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Self‑paced graph memory 
for learner GPA prediction and it’s 
application in learner multiple 
evaluation
Yue Yun 1,2, Ruoqi Cao 3, Huan Dai 1,2, Yupei Zhang 1,2 & Xuequn Shang 1,2*

A scientific and rational evaluation of teaching is essential for personalized learning. In the current 
teaching assessment model that solely relies on Grade Point Average (GPA), learners with different 
learning abilities may be classified as the same type of student. It is challenging to uncover the 
underlying logic behind different learning patterns when GPA scores are the same. To address the 
limitations of pure GPA evaluation, we propose a data‑driven assessment strategy as a supplement to 
the current methodology. Firstly, we integrate self‑paced learning and graph memory neural networks 
to develop a learning performance prediction model called the self‑paced graph memory network. 
Secondly, inspired by outliers in linear regression, we use a t‑test approach to identify those student 
samples whose loss values significantly differ from normal samples, indicating that these students 
have different inherent learning patterns/logic compared to the majority. We find that these learners’ 
GPA levels are distributed across different levels. Through analyzing the learning process data of 
learners with the same GPA level, we find that our data‑driven strategy effectively addresses the 
shortcomings of the GPA evaluation model. Furthermore, we validate the rationality of our method for 
student data modeling through protein classification experiments and student performance prediction 
experiments, it ensuring the rationality and effectiveness of our method.

The advent of the digital era and the ensuing socioeconomic prosperity have brought about additional chal-
lenges for personalized education in meeting the technical demands of digital transformation. Additionally, the 
COVID-19 pandemic has further accelerated and expanded the ongoing digital transformation of educational 
 institutions1. Unfortunately, the personalized education system has been slow to respond to these demands, 
resulting in a failure to fulfill its main objective of producing professionals equipped with the skills demanded 
by the labor  market2. Moreover, the traditional GPA-based evaluation system has hindered the cultivation of a 
wide array of 21st-century skills, many of which cannot be adequately assessed through a single metric such as 
GPA (Grade Point Average)3. GPA is influenced by various complex factors, including grade inflation, which 
poses challenges for exceptional students to differentiate themselves based on GPA, and causes confusion and 
a lack of confidence among students with slightly lower GPA scores during their job search. Consequently, this 
can lead to inefficient allocation of human  resources4.

Diversity in student assessment has been extensively researched and explored in personalized education, par-
ticularly through the lens of multiple intelligence theory. According to Gardner’s theory of multiple  intelligences5, 
individuals possess multiple, relatively independent forms of information processing, each exhibiting unique 
aspects of their intelligence profile. This theory is gradually finding application in the teaching and learning pro-
cess, recognizing that students learn differently based on various instructional design  methods6. The aforemen-
tioned issues highlight the need for a personalized learning  system7. A critical demand that arises is the ability 
to predict students’ learning performance, including early forecasting of final GPAs or scores. In the digital age, 
learning analytics can leverage data and algorithms to forecast student learning progress and outcomes, enabling 
proactive  interventions7. Student learning performance prediction (SLPP) is an efficient, accurate, and neces-
sary method of data mining in education. It serves as an invaluable tool for teaching assistance and curriculum 
selection, aligning with students’ learning potential and cultivation goals.
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Definition 1 Distinctive Student (DS) is the student whose learning pattern is clearly different from others. 
And, DSD is the abbreviation of Distinctive student detection. Specially, this definition is with respect to the 
data aspect.

Many methods have been utilized for the task of predicting student learning performance (SLP), encom-
passing decision  trees8, k-nearest  neighbors9, the naive Bayesian  model10, and convolutional neural  network11. 
Furthermore, researchers have employed graph representations of observed educational  data12,13 in an effort to 
develop a suitable model that accurately predicts learners’ learning performance. While learning performance 
prediction is essential for personalized learning in personalized education, it is widely acknowledged that GPA 
alone is insufficient as an evaluation metric for  students14. It is crucial to pay attention to students who do not 
conform to traditional GPA models and whose unique characteristics are not captured by such models. How-
ever, few researches focus on these points. To address this, we introduce the concept of distinctive students 
(DS), who form a small fraction of the overall student population but possess valuable educational insights. DSs 
exhibit various learning and lifestyle patterns, ranging from high GPAs with minimal exercise to low GPAs with 
extensive exercise. Correctly identifying DSs is crucial for providing individualized instruction and developing 
more effective student evaluation methods. Drawing inspiration from standard regression models, we present 
the following analogy:

In Fig. 1, the black line represents the best fit for the observed points, with blue and red points deviating from 
it. Similarly, GPA prediction models strive to fit all students’ data as closely as possible, but DSs deviate from 
these models. Unlike outliers in a regression model, DSs are excellent candidates for personalized education. For 
example, students with low GPAs and high levels of physical activity may require specific support from teachers.

We propose organizing the educational data into a graph and utilizing the Graph Memory Network (GMN) 
 model15 to address these challenges. The GMN model is a significant variation of graph neural network (GNN) 
 models12,16,17, and it has demonstrated remarkable performance in learning graph representations and prediction 
tasks. Therefore, in this article, we propose a robust model based on the GMN model (regression model in Fig. 1) 
for fitting all learners (sample points in Fig. 1) and completing the task of GPA prediction. Subsequently, we 
obtain a well-trained GPA prediction model and the loss values of all samples. Finally, similar to identifying outli-
ers in Fig. 1, we complete the task of detecting abnormal students based on the obtained sequence of loss values.

However, according to the research of  Khasahmadi15, the GMN model performs poorly on the Collab data-
set. Analysis of the dataset reveals that the GMN model struggles to discover dense subgraphs and develop 
appropriate representations for graphs with dense communities. Unfortunately, graphs constructed with the 
educational data has a high edge-to-node ratio, resulting in dense communities. To address this weakness, we 
apply the self-paced learning (SPL) approach, a machine learning framework, to the GMN model. This leads to 
the development of the self-paced graph memory network (SPGMN), which aims to increase the efficiency of 
graph representation and enhance prediction performance. SPL in SPGMN assigns varying weights to training 
samples based on their difficulty, gradually introducing weighted samples into the training process from simpler 
to more complex ones. This method ensures smoother training for GMN models and helps them avoid local 
optimum solutions. Ultimately, SPL improves both the prediction performance of the GMN model and the 
detection performance of the DSD task.

In this paper, we focus on the student learning performance prediction (SLPP) and distinctive student detec-
tion (DSD) tasks. Then we aim to uncover insights hidden beneath the GPA metric by utilizing learning analytics 
and data mining to investigate the multiple evaluation in personalized education. To begin the study, we introduce 
self-paced learning (SPL) into graph memory networks (GMN) to improve the modeling of educational graphs. 
This leads to the proposal of a novel approach called the self-paced graph memory network (SPGMN) (i.e., Algo-
rithm 1) . Furthermore, we suggest the SPGMN-DSD (distinctive student detection based on SPGMN) method 
to detect distinctive students using a combination of SLPP and DSD tasks (i.e., Algorithm 2). This approach aims 
to uncover additional interesting information that is not captured by the GPA measure, while also improving 
interpretability by recognizing distinct students based on a trained SPGMN model. Finally, we construct the 
data-driven evaluation methods based on the results of the DSD task.

The contributions of our work are listed as follows:

Figure 1.  A simple example of resgression. The black line is the regression model that fits these samples. The 
red ones are outliers.
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• Using the SPL framework, the representation efficiency of the GMN model is strengthened. As a result, for 
the SLPP problem, we suggested the SPGMN approach.

• The combination of the SLPP and DSD tasks enhances the interpretability of distinctive students. Conse-
quently, this approach may provide more insightful findings than merely predicting accuracy. The SPGMN-
DSD framework, which is a data-driven multiple evaluation approach, allows for the detection of distinctive 
students. This framework can help explain various phenomena that are not accounted for in the GPA evalu-
ation framework, such as students with varying learning abilities achieving similar grades, and students with 
similar abilities receiving significantly different scores. Additionally, these findings can assist in identifying 
exceptionally gifted students (who achieve high grades with minimal practice) and students requiring imme-
diate assistance (who have poor performance despite extensive practice).

• The SLPP task’s experimental findings validate the anticipated SPGMN method’s improvement. The experi-
mental findings of the DSD task corroborate the concept that “GPA could not be the sole metric” from the 
standpoint of data science. Furthermore, the DSD task testing results reveal details behind unique students 
and give solid proof of personalized learning.

Related works
Student learning performance prediction
Student performance prediction is a core task in personalized education, and there have been many excellent 
related works in recent years. Zhang et al.18 summarized them as several methods, including traditional machine 
learning  methods19, kernel  methods20, collaborative filtering  methods21, methods based on neural  networks22,23, 
and so on. Among these methods, the neural network-based approach has attracted more extensive attention.

Nghe et al.24 investigated the decision tree and the Bayesian Network to predict the academic performance 
of undergraduates and postgraduates from two academic institutions. In their experiment, the accuracy of the 
DT is always 3–12% higher than the Bayesian Network. Psychology suggests that student evaluations are poten-
tially influenced by their behaviors. Xu et al.25 categorized students into three groups based on their detailed 
records of learning activities on MOOC platforms: certification earning, video watching, and course sampling. 
The authors subsequently developed a predictor, using Support Vector Machines (SVM)26, to predict the attain-
ment of certifications. Although these efforts have achieved significant results, the accuracy of predictions is not 
high. The introduction of deep neural networks has greatly improved the accuracy of predictions. Sorour et al.27 
conducted experiments using the Latent Semantic Analysis (LSA) technique and an ANN model, achieving an 
average prediction accuracy of approximately 82.6%. Luo et al.28 utilized Word2Vec and an ANN to predict stu-
dent grades in each lesson based on their comments. The experimental results demonstrated an 80% prediction 
rate for the 6 consecutive lessons and a final prediction rate of 94% for all 15 lessons.

Graph memory network
Memory layer
Based on the work of graph neural networks, Khasahmadi et al. define a memory layer, denoted as Ml , which 
is a parametric function that maps input query vectors of size dl from layer l in Rnl×dl to output query vectors 
of size dl+1 in Rnl+1×dl+1 . This mapping reduces the number of query vectors from nl to nl+1 . The input queries 
represent the node representations of the input graph, while the output queries represent the node representations 
of the coarsened graph. The memory layer performs two tasks: pooling, which involves jointly coarsening the 
input nodes, and representation learning, which involves transforming their features. Fig. 2 illustrates a memory 
layer, which comprises multiple arrays of memory keys (referred to as multi-head memory) and a convolutional 
layer. Given that there are |h| memory heads, a shared input query is compared to all the keys in each head. This 
comparison generates |h| attention matrices, which are subsequently combined into a single attention matrix 
using the convolutional layer.

GMN architecture
A Graph Memory Network (GMN) consists of multiple memory layers stacked on top of a query network, 
which generates the initial query representations without any message passing. Similar to set neural networks 

Figure 2.  The workflow of graph memory network  framework15.
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and transformers, the nodes in GMN are regarded as a permutation-invariant set of representations. The role of 
the query network is to project the initial node features into a latent space that represents the initial query space.

The GMN process for graph classification involves two steps: (1) clustering the nodes of each graph and gen-
erating a representation vector for each graph, and (2) classifying these representation vectors. Consequently, 
the total loss of GMN is the combination of two loss functions: an unsupervised loss, denoted as L (l)

KL , and a 
supervised loss, denoted as Lsup:

where n is the number of graphs, θ is a scalar weight, and L is the number of memory layers. For more details, 
please refer to this research  paper15.

Proposed work
Motivation
The evolution of personalized education has given rise to diverse educational demands, rendering the traditional 
approach of evaluating students using only the GPA criterion inadequate to meet these varying needs. Addition-
ally, it has led to the generation of a vast amount of educational data, including interaction data, learning envi-
ronment data, and more. Leveraging this substantial volume of data allows for the successful implementation of 
multi-assessment strategies for students, which enables greater achievement and recognition compared to relying 
solely on the GPA metric. In light of this, we propose a data-driven multi-assessment method, which is built upon 
an improved GMN framework. Our method is founded on the GPA metric, with a primary focus on not only 
adopting relevant auxiliary indicators as supplements to GPA but also ensuring the accuracy of GPA prediction.

Enhancing Learning Robustness The task of predicting student learning performance is a crucial aspect of 
personalized learning, and the GMN framework holds the potential to achieve remarkable breakthroughs in 
graph representation and prediction tasks. As highlighted  in15, GMN faces challenges when identifying graphs 
within densely connected communities, such as educational graphs. To enhance the resilience of the GMN 
framework, we adopt a two-step approach: initially learning from simpler samples to optimize parameters, and 
subsequently developing a more effective model capable of handling intricate data, including graphs with dense 
communities. Gradually incorporating increasingly complex samples during training fosters the generation of 
a more efficient model.

Distinctive Student Detection GPA is a widely used metric for evaluating students. However, according to edu-
cational experts, relying solely on a single GPA indicator is inadequate for evaluating students. And it is essential 
to prioritize students who deviate from typical GPA models, specifically, those who are considered distinctive.

Personalized learning aims to go beyond solely evaluating exam scores by assessing students’ individual 
learning  progress29. Moreover, our aspiration to foster comprehensive student development drives us to examine 
the underlying principles of the GPA model and to prioritize the support and recognition of diverse learners. 
For instance, students who engage in extensive practice but struggle with their GPA may benefit from guidance 
from experienced professors to refine their learning strategies. Conversely, students who achieve high GPAs 
with minimal practice demonstrate their aptitude for grasping complex subjects. Thus, our research based on 
the distinctive student detection (DSD) task focuses on facts that the GPA statistic cannot capture. The indica-
tions concealed in these facts will be meticulously evaluated and developed as a supplement to the GPA metric 
in the task of student assessments.

Self‑paced graph neural network model
The concept of self-paced learning (SPL) integrates a self-paced function and a pacing parameter into the learn-
ing objective, enabling the optimization of sample order and model parameters. The proposed SPGMN model’s 
schematic diagram is presented in Fig. 3. Weight allocation is utilized to gauge the difficulty of each sample, with 
gradual inclusion of these weighted samples in training, starting from simple to complex. In this study, we inte-
grate a self-paced function into the learning objective of GMNs, allowing for joint learning of model parameters 
and latent weight variables. Specifically, the learning objective is formulated as follows:

where L GMN is the loss function of GMN refer to Eq. (1), w is its parameter, f (v; k) is a dynamic self-paced 
function with respect to v&k , and � is the age of the SPGMN to control the learning pace, while v is designed to 
indicate which samples involved into training data. Consequently, f (v; k) is designed to explore a more optimal 
and robust learning strategy for subsequent processes. As � gradually increases, the training data incorporates 
samples in a progressively more complex manner (as selected by v ), leading to the development of a more 
“mature” model.

The optimization of SPGMN
For ease of understanding, we will refer to the LGMN as ℓi in the following discussion. Additionally, we will use 
ℓ(w)/ℓ to represent y · log

(

1
g(x,w)

)

 . In this context, we define a self-paced regularizer f (v, �) = �( 12v
2 − v) , 

and wk as the parameters of g(·) in the kth iteration. The learning process of SPGMN consists of two main steps: 
identifying step and learning step, as illustrated in Fig. 3. The identifying step involves searching for an optimized 

(1)L GMN =

n
∑

i = 1
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N
∑
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L
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and robust learning strategy, where training samples are considered in increasing complexity from easy to com-
plex. The learning step, on the other hand, focuses on learning the representation of the graph structure based 
on the selected strategy.

Identifying step To obtain more optimized learning strategy, we need to calculate v∗(ℓi(wk), �) by solving the 
following problem:

Learning step In this step, we already obtain the fixed v∗i  and wk in the k-th iteration, thus, we obtain wk+1 by 
calculating the following expression for the next iteration.

Proposed algorithms
Algorithm of SPGMN
In Eqs. (3) and (4), the self-paced parameters, v and w , are optimized iteratively through step-wise updates until 
the convergence of the objective function or exhaustion of the samples. To determine the increasing pace, �k30, 
we predefine a sequence N = {n1, n2, n3, ..., nmax} , where ni < nj for i < j , representing the number of selected 
samples in the training process. Each nt indicates the number of samples to be selected in the t-th iteration, and 
nmax = n implies the involvement of all samples in training. In the t-th iteration, we determine Ls by sorting the 
loss function, LGMN , in ascending order and selecting the nt-th loss value as the estimate of �k . Therefore, �t 
can be represented as follows:

where Ls is obtained by sorting the loss L
GMN

 in ascending order.
We list the detailed steps in Algorithm 1 for a better understanding of the training process.

Data driven multiple evaluation
In this paragraph, we will demonstrate how to use the SPGMN model to accomplish the distinctive student detec-
tion (DSD) task and use its results as a supplement to GPA assessment. The details of the method are outlined in 
Algorithm 2. The output results of Algorithm 2, SPGMN-DSD (distinctive student detection based on SPGMN), 
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equation
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Teacher id 1 2 3 ……

Credit 2.5 3.5 4 ……
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Mechatronics

……

…
 

… … … …

School 

Course info

Student id 1 2 3 4 5 ……
Course1 78 67 - 67 56 ……

Course2 67 34 87 46 - ……

Course3 - - 78 67 - ……

Course4 - 79 99 - 68 ……

… … … … … …

……

Student info

Student graphs

Graph weights

Initialization

Figure 3.  The framework of the proposed SPGMN. Note, the loop marked in orange arrows stopped when all 
the samples are involved into traning.
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can be used to explain several phenomena that cannot be explained within the GPA evaluation framework: 1) 
Students with different learning abilities achieve the same grades; 2) Students with the same ability obtain sig-
nificantly different scores. Additionally, these results can be utilized to identify exceptionally talented students 
(who achieve high grades with minimal practice) and students in urgent need of assistance (who have poor per-
formance despite extensive practice). These conclusions mentioned above will greatly assist in the development 
of personalized learning and have also been validated in our subsequent experiments.

As discussed earlier, outliers exist in the dataset D , which are representative of distinctive students. We aim to 
identify these distinctive students by detecting outliers, specifically samples with larger training losses. Thus, in 
the initial stage, we train an SPGMN model for the SLPP task using the training data D . After a sufficient number 
of iterations, we obtain a trained model as well as a training loss list L = {≪1, ..., ℓn} , where ℓi represents the 
training loss of the ith sample. Notably, the list of losses for distinctive students (outliers) differs from the set of 
losses for common students (majority of training samples). To exploit this distinction, we first sort the α values, 
which are obtained by dividing the loss of a target student by the sum of all losses. Subsequently, we randomly 
select a breakpoint from the list of non-zero α values and create two series of α values. Finally, if these two series 
fail to satisfy the t-test, we identify the students corresponding to the series with larger α values as distinctive 

Algorithm 1.  Self-paced Graph Neural Network (SPGMN).

Algorithm 2.  Distinctive Student Detection Based on SPGMN (SPGMN-DSD).
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students. The detailed steps are provided in Algorithm 1. Additionally, we repeat the SPGMN-ASD algorithm 400 
times and consider the k students with the highest frequency of appearance as distinctive students, where k is 
the average of the 400 experimental results.

Theoretical analysis
Moreover, in this section, we conduct a theoretical analysis to evaluate the robustness of the proposed SPGMN 
model. For the sake of clarity, we denote ℓ(y, g(x,w)) as ℓ(w)/ℓ in the following discussion. The optimization 
strategy employed by SPGMN strictly adheres to a majorization-minimization algorithm, implemented on a 
latent objective. The loss function embedded in this latent objective bears similarities to a non-convex regular-
ized  penalty31,32. Considering this, we derive the optimal solution for v∗ in the SPGMN optimization process

It is worth noting that when �k = ∞ , the latent loss F�k (ℓ) reduces to the original loss function ℓ . Notably, 
F�k (ℓ) exhibits a pronounced suppression effect on large losses compared to the original loss function ℓ . Once ℓ 
surpasses a specific threshold, F�k (ℓ) becomes a constant. This phenomenon offers a rational explanation for the 
robust performance of SPGMN even in the presence of outliers. Samples with loss values exceeding the threshold 
do not influence model training due to their gradient being zero. As a result, SPGMN avoids incorporating noisy 
information from outliers during the learning process.

The integrative function of v∗(ℓ, �k) can be calculated by Eq. (6) as:

where c is a constant. Here, we focus on the calculation result of Eq. (7) :

Experiments
In this section, we first validate the effectiveness of our improved Graph Memory Networks (GMN) model on 
two public datasets, namely  Enzymes33 and  Collab17. Specifically, we will validate the effectiveness of introducing 
self-paced learning (SPL) into GMN using these two datasets. Next, we design an experiment to evaluate the 
improvement of the proposed Self-Paced Graph Memory Networks (SPGMN) using the OULAD and NPU-GPA 
datasets to predict student learning performance (SLPP). For the task of distinctive student detection (DSD), we 
aim to uncover novel insights that cannot be captured by the GPA metric alone using the NPU-GPA and OULAD 
datasets. The statistical information in Table 1 indicates that our datasets are balanced.

The datasets are summarized and described as follows:
The Enzymes dataset is designed for the prediction of functional classes of enzymes. It consists of 600 graphs 

representing enzymes, each belonging to one of six categories.
The Collab dataset aims to predict the field of a researcher based on their ego collaboration graph. It contains 

5000 graphs, which are divided into three classes.
The NPU-GPA dataset is used for predicting the final GPAs of students based on their course history scores. 

It includes 600 students from the School of Computer Science at Northwestern Polytechnical University. The 
students in the NPU-GPA dataset are divided into four categories based on their GPAs, specifically, GPAs rang-
ing from 1 to 4.

The OULAD dataset stands for the Open University Learning Analytics dataset. It provides information 
about courses, students, and their interactions with the Virtual Learning Environment (VLE) for seven selected 
courses, known as modules. For our study, we obtained a smaller dataset containing 538 students who enrolled 
in one particular course. This course includes 5 tests and one final examination. The 538 students in this dataset 
are classified into three categories based on their final examination scores, namely, fail, pass, and distinction.

(6)v
∗(ℓ, �k) = argmin
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Table 1.  Statistics information of datasets..

Datasets

Label NPU-GPA OULAD

Num

 1 150 178

 2 150 180

 3 150 180

 4 150 –
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Verification experiment
To evaluate the performance of SPGMN, we compare our method with the original  GMN15 and the graph kernel 
method, WL Optimal  Assignment16 on Enzymes and Collab datasets. Here, we follow the experimental protocol 
 in15 and perform 10-fold cross-validation and report the mean accuracy of overall folds.

It is important to note that the results of GMN and WL Optimal Assignment reported in the original GMN 
 research15 were adopted. We observed that WL Optimal Assignment outperformed GMN on the Collab dataset 
due to the presence of dense sub-graphs, which GMN is not effective in extracting near-optimal subgraphs from. 
However, in our experiments, our proposed SPGMN achieved better results than WL Optimal Assignment.

The results shown in Table 2 indicate the following: (1) Our proposed model, SPGMN, achieved better results 
compared to the GMN model, improving the performance on the Enzymes and Collab datasets by absolute 
margins of 2.34% and 3.38%, respectively. (2) In our verification experiment, SPGMN performed better than 
WL Optimal Assignment by an absolute margin of 2.82%. These findings indicate that SPGMN enhances the 
robustness of GMN and achieves improved prediction performance, which means that our method does effec-
tively improve the performance of the original GMN.

Student learning performance prediction experiment
To evaluate the improvement of proposed self-paced graph memory network (SPGMN) in student learning 
performance prediction (SLPP) task, we compared our SPGMN with the following baseline/SLPP methods 
on GPA-data: graph memory network (GMN)15, convolutional neural network (CNN)11, Long Short-Term 
Memory(LSTM)34 K-Nearest Neighborsna (KNN)9, decision trees (DTs)35, Naive Bayes (NBs)10. In the follow-
ing experiments, SPGMN and GMN share one set of parameters. At the same time, other compared methods 
obtain its best parameters, especially in the SPGMN model, the pace sequence N = {16, 32, ..., 528, 540} and � 
is calculated by Eq. (5) accordingly.

NPU-GPA dataset
In this study, a total of 600 students from four classes were analyzed using graph construction. In this graph, 
the nodes represent the courses that the corresponding students have enrolled in, and the top 5 related courses 
(determined by Euclidean distance) are connected with non-weighted edges. The objective is to predict the final 
GPAs (the GPAs after the last term) based on the data from the first k terms, where k is within the range of 1 to 7. 
The results of the SLPP task are presented in Table 3, while the trend of the prediction results is shown in Fig. 4.

From the analysis of Table 3 and Fig. 4, several important observations can be made. Firstly, our SPGMN 
model consistently outperforms other compared methods in all semesters, particularly the traditional prediction 
algorithm. Secondly, the advantage of the SPGMN model becomes more pronounced as the semesters progress. 
This could be attributed to the fact that as more samples are included in the training dataset, the trained model 

Table 2.  Mean validation accuracy over 10-folds.

Method

Dataset

Enzymes Collab

GMN 78.66 80.18

WL optimal 60.13 80.74

SPGMN 81.00 83.56

Figure 4.  Mean validation accuracy over 10-folds.
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encounters more complex samples. However, the SPGMN model effectively reduces the number of transitions 
within these complex samples. Thirdly, it is worth to note that the curve between the second term and third 
semester shows a sharp rise compared to other stages, indicating that the third term is crucial for obtaining a 
better GPA. This can be explained by the fact that students require time to adapt to the new environment and 
develop effective learning strategies in the first two terms. Additionally, more courses are available in the third 
term, which could contribute to better academic performance. Lastly, the accuracy of KNN drops from 44.83% 
in the first term to 37.50% in the last term. This decline can be attributed to the increased data dimensionality 
caused by taking more courses, leading to issues with dimensional disasters. Following Jerome Bruner’s spiral 
curriculum idea, students’ comprehension improves over time with ongoing teaching. As a result, their GPA and 
grades may fluctuate as they progress through the curriculum.

OULAD dataset
During a selected course, a total of 538 students interacted with the Virtual Learning Environment (VLE). 
We logged the daily interactions of all students, categorizing them into 11 different types based on the learn-
ing material they clicked on. Additionally, we recorded the scores of all 5 tests and one final examination. To 
reconstruct the learning process as accurately as possible, we constructed interactive graphs using the data from 
538 students. Each node in the graph represents one day’s interactive data and includes information about the 
corresponding test. The top 5 most similar nodes, as determined by Euclidean distance, are connected to each 
node through non-weighted edges.

The results displayed in Table 4 demonstrate that our proposed SPGMN method outperforms the compared 
methods. Both the NPU-GPA and OULAD datasets yielded experimental results indicating that the SPGMN 
method performs better than the original GMN algorithm. Consequently, we achieved a satisfactory outcome 
for the subsequent distinctive student detection (DSD) task.

Distinctive students detection
This section presents our experimental approach for the task of distinctive student detection (DSD). In order 
to evaluate the performance of SPGMN-DSD (distinctive student detection based on SPGMN), we conducted 
two experiments using the NPU-GPA7 dataset and the OULAD dataset. In these experiments, our focus was on 
identifying the distinctive students solely within the training dataset.

NPU-GPA dataset
The NPU-GPA dataset, a proprietary dataset from X, comprises scores from all courses and registration infor-
mation. However, detailed insights into the learning process remain inaccessible. In this section, we utilized the 
NPU-GPA7 dataset to identify distinctive students (DSs) within its 540 training samples.

Initially, a proficiently trained SPGMN model was derived from the SLPP experiment on the NPU-GPA7 
dataset. Subsequently, distinctive students were identified among the 540 students. As depicted in Fig. 5a, the 
distinctive series (red) and the common series (blue) exhibit a significant gap at the 511th point, indicating that 

Table 3.  Mean validation accuracy over 10-folds. Note, GPA-k means the data of first k terms of GPA-data.

Methods

Datasets

NPU-GPA1 NPU-GPA2 NPU-GPA3 NPU-GPA4 NPU-GPA5 NPU-GPA6 NPU-GPA7

KNN 44.83 42.83 40.17 45.00 40.67 36.83 37.50

DTs 49.83 50.50 59.50 59.83 60.67 61.00 60.33

NBs 35.17 40.83 55.83 54.17 51.00 50.50 50.33

CNN 69.83 68.83 70.00 72.33 74.17 77.83 79.67

LSTM 76.17 78.83 84.33 85.67 87.00 88.50 89.33

GMN 76.00 79.50 89.17 91.17 92.67 93.84 94.50

SPGMN 77.00 81.00 90.17 93.20 94.33 96.00 97.50

Table 4.  Mean validation accuracy over 10-folds. Note, OULAD-k means the data of first k test of OULAD. 
And, OULAD-6 means the data of 5 tests and the final exam.

Methods

Datasets

OULAD-1 OULAD-2 OULAD-3 OULAD-4 OULAD-5 OULAD-6

CNN 40.33 51.83 62.00 66.33 74.17 75.83

LSTM 48.25 62.15 69.64 74.57 80.78 81.16

GMN 52.04 64.34 72.64 77.57 83.59 84.96

SPGMN 53.26 66.23 75.47 79.62 85.29 86.85
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these two series originate from different distributions. Furthermore, Fig. 5b reveals that GPA alone is insufficient 
for student evaluation as distinctive students comprise individuals with varying GPAs.

Upon studying the 30 outliers, it was discovered that they do not represent errors but rather signify a notable 
event: the course selection strategy and learning pattern of distinctive students differ from those of common 
students. Specifically, mandatory courses in which students are required to enroll were excluded. As shown in 
Fig. 5c, common students (blue bars) tend to select non-major-related courses, such as the Basics of Finance for 
materials science and technology students. In contrast, distinctive students (orange bars) prefer major-related 
courses, such as Database for computer science students. When students enroll in more major-related courses, 
their learning patterns become more distinctive. Furthermore, Fig. 6 presents examples of the course selection 
of distinctive and common students, which are used to further validate the findings. The courses highlighted in 
red boxes are unrelated to the major and are general education courses. These observations suggest that learn-
ing patterns can complement GPAs evaluation framework: our method identifies individuals with a low GPA 
due to taking too many specialized elective courses. We recommend these individuals to consider taking some 
general education courses. Additionally, other individuals with a low GPA may need to allocate more time to 
their studies or seek additional assistance from their teachers.

This finding is corroborated by studies conducted by Dweck et al.36,37. Students adopt diverse learning 
approaches. Those with a growth mindset believe in enhancing their talents through diligence and persistence 
and are more autonomous in course selection, choosing courses based on their needs irrespective of course dif-
ficulty. Conversely, students with a fixed mindset perceive only obstacles; they fear that failing to choose a course 
will lead to poor grades and prioritize external validation, thus opting for relatively easy courses or seeking advice 
from seniors on easy-to-score courses.

Universities aim to foster students with a growth mindset; however, an evaluation system solely based on 
GPA fails to achieve this objective. A single GPA assessment is inadequate for student evaluation; course selec-
tion strategy and learning pattern could serve as valuable supplements to the GPA metric. Students’ learning 
patterns reflect their motivation and attitude towards learning-factors deemed crucial in student assessment 
tasks according to related educational psychology  research37.

(a) (b) (c)

Figure 5.  (a) Results of DSD task of NPU-GPA7; (b) Statistic of distinctive students; (c) The relationship 
between x and distinction. And, xis the percentage of major-related courses cut of all elective course.

Student Major Selected courses

1 Mechanical Design manufacture 

and Automation

1. Fundamentals of engineering drawing

2. Practical network technology

3. Appreciation of word famous paintings

4. Optimum Design of Mechanism

5. Complex experimental displacement detection system

6. Control Technology of Mechatronic System

7. Economics special topic

8. Principle and application of programmable controller

9. Tolerance and Technologically Measurement

10.Hydraulic Power Transmission

11.Discipline forward position

12.CAD/CAM software applications

13.Digital manufacturing technology

14.Intercultural Communication

15.Dynamics of Mechanism

16.Technology of Mechanical Manufacture

17.Experiment in Electronic Technology

18.Computational Methods

19.Digital photography

20.Optimum Design of Mechanism

21.Finite Element Method and Application

(a) student 1, an example of distinctive students.

Student Major Selected courses

2 Materials Science and Technology

1. Electrotechnics

2. Introduction to Quantum Mechanics

3. Computational Methods

4. English for International Communication-Viewing, Listening

and Speaking

5. History of Western Philosophy

6. Sculpture foundation and appreciation

7. Physical Properties of Materials

8. Computational Materials Science

9. Media English

10.The Principles and Processing of Heat Treatment

11.Metal Materials

12.Basis of Finance &Cost Management

13.The history of western civilization

14.Chinese and Foreign Medical Culture

15.Introduction to financial

16.Basic music theory and solfeggio

17.Crystallography and X-Ray Diffraction Analysis

18.English Speech and Debate

19.Theory of Machines and Mechanisms

20.Online e-commerce

21.The Principles of Metallurgy

22.Transmission Principles

23.Materials Properties and Analytical Techniques

(b) student 2, an example of common students.

Figure 6.  The example of elective courses that distinctive/common student has ever enrolled. Note, that these 
courses do not include required courses that students must enroll in during university..
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OULAD dataset
In this section, we delve deeper into the characteristics of distinctive students to uncover intriguing insights.

The OULAD dataset, which comprises daily interaction data for all students, allows us to explore the intri-
cacies of the learning process in greater detail. Initially, we utilized the trained SPGMN model from the SLPP 
experiment on the OULAD-k (k ∈ {1,2,3,4,5,6}) dataset. Subsequently, we identified distinctive students within 
the OULAD-k training data. It’s important to note that not all students participated in all five tests or interacted 
with VLE. The OULAD dataset accurately captures the complex learning process of students, which can be 
convoluted. Consequently, as depicted in Fig. 7, the number of distinctive students (DSs) is expected to exceed 
the results from the previous distinctive student detection (DSD) experiment.

Figure 7 reveals that: (1) The number of distinctive students decreases from the first test to the final exam; 
(2) Distinctive students from the (x + 1) th test are a subset of those from the previous xth test; (3) The numbers 
of distinctive students in the first three columns (i.e., x ∈ {1, 2, 3} ) exceed those in the last three columns (i.e., 
x ∈ {4, 5, 6} ). These observations lead us to conclude that: (1) Students’ learning status is initially varied due to 
diverse backgrounds but gradually converges to a steady state over time, as suggested by the plateau effect in 
educational  psychology38. This results in a decreasing number of distinctive students; (2) Students’ learning state 
is typically continuous and does not change abruptly, a finding corroborated by prominent educational psychol-
ogy  research39; (3) We posit that most students are unprepared at the onset of a course.

In OULAD, some students do not enroll in every test. Thus, in Fig. 8a, we first remove the recording of these 
students. Then, we compare the learning performance of common and distinctive students based on the remain-
ing records. As shown in Fig. 8a, there is no significant difference in learning performance between common 
students and distinctive students. Combined with Fig. 7, we can conclude that SPGMN-DSD could mine more 
interesting facts than single GPA models, i.e., GPAs are not enough to evaluate students, and we need supple-
ments of GPA.

Figure 7 provides intriguing insights into distinctive students, while Fig. 8a suggests that GPA alone is insuf-
ficient for student evaluation. Furthermore, Fig. 8b establishes a positive correlation between academic achieve-
ment and interaction frequency. Consequently, we aim to delve deeper into the factors influencing learning 
rewards by analyzing student interactions with the Virtual Learning Environment (VLE). Figure 9 presents a 
three-digit distribution map of student interactions with the online learning system. The cross-reference between 
online learning system materials and clicktype IDs is displayed in Table 5.

Figure 7.  Distribution of distinctive students at different stages. And, the scale value of x-axis, i.e., x(y), is equal 
to xth test(GPA/label). All nodes in the diagram are distinctive students, and “xth Test” ( x ∈ {1, 2, 3, 4, 5, 6} , and 
6th test means the “Final Exam”) in the legend means that the students are distinctive until xth test.
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As illustrated in Fig. 9a, the majority of the red dots are situated at the lower portion of the three-dimensional 
graph, while the blue dots are found at the top. From this, two key observations can be made: (1) There is a 
noticeable distinction between distinctive students and common students in their interaction with the online 
education system. Common students engage with the system more frequently and exhibit greater activity in the 
learning process compared to distinctive students. (2) The frequency of interaction with the online system has an 
impact on the outcome of the DSD task. Fig. 9b represents the right elevation and reveals that when clicktype ∈ 
{4,6,7,9}, which corresponds to the learning material categories of “forumng,” “oucontent,” “homepage,” and 
“quiz,” (as shown in Table 5) the blue dots have a wider distribution compared to other scenarios. This suggests 

(a) (b)

Figure 8.  (a): Average weighted score of each test. Specially, the weights of 5 tests are [0,0.1,0.2,0.35,0.35] in 
order. (b): The boxplot of click number of students.

Figure 9.  The click number of each students click on different online material.

Table 5.  Online material and clicktype cross-reference table.

Clicktype 0 1 2 3 4 5

Material Oucollaborate Subpage Dataplus Resource Forumng Url

Clicktype 6 7 8 9 10

Material Oucontent Homepage Glossary Quiz Questionnaire
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that these specific learning materials have a significant influence on the outcome of the DSD task. In order to 
further investigate the impact of these factors, we extracted these corresponding data separately and generated 
individual graphs, as depicted in Fig. 10. From these figures, it is evident that common students are significantly 
more engaged in these aspects compared to distinctive students. Our approach effectively captures this observa-
tion, highlighting its ability to identify crucial information that is disregarded by the GPA evaluation framework. 
Among these distinctive students, gifted individuals exhibit proficiency in completing learning tasks indepen-
dently without the need for extensive collaborative learning. Hence, these students should be provided with more 
challenging opportunities. On the other hand, other students, due to a lack of interest in learning or other reasons, 
engage less frequently with their classmates. Thus, it is crucial that we pay more attention to these students.

Analysis In this analysis, we will briefly discuss the potential impact of “forumng”, “oucontent”, “homepage”, 
and “quiz” on learning rewards. “Forumng” refers to the posts and discussions on the forum, while “oucontent” 
represents the various resources available on the Virtual Learning Environment (VLE), such as videos and pow-
erpoints. The “homepage” denotes the front page of the VLE, which records the frequency of students logging 
into the system. Finally, the “quiz” records students’ self-regulation activities.

Based on the findings presented above, several conclusions can be drawn. First, GPA alone is insufficient for 
evaluating students. Second, the course selection reflects students’ motivation and attitude towards learning, 
which subsequently impacts their learning rewards. Third, the interaction between students and the system 
provides valuable insights into their learning status and influences their learning outcomes. Lastly, course selec-
tion and interaction are important aspects of the learning process that should be considered when evaluating 
students. Thus, it is crucial to incorporate quantitative indicators, such as course selection and interaction, when 
assessing student performance.

Conclusion and future work
Student learning performance prediction (SLPP) is a fundamental aspect of assessing student performance 
and implementing personalized education. Unfortunately, most research primarily concentrates on predicting 
GPA with little consideration for identifying and analyzing distinctive students who do not fit the GPA models. 
Unfortunately, most research primarily concentrates on predicting GPA with little consideration for identifying 
and analyzing distinctive students who do not fit the GPA models. These students possess a wealth of informative 
knowledge that is invaluable in guiding further research on personalized learning. Based on this consideration, 
we have developed a data-driven student multi-dimensional evaluation framework as a supplement to the GPA 
evaluation framework, and it is used to address the deficiencies of the GPA framework.

In the first step, we introduced the self-paced learning (SPL) framework into the graph memory network 
(GMN) model to enhance its representation ability during the SLPP task. Subsequently, a well-trained SPGMN 
model was utilized for the distinctive student detection (DSD) task, resulting in the SPGMN-DSD (distinctive 
student detection based on SPGMN) model. The loss list of 540 training samples was divided into two series 
based on a t-test, namely distinctive students and common students. Moreover, we verified the influence of the 
course selection strategy and the interaction between the learning system and students on the outcomes of the 
DSD task and student assessments. By considering these factors, we aimed to explain phenomena that are not 
accounted for by the two GPA evaluation frameworks. These include situations where students with varying 
learning abilities achieve similar GPAs or where students with similar abilities receive significantly different 
GPAs. Additionally, these findings have the potential to identify exceptionally gifted students and those in need 
of immediate assistance. Ultimately, they contribute to enhancing the reliability and scientific nature of the GPA 
assessment framework, thereby offering substantial support for the development of personalized education.

However, this article has certain limitations. We acknowledge the importance of educational experiments in 
further validating the findings of our study. We understand that these experiments can provide more concrete 
evidence and insights into the topic. Unfortunately, due to various constraints such as time, resources, and ethi-
cal considerations, we were unable to conduct educational experiments in this particular study. In our future 
endeavors, we will allocate two academic years to design educational experiments in authentic educational 
settings (both online and offline) with the intention of validating our findings and augmenting our research.

Data availability
The datasets generated and/or analyzed during the current study are available in the project of Open University 
Learning Analytics  dataset40, you can download the dataset from https:// analy se. kmi. open. ac. uk/ open_ datas et.

(a) forumng (b) oucontent (c) homepage (d) quiz

Figure 10.  Average click number of each students click on selected online material.

https://analyse.kmi.open.ac.uk/open_dataset
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