficiently in under an hour, i.e., from 30 min to an 
hour, or occasionally a little more based on the charger and the  EV26–28. In this study, two plug-in EVs have been 
integrated to the SH, the first one is a Nissan Leaf EV, which has 226 Miles of range, and comes with a 62 kWh 
Lithium-Ion battery pack. The Nissan Leaf is charged in a fast charging mode (took around 52 min) from 50 to 
100% battery State-of-Charge (SOC) and addressed as a fixed load. While the second EV is a Long Range Tesla 
Model 3, which has 300 miles of range and comes with a 75 kWh Lithium-Ion battery pack. Tesla is charged in a 
normal charging mode from 10 to 90% SOC and addressed as an interruptible load in this study. The real-time 
charging rates of these integrated EVs are shown in Fig. 2.

(6)ETD =

N∑

t=1

ETH (t)

(7)EfD =

N∑

t=1

Efh(t)

(8)EiD =

N∑

t=1

Eih(t)

(9)EuD =

N∑

t=1

Euh(t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Charging Time (Hr)

0

5

10

15

20

25

30

35

C
ha

rg
in
g
R
at
e
(k
w
)

Nissan Leaf: Fast charging
Tesla S: Normal charging

Figure 2.  Real-time charging Rate for the understudy electric vehicles.
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The red line shows Nissan’s rate of charge in kilowatts (kW) while the blue line shows Tesla’s rate of charge 
in  kW29. Daily, the Plug-in Tesla EVs is assumed to arrive at the SH at 6:00 pm, where its charging process is 
conducted through normal charging mode (for 5 h) during the day, however the charging process of Nissan EV 
is conducted when requested during the day through a fast charging mode (for 55 min).

Electricity pricing rates
Different pricing levels are commonly defined during the day by the utility for ToU rates to reflect the saving 
energy value. High-priced-level tariff is defined for the high-peak hours; this level is known as on-peak tariff. 
While a pricing level known as off-peak tariff (low-priced-level) is applied during low-demand hours. The former 
pricing level offers highest electricity cost while the later level offers the lower electricity cost. Intermediate pric-
ing levels may be applied during the day. ON the other hand, feed-in tariff is a policy tool offered by energy retail 
companies to promote investment in renewable energy sources via encouraging householders to be small-scale 
producers of PV energy aiming for gaining economic profits. In this study, one summer day pricing has been 
given as ToU with three tariff levels ranges from the on-peak tariff to the off-peak tariff which have been defined 
in order as 17.0 cents/kWh, 11.3 cents/kWh, and 8.2 cents/kWh. The pricing levels are shown in Fig. 3 as follows:

The Off-Peak hours are assigned between 7 pm to 7 am at all day weekends and holidays which are indicated 
in the figure by green shaded areas, the Mid-Peak hours are assigned between 7 to 11 am and 5 pm to 7 pm 
which is indicated in the figure by yellow shaded areas. Finally the On-Peak hours are assigned between 11 am 
to 5 pm which is indicated in the figure by red shaded  area30. Moreover, a flat price is assumed to be 11.0 cents/
KWh, whereas a flat rate feed-in tariff is applied regardless of the time of day, it is assumed to be 4.8 cents/kwh.

Photovoltaic residential system
A photovoltaic residential system of 10.0 KW is installed in the understudy SH, this energy source has no ability 
to supply the whole amount of electricity demanded by the SH’s loads. The solar system is utilized to alleviate the 
stress on the utility grid especially at high-peak hours (daytimes with highest rates for electricity). The problem 
of SH’s residential loads scheduling has to be solved respecting to the estimated day-ahead PV  generation31. The 
estimated solar energy over the day per time unit in a sunny summer day is shown in Fig. 4. It is noticed from 
the figure that, the generated solar energy covers the on-peak and the mid-peak pricing regions (shown in the 
figure as red and yellow shaded areas, respectively) indicating that integrating a PV system to the power network 
positively impacts the electricity bill pricing.

For the designed on-grid PV system, energy flows back-and-forth to and from the utility grid at a time-slot 
t ∈ τ depending on the demand and the solar radiation conditions (i.e., the generated solar energy), simultane-
ously. The designed HEMS utilizes the best of the power generated by the PV system, thus the consumed solar 
power EcS(t) can be expressed by (10). The generated solar energy may be less or more than the demand ET (t) 
at a time-slot t  . In the former case, the designed HEMS imports energy EcG(t) from the utility grid while in the 
latter case the HEMS exports the surplus solar energy ESS(t) directly to the utility grid and/or sold to another 
customer in the power network.

where fmin(a, b) is a function for returning the smallest value from two values a and b , and ES(t) is the total solar 
generation at time-slot t ∈ τ . Based on the dynamic pricing signal ξ(t) , the hourly cost CTH(t) of the electricity 
that is delivered by the utility grid is obtained by (11) whereas the daily cost CTD is calculated by (12).

(10)EcS(t) = fmin(ES(t),ED(t))
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User comfort
Commonly, householders have the desire that the residential loads complete their tasks promptly within a 
specified time periods. However, due to some issues in the smart powering systems such as dynamic pricing, 
high-peak hours, communication delay between the utility and the HEMSs, and loads priority, the customers 
may endure waiting time for loads’ tasks completion. On the other side, there is a trade-off between cost reduc-
tion and user comfort as customers give significant concern to cost saving. In order to attain reduced electricity 
bill while paying attention to user comfort, householders ought to optimally control their controllable loads via 
utilizing smart scheduler.

Generally, user comfort can be expressed as the waiting time for load tasks completion. In this study, the 
concept of the waiting time has been considered as the user’s waiting time for completing a load task. Basically, 
there is no waiting time for the fixed loads as their operation must be started and ended directly at user request. 
The total waiting time DT can be formulated as the summation of the delay times of the uninterruptible and 
interruptible loads. The total delay time of all loads DT can be estimated by Eq. (13)

where te,sch and te,uns are the ending times of load tasks in case scheduled and unscheduled scenarios, respectively.

Formulation of load scheduling problem
As the electricity pricing tariffs are decided by the retail company while the consumer has no ability to modify 
them, cost saving can be only obtained via scheduling customers’ loads in response to the pricing levels during 
the day i.e., shifting their demand from on-peak hours to off-peak hours. This can be achieved via utilizing smart 
residential load schedulers which are control programs that provide the ability to run the residential controlled 
loads on and off during the day for financial incentive and lower electricity bills, while the consumption patterns 
of the loads are predefined by the user according his preferences. The electricity cost is calculated based on the 
consumed energy and the dynamic electricity pricing tariff (ToU) which is briefly mentioned in the introduc-
tion section. Two powering scenarios for the SH’s loads has been nominated in this study. The first scenario is 
powering from the utility grid only whereas in the second powering scenario an on-grid PV residential system 
has been utilized.

Commonly, real-world optimization problems include different competing design objectives that cannot be 
fully achieved as a  result32,33. In this study, the main objectives of the scheduling problem are simultaneously 
increasing the saving through reducing the utility bill and keeping the user comfort through reducing the waiting 
time, besides, a compromise between electricity bill cost and user comfort has been tried. As the multi-objective 
optimization is challenging programming because of the existence of uncertainties and trade-offs between the 

(11)CTH (t)|t∈τ = EcG(t) · ξ(t)

(12)CTD =

N∑

t=1

CTH (t)

(13)DT =

∑

l∈(Lu∪Li)

(te,sch − te,uns)
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problem’s objectives, many researches were conducted in the literature on developing multi-objective optimiza-
tion  techniques23  and34, such as multi-objective particle swarm optimization and multi-objective wind-driven 
optimization techniques. Searching approaches of those techniques were applied for problems with non-integer 
decision variables but not for that combine integer and non-integer decision variables i.e., they were designed to 
find the optimal solutions without considering the integral constraints of the decision variables. The understudy 
problem has been addressed as a multi-objective constraint mixed-integer optimization problem. The problem 
objectives are prioritized according to householder needs and constraints through applying the weighted sum 
strategy, which is a mathematical formulation that has a feature to provide a satisfying solution depending on 
how an objective is weighted in the overall objective function.

A weighted sum multi-objective function, J(t) , of the scheduling problem has been used where boolean 
variables have been assigned to show whether the loads are ON or OFF. J(t) is expressed mathematically as:

where S =

{

Du|l∈Lu ∪ S(t)
∣
∣
l∈Li

}

subject to:

where w1 and w2 are two weighting factors, Ts is the sampling time, Nmax is an integer number, and Tuser is an 
allowed time period in which the load should complete its task, this period is decided according to user prefer-
ences. As the optimization process minimizes J(xi) value, the solution approaching the optima. Whereas the 
optimization process will be terminated if it is no longer possibility to minimize the bill cost while maximiz-
ing the user comfort simultaneously under the prescribed constraints. Normally, the weights are appointed by 
choosing their values by trial and error in the range from 0 to 1 such that their summation is equal to 1. One of 
the deficiencies of the weighted sum strategy is that there is no specific method for weights value determination.

As discussed earlier, the utility-decided dynamic pricing and a day-ahead predicted load operating conditions 
and constraints are utilized to solve the residential load scheduling as an optimization problem over the next 
24 h. The objective function of this problem should be minimized subject to linear and integrality constraints 
on some or all of the decision variables, so that this optimization problem can be considered a discrete opti-
mization problem in which the integrality constraints lets the designed program to capture the discrete nature 
of the decisions, i.e., the on/off status S(t) of the interrupted loads at each time step which represent a boolean 
constraints in the problem. In addition, the delay time of the uninterrupted load Du which is integer multiples 
of the sampling time Ts is also considered integrality constraints.

Proposed smart load scheduling design methodology
Generally, discrete optimization problems can be linear or nonlinear problems, the former comes with linear 
constraints and linear objective functions while the latter comes with nonlinear constraints and/or nonlinear 
objective functions. From the formulation and solution algorithms viewpoints, discrete optimization problems 
can be categorized as pure-integer, mixed-integer, discrete non-integer, and zero–one  problems35. Thereby, the 
under study problem can be classified as Mixed-Integer Problem (MIP). In addition, as assignment of the deci-
sion variables that satisfy certain constraints is required, this problem can be classified also as Constraint Pro-
gramming (CP) Problem. Accordingly, the combined MIP and CP (CP-MIP) approach has been utilized to model 
the scheduling problem i.e., load operation constraints such as interruptible and uninterruptible operations. 
Generally, CP-MIP optimization problems are non-convex36, so that the scheduling problem can be described 
as nonlinear CP-MIP problem. Relaxation and Rounding (RnR) scheme is commonly applied as a searching 
scheme to solve such problems for getting the best feasible optimal solution. This algorithm is adopted to map 
real variables to  discrete37–39. In this research, modified metaheuristic algorithms have been employed to perform 
the relaxation process. These algorithms generate candidate solution that may or may not satisfy the integrality 
constraints i.e., real-valued candidates are generated during updating the current candidates for the next popula-
tion. Therefore, aiming at obtaining feasible candidate elements that satisfied the integrality constraints to be 
included in the updated population a developed programming has been proposed through applying the second 
process in the RnR scheme which is the rounding criterion. The basis of an RnR-based CP-MIP program is shown 
in Fig. 5. The key insight behind this approach is as follows: at first the under study optimization problem is 
formulated as a CP-MIP model. Second, relaxation concept is applied to the original CP-MIP problem to have 
a MIP program which is a linear programing (LP). In the literature, there are two relaxation  techniques40–42: 
function-relaxation in which the objective function of the optimization problem is bounded with a function that 
is easier to deal with such as a convex function, whereas the second relaxation technique is the constraint-
relaxation in which the set of feasible solutions is enlarged in such a way that the objective function J(xi) can be 
efficiently minimized over the enlarged set. In this study, the latter relaxation technique is adopted such that the 
wider set of decision variables is chosen to be a set of real numbers which can be obtained by eliminating the 
integrality constraints to let the candidates to take on non-integral values. That is, for each decision variable 
xi ∈ S where S =

{

Nd |l∈Lu ∪ S(t)
∣
∣
l∈Li

}

 , the constraints that restrict the decision variables to be integer are 

(14)minimize J(xi) = w1 · CTD + w2 · DT , ∀xi ∈ S

S(t)|l∈Li =

{
0 for OFF state
1 for is ON state

Nd |l∈Lu ∈ {1, 2, . . . . . . . . . ,Nmax},where Du = Nd · Ts and Nmax · Ts = 24− TLOT ,s

∀l ∈ L,TLOT ,s ⊂ Tuser
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relaxed to let the decision variables to be located in a real-valued region that including the constraints. Third, 
the resulting LP is solved to allow fractional (rational) optimal solution. To this point, if the obtained decision 
variables (fractional optimal solution) have integer values, then no more process is required. While if one or 
more variables have non-integral solutions, then an excessive optimization process (round criterion) is dedicated 
to those variables in order that their values are more tightly constrained, thus, the solution that satisfies all of the 
integrality constraints is found. As the feasible domain of the LP is wider than the feasible domain of the CP-MIP, 
the optimal value of the LP will not be worse than the optimal value of the MIP. So that, the rounded solution is 
not necessarily optimal for the original problem, however it is not so far from optimal i.e., the rounding algorithm 
searches for solutions that are good-enough given any other  instance40–42.

To summarize: in order to get efficient (exact or approximate) solutions for SH’s loads scheduling problem, 
the following strategy has been suggested:

1. Formulate combinatorial optimization problem as CP-MIP to minimize the objective function

  Subject to

2. Derive LP from the CP-MIP by removing the integral constraints, which is called an LP relaxation i.e., relax 
the constraint xi ∈ {0, 1} to xi ≥ 0 and Nd ∈ {1, 2, . . . . . . . ,Nmax} to the inequity 0 ≤ Nd ≤ (Nmax + 1).

3. Continue to minimize the same objective function, but over a (potentially) larger set of solutions.

  Supposing that there is a relaxed set Sr such that Sr is a superset of S , i.e., S ⊆ Sr , then solve min
xi∈Sr

J(xi).
4. Search for optimal LP solution using efficient algorithm. For example, solve the linear relaxation of the CP-

MIP efficiently utilizing metaheuristic techniques for linear programming, and let x∗i  denotes an (efficiently 
selected) optimal solutions over the relaxed set Sr which are indicated in Fig. 5 by red X signs.

(a) If the obtained solution has integral values, then it is a solution to the CP-MIP and all is done. Let Jopt 
denote the optimal objective function value on the relaxed set; i.e., Jopt = J(x∗i ) , then the followings 
are true:

– For each xi ∈ S there is a bound Jopt ≤ J(xi).
– If x∗i ∈ S then the bound is tighten and Jopt = J(xi).

(b) If the obtained solution has fractional values, then rounding procedure has to be applied to transform 
the fractional solutions to integral solutions i.e., somehow round the obtained best local solution x∗i  
of the relaxed problem to get an approximate solution x̃i of the original problem which is indicated 
in Fig. 5 by bold black dots.

minimize
xi∈S

J(xi)

xi ∈ {0, 1}

Nd ∈ {1, 2, . . . . . . . ,Nmax}

minimize
xi∈Sr

J(xi)

Relaxation by 

metaheuristics 

Constraints 

Unfeasible 

solution 

Integral points in 

the feasible 

region 

Best feasible 

solution 

Feasible region 

Real-valued 

candidates 

Figure 5.  RnR-based non-convex CP-MIP optimization.
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  At this step, the approximation algorithm is applied for the understudy CP-MIP problem by employing 
stochastic rounding process which is a form of rounding procedure that randomly rounds the number up or 
down to one of the two nearest numbers based on a given  probability43,44. In this study, the rounding process 
is implemented to map the obtained best solution x∗i ∈ Sr back to a solution x̃i that is actually feasible for S 
depending on a probability criteria with equally chance i.e., rounding the non-integral values to appropriate 
integers with a switching probability of 0.5. The random rounding, defined by (15), provides the optimization 
strategy the power to search the best feasible solution randomly at the rounding  process43. The best feasible 
solution is represented in Fig. 5 by a hollow red circle. Furthermore, during the optimization process, to force 
every candidate solution of the optimization process to be allocated with a value different from the value of 
other candidates in the population, all different constraint concepts ought to be applied. Thus, the assigned 
decision variables must be an ordering or permutation of the predefined integers.

where ⌊·⌋ is the round of a number toward the negative infinity.

Modified metaheuristics for the scheduling problem
The proposed RnR scheme has the feature of guarantee getting a feasible best solution in the predescribed 
domain. In this study, to efficiently find a feasible good-enough solution under the predefined constrains, 
advanced metaheuristics have been combined with RnR strategy. In the following subsections, four proposed 
metaheuristic techniques, i.e., the BPSO, SOH-PSO, JAYA, and CL-JAYA, are introduced for the relaxation pro-
cess. In addition, these techniques are combined with stochastic rounding procedure to search for good-enough 
feasible solutions. Generally, for all the applied metaheuristics in this study, the optimization algorithms iterate 
until one of the termination criteria is met i.e., the algorithms examine the termination criteria to terminate 
the optimization process in case of the values of the global best solution are close enough in some sense for a 
pre-specified number of iterations, a solution with an appropriate objective function value is obtained, or the 
maximum number of iterations is attained.

Binary particle swarm optimization
The BPSO is an iterative approach which is introduced by Kennedy and  Eberhart45. This algorithm is applicable 
to a very wide range of practical applications. BPSO depends on the concept of population of  particles46–48. The 
optimization process is started by allocating initial values to the position and velocities of the particles. BPSO 
lets the particles (candidate solutions) to group around the optimum solution space to get the best particle (best 
solution)49. Let nv is the decision variables number and ns particle number. The particles converge toward the 
optimal solution positions during the optimization process. Each particle is tested during ni iterations with the 
best particle in its neighborhood (local best solution). Accordingly, the best position among local particles at the 
ith iteration is Plij.k , whereas the global best position is Pg ij.k . For k = 1, 2, 3, . . . , ns , j = 1, 2, 3, . . . , nv , and 
i = 1, 2, 3, . . . , ni , the velocity of the kth particle of the jth decision variable in the multidimensional search space 
at the ith iteration, Vi

j,k , is updated as it moves around the search space as given by (16), whereas the its position 
vector, Xi

j,k , is updated by (17)48,49.

where Vi+1
j,k  and Xi+1

j,k  represent the updated velocity and position of the particle for the next iteration, respectively, 
r1 and r2 are random numbers between 0 and 1. The two parameters c1 and c2 are used to pull the current solution 
for the local and the global best positions, respectively. The parameter w is the particle’s momentum weighting 
factor. After updating the solutions, the rounding process should be executed to provide feasible solutions under 
integrality constraints. The accepted feasible solutions obtained by this procedure are employed to update the 
population for the next generation. The flow chart of BPSO algorithm is given in Fig. 6, for RnR-based CP-MIP 
optimization.

Self‑organizing hierarchical PSO optimization
The Self-Organizing Hierarchical PSO algorithm is a modified version of the Particle Swarm Optimization 
technique which has been used in many studies. The SOH-PSO has enhanced solution quality, convergence 
speed, and escaping capability from trapping in local optima. These features characterize the SOH-PSO technique 
without decreasing the convergence speed of the best  solution50. This is obtained  in51,52, through replacing the 
global and overall search part obtained from the best value so far 

(

Pg
i
j.k

− Xi
j,k

)

 in (11) with the best non-personal 
local solution 

(

Pg
i
j.k

+ Pr
i
j.k

)

− 2Xi
j,k

53,54. According to the previous adjustment, searching process utilizing SOH-
PSO is expressed by Eqs. (18)–(21) as  follows50:

(15)x̃i = f r(xi) =

{ ⌊
x∗i
⌋
with a probability of 0.5

⌊
x∗i
⌋
+ 1with a probability of 0.5

(16)Vi+1
j,k = w · Vi

j,k + c1 · r1 ·
(

Pl
i
j.k − Xi

j,k

)

+ c2 · r2 · (Pg
i
j.k

− Xi
j,k)

(17)Xi+1
j,k = Xi

j,k + Vi+1
j,k

(18)Vi+1
j,k = ci1 · r1,k ·

(

Pl
i
j.k − Xi

j,k

)

+ ci2 · r2,k · ((Pg
i
j.k

+ Pr
i
j.k)− 2Xi

j,k)
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where z is a standard normal random variable, ci is the selecting changing at the ith iteration which is selected 
in a range between the initial changing value ci and final changing value cf  i.e., ci ∈

[
cicf

]
 . The following step is 

applying stochastic rounding procedure on the obtained solutions to search solutions in the feasible region. The 
best candidates during the rounding process are used to update the population for the subsequent generation. 
The flow chart of SOH-PSO approach is a modified version of BPSO flow chart as illustrated in Fig. 6.

JAYA optimization technique
One of the main features of JAYA optimization technique is that the optimization process only considers the 
common control parameters that are the size of the population and the parameters of termination criteria, while 
the algorithmic-specific parameters are not required. For a problem that has a number nv of decision variables 
and ns candidate solutions (population size), the kth candidate of the jth decision variable, τj,k,i , is updated during 
the ith iteration depending on the integer approximated values of the best and the worst values of the candidates. 
The updating criteria is defined by the following  equation55,56:

(19)ci1 = |z|(z·c
i)

(20)ci2 = |1− z|(
ci

1−z )

(21)ci =
(
cf − ci

)
·

i

imax
+ ci

τj,k,i′ = τj,k,i +
∣
∣r1 ·

(
τj,b,i −

∣
∣τj,k,i

∣
∣
)
− r2 ·

(
τj,w,i −

∣
∣τj,k,i

∣
∣
)∣
∣
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Figure 6.  Flow chart for the BPSO and SOH-PSO techniques for RnR-based CP-MIP.
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where τ ′

j,k,i represents the updated value of τj,k,i which is forced to be a positive number via updating the previous 
solution by a positive value, r1 and r2 are two random numbers for the jth variable during the ith iteration which 
have values between 0 and 1. The term " r1 ·

(
τj,b,i −

∣
∣τj,k,i

∣
∣
)
 " expresses the inclination of the solution to be moved 

toward the best solution, while the term " r2 ·
(
τj,w,i −

∣
∣τj,k,i

∣
∣
)
 " expresses the tendency to avoid the worst solutions. 

To this step the updated value of the solution τ ′

j,k,i has a real value which is only permitted as it achieves a better 
fitness value. Therefore, for obtaining integer feasible candidates under the integrality constraints, a random 
rounding procedure is applied on the candidates. The best and worst accepted solutions during the rounding 
process, i.e., τj,b,i and τj,w,i , are utilized to update the population for the next generation. The flow chart of JAYA 
algorithm is given in Fig. 7.

Comprehensive learning JAYA algorithm
In this research, a modified version of the JAYA technique named comprehensive learning JAYA (CL-JAYA), 
has been proposed aspiring to improve the global search capability of JAYA algorithm through a comprehensive 
learning mechanism and application of three learning methodologies: the 1st methodology depends on the 

(22)∀k = 1, 2, 3, . . . , ns, j = 1, 2, 3, . . . , nv and i = 1, 2, 3, . . . , ni
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Figure 7.  Flow chart of Jaya optimization based on rounding procedure.
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current best and worst candidates, same as classical JAYA in (22). The 2nd methodology depends on the mean 
solution of the current iteration to enhance the chance of JAYA to get-away from trapping into local minimum 
and to improve searching ability which is achieved with the optimization progress; most of the candidates are 
grouped around the current best candidate τj,b,i (performing the local exploitation). The locations of the rest 
candidates (lagged candidates) are away from the current best candidate (performing the global exploration). 
During the searching process, at the ith iteration, the mean position of the population τm proceed constantly 
toward the best solution, as once the optimization process is trapped into a local minimum, τm guides the lagged 
candidates allowing higher opportunity to CL-JAYA to get-away from this trap. Taking that into consideration, 
the 2nd learning methodology depends on the current best candidate and the mean position of the current 
population to update the solution for the next population as expressed by (23)57:

where r3 and r4 are two random numbers between 0 and 1, and τm can be defined as:

Note that r3 and r4 in (23) play the same role with r1 and r2 in (22). Furthermore, in the 3rd learning methodol-
ogy, the current best candidate is considered the guide to speed up CL-JAYA convergence, as expressed by (25):

where r5 and r6 are two random numbers between 0 and 1, and p and q are two random integer numbers between 
1 and ns whereas p  = q  = i . The third term in the right-hand side of (25) is used as a random perturbed value 
to avoid the case when τj,k,i is the current best solution, that case provides zero value to the second term of (25) 
leading to get no update for the next population. The previous three learning methodologies are necessary for 
improving JAYA searching process; so that they should be applied via switching probability criteria with equally 
chance i.e., same selected  probability57. Once the best local solution is obtained, a rounding procedure on the 
obtained best solution is applied to provide an acceptable solution in the feasible domain. The best candidate dur-
ing the rounding process is appointed to update the population for the next generation. The CL-JAYA algorithm 
has a flow chart same as shown in Fig. 7 while replacing the learning strategy (22) by the previous proposed 
switching probability-based learning strategies.

Results and discussion
This section reports the numerical simulation results of the designed smart HEMS which utilizes a modified 
RnR-based CP-MIP programming that depends on modified metaheuristic algorithms and constraint pro-
gramming for scheduling the operation of SH’s residential loads i.e., the controllable appliances and the plug-in 
EVs. The simulations have been conducted using MATLAB software to assess the effectiveness of the proposed 
smart scheduling strategies in improving the utilization of renewable sources, increasing the economic profit 
and enhancing user comfort. The household is considered under a ToU electricity pricing scheme for residen-
tial use, shown in Fig. 3. A model for a smart home has been introduced including eight smart appliances and 
two integrated plug-in EVs as illustrated in Table 1, where the simulations have been done for 24 h (day-ahead 
prediction) with an hour scheduling resolution. In this study it is assumed that: the day-ahead PV generated 
energy in Fig. 4 is accurately predicted. Whereas, the residential loads’ power ratings, daily usage, and allowed 
periods of operation according the user preferences are described in Table 1. Parameters of the applied BPSO, 
SOH-PSO algorithms have been determined according  to50, while those of JAYA and CL-JAYA algorithms have 
been set based  on57. All of the applied metaheuristic techniques, i.e., BPSO, SOH-PSO, JAYA, and CL-JAYA, show 
efficient performance in reducing the bill cost as compared to the unscheduled process. Overall, all the proposed 
techniques provide efficient smart loads scheduling with regard to cost reduction; however, there is a trade-off 
between cost reductions and user comfort. That is during optimization process, for giving more cost reduction; 
smart scheduler shifts most of loads other than fixed loads to the off-peak and/or mid-peak pricing regions, thus 
the waiting time of loads increases which directly impacts the user comfort. The evaluated findings show that 
the proposed RnR-based CP-MIP programming that depends on the proposed modified versions of PSO and 
JAYA algorithms outperform the other algorithms in terms of electricity bills cost and user comfort. Finally, in 
addition to evaluating ToU tariff effectiveness on transferring consumers loads from on-peak hours to off-peak 
hours, energy exporting tariff (feed-in tariff) shown in Fig. 3, has been evaluated. In the following lines results 
are shown for two operating scenarios: the first scenario is the operation before implementing the designed 
DSM whereas the second operating scenario represents the system operation with the DSM implementation. 
The first scenario is mentioned as "Unscheduled Case", whereas the latter one is mentioned as "Scheduled Case". 
A comparison has been mentioned regarding the followings: Energy consumption with and without integrating 
the PV system, electricity bill with and without integrating the PV system, PAR, total cost and overall waiting 
time. The characteristics of the proposed smart schedulers’ performance have been summarized in the Table 2 
in terms of daily energy consumption from the grid, total cost, convergence characteristic, Computational effi-
ciency and saving. Whereas, the best fitness value and the number of iteration needed to approach the optimal 
solution are two criterions used to measure the performance of the different applied metaheuristic algorithms. 
For the different applied metaheuristics during 100 iterations, the shown convergence characteristics of the best 
fitness values in Table 2 show that, under the 1st powering scenario, the best fitness value which is obtained by 
CL-JAYA is better than those of the PSO, SOH-PSO and JAYA algorithms, whereas its computational efficiency 
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∣
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is acceptable comparing to that of SOH-PSO algorithm. The PSO algorithm cannot avoid trapping into local 
optima. Where, under the 2nd powering scenario the best fitness values that obtained by SOH-PSO is better 
than those of the PSO, JAYA and CL-JAYA algorithms, whereas the SOH-PSO algorithm has fast convergence 
and its computational efficiency is higher than that of the other algorithms in the comparison. It is concluded 
that the precision and the efficiency of the modified algorithms are higher than those of the original algorithms. 
In the following subsections the simulation results are discussed in more details whereas Figs. 8, 9, 10, 11, 12, 
13 depict the findings.

Energy consumption
Scheduling of the SH’s loads for a complete one day (over 24-h time horizon) under the two powering scenarios 
and utilizing the proposed optimization algorithm is shown in Figs. 8 and 9. Under the 1st powering scenario, 
the hourly amount of the energy consumed by all loads is provided by the utility, as illustrated in Fig. 8. It is clear 
from the figure that, comparing to the unscheduled scenario the proposed smart schedulers have the ability to 
shift the loads to the low-peak and mid-peak pricing regions. In addition, during the non-peak hours (i.e., off-
peak and mid-peak hours), the maximum peak of the consumed energy is 20.2 kwh for the unscheduled case, 
while 21.3 kwh, 22.0 kwh, 25.8 kwh, and 27.5 kwh in case of applying SOH-PSO, CL-JAYA, JAYA, and BPSO, 
respectively. However, during the on-peak hours, the maximum amount of the consumed energy is 16.7 kwh for 
the unscheduled case, and 18.6 kwh for JAYA, but it is reduced to 13.9 kwh, 13.9 kwh and 7.5 kwh when applying 

Table 2.  Summary results. **Savings calculation is attributed to the cost in case of powering from the grid 
only, unscheduled case.

Optimization technique

Powering from the grid only Powering from the on-grid PV system

Unscheduled case

Scheduled case

Unscheduled case

Scheduled case

BPSO SOH-PSO JAYA CL-JAYA BPSO SOH-PSO JAYA CL-JAYA 

Daily energy consumption from the grid (Kw) 234.48 234.48 234.48 234.48 234.48 134.46 132.9 135.5 143.7 142.15

Total cost (cent) 2867 2351 2349 2310 2296 1483 1304 1257 1392 1297

Convergence characteristics (best fitness 
value) – 1296.3 1249 1270 1243.1 – 706 679.2 699.5 692.5

Convergence characteristics (no. of iterations) – 3 35 60 53 – 40 48 75 79

Computational efficiency (average time in s) – 6.74 5.84 6.17 7.82 – 5.94 7.38 5.36 6.32

Saving %** 0 17.9 18 19.4 20 48.2 54.5 56.1 51.4 54.7
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Figure 8.  Energy consumption (utility grid only).
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Figure 9.  Energy consumption (grid-tied PV system).
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Figure 10.  Electricity bill (utility grid only).
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SOH-PSO, CL-JAYA and BPSO, respectively. Indicating that, the proposed HEMSs (in the scheduling scenarios) 
successfully shift the load peaks from the on-Peak hours to the off-Peak hours which in turn is reflected on the 
bill price as will be discussed in the following sub-section.

For the 2nd powering scenario, when a 10.0 KW residential PV system is integrated to the SH’s power 
network, the costumer partially depends on the main grid to power the loads as they are powered from the 
PV system when available. This scenario provides the designed schedulers ability to flatten the pattern of the 
demand energy and reduce the peaks of the consumed energy which is reflected directly on the bill price and the 
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Figure 11.  Electricity bill (grid-tied PV system).
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PAR and consequently on the grid stability. The energy consumptions of the unscheduled and scheduled loads 
are indicated in Fig. 9 as hourly patterns (on-grid PV system powering scenario). It is noticed from the figure 
that, the maximum peak of the consumed energy during the non-peak hours is 16.7 kwh, 17.0 kwh, 22.3 kwh, 
and 25 kwh when applying SOH-PSO, BPSO, CL-JAYA, and JAYA, respectively, whereas it is 16.3 kwh in the 
unscheduled case. However for the unscheduled case, during the on-peak hours, the maximum amount of the 
consumed energy is 7.5 kwh, while it is 15.9 kwh, 3.9 kwh, 2.9 kwh, and 0.5 kwh for SOH-PSO, BPSO, JAYA and 
CL-JAYA, respectively, implying the effectiveness of renewables to reduce dependency on the utility grid. As 
summarized in Table 2, the daily energy consumption from the grid in the 1st powering scenario is 234.48 Kw, 
while it reduces to 134.46 Kw, 132.9 Kw, 135.5 Kw, 143.7 Kw, and 142.15 Kw in the case of the 2nd powering sce-
nario at unscheduled, BPSO, SOH-PSO, JAYA, and CL-JAYA, respectively. Although CL-JAYA accomplishes the 
highest dependency on the utility grid, but it comes after SOH-PSO in reducing the daily cost of the consumed 
energy as will be discussed in the next sub-section.

Electricity cost
Figure 10 illustrates the hourly electricity cost under the 1st powering scenario where the overall demanded 
energy is provided by the utility grid only. As described in Table 2, the daily cost of the consumed energy in the 
unscheduled scenario when powering from the grid only is 2867 cents which is decreased to 2351, 2349, 2310, 
and 2296 Cents while BPSO, SOH-PSO, JAYA and CL-JAYA optimization approaches have been applied respec-
tively. With regard to the total reduction percent of the electricity cost, CL-JAYA technique outperforms the other 
proposed techniques, as it provides a cost reduction of 20.0%, while BPSO, SOH-PSO, and JAYA accomplish up 
to 17.9%, 18.0%, and 19.4% respectively. Also, when a 10.0 KWh PV system is integrated to the SH power sys-
tem, the CL-JAYA offers higher electricity bill reduction comparing to the other proposed algorithms. Figure 11 
shows the hourly electricity bill cost with the integrated PV. From the calculations given in Table 2, the daily 
cost of the electricity bill is reduced to 1570 cents in case of utilizing CL-JAYA, 1475 cents with JAYA, 1610 cents 
with SOH-PSO and 1563 cents with BPSO. As it is clear from Table 2 and Fig. 11, the cost saving reaches 54.5%, 
56.1%, 51.4% and 54.7% in case of BPSO, SOH-PSO, JAYA and CL-JAYA, respectively. These results show that 
integrating of PV residential system to the powering network able to reduce the electricity bill up to 56.1% daily.

Peak‑to‑average ratio
The peak-to-average ratio of a load demand can be defined as the ratio of a user’s maximum demand to the 
average demand during a given time interval, as expressed by (26). PAR provides information that concerns the 
grid operation and the customers’ behavior regarding their energy consumption. Low PAR value improves the 
grid stability and decreases the electricity cost, while high PAR value weakens grid’s stability and reliability and 
increases the electricity  bills58. The daily PAR of SH’s loads � can be given as follows, when N is taken as 24 h:

Figure 12 shows the performance of the designed smart schedulers for the different utilized metaheuristic 
techniques on the subject of PAR. It is clear from the figure that, for both powering scenarios, PAR is decreased 
so far through implementing BPSO, SOH-PSO, JAYA and CL-JAYA comparing to the unscheduled case as the 
scheduling process flattens the load pattern throughout the day except the on-peak time.

(26)� =
max(ET (t))
∑N

1 ET (t)/N
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The obtained results for each powering scenario are depicted in Fig. 12. As it is clear from the table, PARs 
of the unscheduled case are 4.14 and 2.91 for the 1st and the 2nd powering scenarios, respectively; however 
in the scheduled case, the proposed SOH-PSO technique outperforms all the other techniques significantly as 
it achieves minimum PARs of 2.18 and 1.48 for the 1st and the 2nd powering scenarios, respectively, whereas, 
BPSO, JAYA and CL-JAYA provide 2.82, 2.64, and 2.25, respectively for the 1st powering scenario, and 1.54, 2.11, 
and 1.88, respectively for the 2nd powering scenario. These results indicated that grid stability can be improved 
with the proposed load scheduling and enhanced more with integrating renewables into the powering network.

User comfort
As discussed in Sect. 2, user comfort is evaluated based on waiting times for completing loads tasks, so that the 
worst case occurs when the user experiences long waiting times.. Commonly, user comfort is inversely related 
to the loads’ waiting times and electricity cost. In order to show to which extent the user’s convenience has been 
met by implementing the proposed smart schedulers, the total costs and the overall waiting times of the SH’s 
residential loads under ToU tariffs are shown in Fig. 13. For the 1st powering scenario, comparing to the other 
techniques BPSO offered longer overall waiting time (i.e., 51 h) while presents the more expensive electricity 
bill (i.e., 2351 cents), whereas, SOH-PSO allows the most reduced waiting times (i.e., 25 h), while CL-JAYA has 
minimum cost among the other techniques (i.e., 2296 cents). However, for the 2nd powering scenario, the CL-
JAYA presents a minimum overall waiting time (i.e., provides the most enhanced user comfort with 17 h waiting 
times) while BPSO displays the maximum waiting time of 27 h simultaneously with less saving in electricity bill 
(i.e., 1304 cents). The obtained results revealed that the objectives of the study can be met with the proposed load 
scheduling schemes especially with integrating renewables into the powering system.

Selling solar power back to the utility company
In case of a malfunction existence in the integrated solar system, the designed HEMS depends mainly on utility 
grid to power the SH otherwise the residential PV system is utilized. However, surplus generation occurs regularly 
as the produced energy from the PV system and the consumption do not match constantly. Exporting surplus 
power to the main grid is one of the ways to use surplus power from a solar system. Under the flat feed-in tariffs, 
customers are credited 4.8 cents per kilowatt hour of electricity exported to the utility via their local solar systems. 
For the selected day, the solar self-consumption ratio which indicate how much of the electricity produced by 
the PV residential system has been consumed by the household in case of unscheduled and scheduled scenarios 
utilizing BPSO, SOH-PSO, JAYA and CL-JAYA are 97.56%, 99.05%, 96.45%, 88.52%, and 90.06%, respectively. 
Subsequently, the financial gains (daily payback) from the retail company can be calculated as 12.01cents, 4.656 
cents, 17.46 cents, 56.46 cents, and 48.93 cents for the same cases, respectively. On the other hand, integrating 
energy sources from various local producers, such as wind or PV power systems, for serving all of the local users 
can be considered as a local grid (microgrid), hence the surplus solar energy can be shared with other local energy 
producers within the local grid. Thus, the local producers have the ability to sell the excess of the produced energy 
back to peers in the local grid, on a pay-per-use basis, which may provide more financial gains to the customers.

Conclusion
In this research, a smart load management system has been introduced to schedule daily consumer’s energy usage 
under ToU pricing tariff. The proposed model provides a day-ahead scheduling solution under two powering 
scenarios: the first is powering the SH’s residential loads from the utility grid only while the second scenario is 
powering them utilizing an on-grid PV residential system. The objectives of the optimized scheduling problem 
are reducing the electricity bill and enhancing user comfort. The steps of the proposed technique can be summed 
up as:

• The Demand Side Management (DSM) problem has been addressed as a multi-objective constraint mixed-
integer programming (CP-MIP) optimization problem.

• For enhancing the accuracy and relevance of decision variables, a modified metaheuristics-based Relaxation 
and Rounding (RnR) approach has been applied as a novel hybrid search technique to solve the understudy 
non-convex CP-MIP problem.

• The proposed metaheuristics are Binary Particle Swarm Optimization (BPSO), Self-Organizing Hierarchical 
PSO (SOH-PSO), JAYA algorithm, and Comprehensive Learning JAYA algorithm (CL-JAYA). These algo-
rithms have been applied to relax the CP-MIP to a linear programming to get an optimal rational solution.

• In order to provide a good-enough feasible solution of the scheduling problem, the rounding criterion is 
carried out via applying a stochastic rounding approach.

Numerical results reported in this research demonstrate that, compared to the unscheduled load case, all 
the proposed algorithms efficiently reduced the electricity bill. The daily energy consumption from the main 
grid in the 1st powering scenario is 234.48 Kw, while it reduced to 134.46 Kw, 132.9 Kw, 135.5 Kw, 143.7 Kw, and 
142.15 KW in the 2nd powering scenario at unscheduled, BPSO, SOH-PSO, JAYA, and CL-JAYA, respectively. 
Although JAYA and CL-JAYA accomplish the highest dependency on the utility grid, but they achieved the high-
est cost reduction of 19.4% and 20.0% respectively, while BPSO and SOH-PSO accomplished 17.9%, and 18.0% 
respectively. However, SOH-PSO accomplished the highest cost saving of 56.1%, comparing to 51.4% and 54.7% 
in case of BPSO, JAYA and CL-JAYA, respectively. In addition, the proposed SOH-PSO technique outperforms all 
the other techniques significantly as it achieves minimum PARs of 2.18 and 1.48 for the 1st and the 2nd powering 
scenarios, respectively. From the user comfort viewpoint, for the 1st powering scenario, the SOH-PSO allows the 
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most reduced overall waiting time (25 h). However, for the 2nd powering scenario, the CL-JAYA accomplishes 
the minimum overall waiting time (17 h) i.e., the most enhanced user comfort. The findings of this study are 
consistent with what was expected when integrating a PV residential system into the SH’s powering system, as 
the electricity bill has been reduced significantly with consideration of the user comfort. Moreover, excessive 
financial gains are expected in case of energy sharing with other SHs in the local power network.

As a future work, the authors plan to conduct an economic analysis for the practical application of the pro-
posed DSM system and build a prototype for assessing the feasibility of the system as a product for smart home 
energy management. Further, to evaluate the applicability of proposed scheduling model in a wider range of 
energy management systems, expanding this research by applying the developed CP-MIP on designing optimal 
energy management systems for multi-smart home power network with shared photovoltaic and battery storage 
systems is also targeted a future work.

Data availability
All data generated or analyzed during this study are included in this published article.
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