www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

Identification of a cancer
associated fibroblasts-related
index to predict prognosis

and immune landscape in ovarian
cancer

Yingquan Yel?, Shuangshuang Zhang™3, Yue Jiang3, Yi Huang?, Gaoxiang Wang?,
Mengmeng Zhang?, Zhongxuan Gui?, Yue Wu?, Geng Bian?, Ping Li%?*! & Mei Zhang?**

Cancer-associated fibroblasts (CAFs) play a role in ovarian cancer (OV) evolution, immunosuppression
and promotion of drug resistance. Exploring the value of CAFs-related biomarker in OV is of great
importance. In the present work, we developed a CAFs-related index (CAFRI) based on an integrated
analysis of single-cell and bulk RNA-sequencing and highlighted the value of CAFRI in predicting
clinical outcomes in individuals with OV, tumour immune microenvironment (TIME) and response

to immune checkpoint inhibitors (ICls). The GSE151214 cohort was used for cell subpopulation
localization and analysis, the TCGA-OV patients as a training set. Moreover, the ICGC-OV, GSE26193,
GSE26712 and GSE19829 cohorts were used for the validation of CAFRI. The TIMER 2.0, CIBERSORT
and ssGSEA algorithms were used for analysis of TIME characteristics based on the CAFRI. The

GSVA, GSEA, GO, KEGG and tumour mutation burden (TMB) analyses were used for mechanistic
exploration. Additionally, the IMvigor210 cohort was conducted to validate the predictive value of
CAFRI on the efficacy of ICls. Finally, CAFRI-based antitumour drug sensitivity was analysed. The
findings demonstrate that the CAFRI can served as an excellent predictor of prognosis for individuals
with OV, as well as identifying patients with different TIME characteristics, differentiating between
immune ‘hot’ and ‘cold’ tumour populations, and providing new insights into the selection of ICls and
personalised treatment regimens. CAFRI provides new perspectives for the development of novel
prognostic and immunotherapy efficacy predictive biomarkers for OV.

According to the latest International Agency for Research on Cancer Global Cancer Burden Report, 313,959
new cases of ovarian cancer (OV) were reported worldwide in 2020, with 207,252 deaths due to OV, OV is the
third most common gynaecological tumour after cervix and corpus uteri cancer, while the mortality rate is the
second highest!. Additionally, over 70% of ovarian cancers are not diagnosed until the disease has progressed
to an advanced stage (stage III or IV) due to its insidious early symptoms®~. Although recent improvements in
diagnosis and treatment have reduced mortality in patients with OV?, the 5-year survival rate has not improved
significantly and is only 46.2%°. Currently, widely accepted clinical predictors of OV prognosis include FIGO
staging, histological type, tumour grade and size of residual tumour after surgery, among others”®. Nevertheless,
as OV is highly heterogeneous, exploring effective predictive biomarkers at the molecular level is critical for
prognostic and personalised therapeutic decision-making in OV.

The ‘seed and soil’ theory has led to the recognition that the tumour microenvironment (TME) plays an
important role in tumour development’. Additionally, a growing number of studies have confirmed interac-
tions between different cellular components of the TME are critical for tumourigenesis, evolution, metastasis
and therapeutic efficacy'*'2. Cancer-associated fibroblasts (CAFs) are an essential ingredient of TME'>!, which
crosstalk extensively with cancer cells to regulate cancer progression and therapeutic response’® and are involved
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in negative immune regulation of tumours and drug resistance'®!”. Abundant stromal interstitium is an impor-
tant feature of OV'®. Accumulating evidence suggests that CAFs are one of the most crucial members of the
fibroproliferative mesenchyme in OV, regulating the evolution and therapeutic response of OV'*%, Furthermore,
CAFs can promote immunosuppression and macrophage polarization in OV through released prostaglandins?!
and have been suggested as potential targets for OV therapy*. Therefore, the potential value of CAFs-related
biomarkers in OV deserves further exploration.

Technologies such as high-throughput sequencing, particularly single-cell RNA sequencing (scRNA-seq),
can be used to analyse the status of TME at the single-cell level and to assess the differences between different
cell subpopulations in TME®. In this study, we performed an integrated analysis of single-cell and bulk RNA-
sequencing based on OV samples to develop a CAFs-related index (CAFRI) and highlight its advantages in
predicting patient clinical outcomes, tumor immune microenvironment (TIME) and efficacy of immune check-
point inhibitors (ICIs). These results provide insights into the exploring of OV biomarkers and the selection of
individualised treatment regimens.

Methods

Downloading and analyzing data

The workflow of this study is shown in Fig. 1. Inclusion criteria for the training and validation cohorts of this
study were cases that contained both transcriptomic data and survival information. The RNA-seq data, sim-
ple nucleotide variant (SNV) data and clinical parameters for OV in the TCGA-OV training cohort (n=429)
were downloaded from TCGA (https://portal.gdc.cancer.gov/repository). Perl version 5.32.1.1 was employed to
obtain the mutation data for each sample based on SNV data. Transcriptome and clinical data for the GSE26193
(n=107), GSE26712 (n=153) and GSE19829 (n=42) validation cohorts were downloaded from the GEO data-
base (https://www.ncbi.nlm.nih.gov/). Another independent validation cohort (ICGC-OV) (n=93) were obtained
from the ICGC data portal (https://dcc.icgc.org/releases/current/Projects/OV-AU). The scRNA-seq dataset for
the GSE151214 cohort (n=8) were downloaded from the Tumor Immune Single-cell Hub (TISCH) platform
(http://tisch.comp-genomics.org/), and the cell annotations were based on the major-lineage entry and the
existing classical cell marker annotations in the TISCH?**. The immune checkpoint inhibitor treatment cohort
IMvigor210 (n=298) were obtained from a previous study*. Immunohistochemical images of CAFRI were
obtained from the Human Protein Atlas (https://www.proteinatlas.org). The Human Gene Database (https://
www.genecards.org/) was used to retrieve the genes associated with CAFs?.

Identification of CAFs-related hub genes

Differentially expressed genes (DEGs) (|fold change (FC)|> 1.5, false discovery rate (FDR) <0.05) were identified
between CAFs and other cell subtypes in the GSE151214 set, which contains DEGs that are up-regulated and
down-regulated expression in CAFs. Through Venn diagrams we obtained overlapping genes for CAFs-related
genes and DEGs. The STRING platform (Version11.5, https://cn.string-db.org/) was further utilized to determine
the interaction relationships between the proteins encoded by the overlapping genes and to map the network
relationships and explore the core genes. Genes with greater than 5 adjacent nodes in interaction network were
included in subsequent analysis.

Construction of a CAFRI in OV

We first performed univariate Cox regression analysis of hub genes in the TCGA-OV cohort to identify genes
associated with risk. To prevent overfitting, a least absolute shrinkage and selection operator (LASSO) analysis
was performed on risk-associated genes to identify the optimal prognostic genes involved in the construction of
the CAFI?. The formula for the CAFRI score is as follows: CAFRI score = Expression (CAFRI GENE1) x Coef-
ficient (CAFRI GENE1) + Expression (CAFRI GENE2) x Coefficient (CAFRI GENE2) + +++ + Expression (CAFRI
GENER) x Coeflicient (CAFRI GENEn). The index score was calculated based on the expression of genes in
CAFI and LASSO regression coefficients; higher regression coefficients of the genes in CAFRI suggest a higher
risk for the genes, and therefore higher CAFRI scores represent a poorer prognosis for the patients. Individuals
with OV in the training set were then categorised into high- and low-risk subgroups by risk stratification based
on the median index score.

Validation of the CAFRI

The ‘survivor’ and ‘survminer’ packages were applied to the Kaplan-Meier (K-M) analysis of the TCGA-OV
cohort and K-M curves were plotted. The R package ‘pheatmap’ was used for gene expression heat mapping in
the CAFRI. Furthermore, the CAFRI were also applied to the ICGC-OV, GSE26193, GSE26712 and GSE19829
cohorts for K-M survival validation. Cox analysis was utilised to determine the prognostic predictive specific-
ity of the CAFRI. To further assess the prognostic predictive efficacy of the CAFRI, the R packages ‘survival,
‘survminer’ and ‘timeROC’ were used for receiver operating characteristic (ROC) analysis and compared with
AUC values for age, sex and stage.

Nomogram construction

Based on Cox analysis, a nomogram for 1-, 3-, and 5-year overall survival (OS) were developed using the R pack-
ages rms, ‘survival’ and ‘regplot. Hosmer-Lemeshow calibration curves were plotted to confirm the correlation
between the actual results and the predicted values.
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Figure 1. Workflow of the present research. A total of 3683 CAFs-related genes were included in the study.

Of these, 152 CAF-related genes were identified as hub genes associated with CAF in the OV. Cox and LASSO
regression ultimately identified 13 genes involved in the construction of the CAFs-related index (CAFRI).

The ICGC-OV, GSE26193, GSE26712 and GSE19829 cohorts were used for the validation of CAFRI. The

K-M, ROC curves and Cox regression were employed for the evaluation of the Index. The GSVA, GSEA, GO,
KEGG and tumour mutation burden (TMB) analyses were used for mechanistic exploration. Furthermore,

the TIMER, CIBERSORT and ssGSEA algorithms were used for analysis of immune landscape based on the
CAFRI. Finally, the IMvigor210 cohort was conducted to validate the predictive value of CAFRI on the efficacy
of immunotherapy.

Enrichment pathway analysis

To further analyse the biological functions among different risk groups identified based on CAFRI, we further
performed functional enrichment analyses. GSVA is a special type of gene set enrichment method?®. We explored
the enrichment of KEGG pathways in different risk groups by GSVA and mapped the enrichment heatmap.
This process was implemented with the R packages ‘limma?, ‘GSVA, ‘GSEABase’ and ‘pheatmap. In additiona,
we investigated the association between CAFRI gene expression and signaling pathways by R packages limma),
‘GSEABase, ‘GSVA, ‘reshape2’ and ‘ggplot2”

GSEA an algorithm that calculates whether a predefined set of gene sets has a statistically significant difference
between two biological traits or states®. GSEA was used to obtain the functional pathways that were enriched in
the different subgroups and to visualise the five most enriched functions. The process was implemented through
‘limma), ‘org.Hs.eg.db, ‘DOSE, ‘clusterProfiler and ‘enrichplot. Finally, the limma’ was used to identify DEGs
between the two risk subgroups (|[FC|>2, FDR<0.05) and further gene ontology (GO) analysis was conducted
to investigate the enrichment of DEGs in cellular component, molecular function and biological process.
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Tumour mutation burden (TMB) analysis

The SNV data downloaded was processed utilizing strawberry-perl to obtain a matrix of TMB data. The ‘limma’
and ‘ggpubr’ were performed to compare TMB levels between different risk subgroups and the results were
visualised. K-M method was performed to investigate the prognostic differences between the various TMB /risk
subgroups. Furthermore, the 30 genes with the highest mutation frequencies were extracted and their mutation

waterfalls were plotted using the visualisation tool ‘maftools™?.

CAFRI-based landscape analysis of TIME

TIMER is a comprehensive resource that contains six distinct algorithms for inferring the extent of immune
cell infiltration across diverse cancer types®***%. Correlations between immune cell levels and CAFRI scores were
determined and visualised by analysing tumour infiltrating immune cell dataset from TIMER 2.0 (http://timer.
comp-genomics.org/). The above process was performed by ‘ggplot2’, ‘tidyverse, ‘ggtext, ‘scales’ and ‘ggpubr’ pack-
ages. GSEA has been shown to classify genomes that share common biological features®. Here, the single-sample
GSEA (ssGSEA) algorithm?® was conducted utilizing the ‘GSEABase’ and ‘GSVA’ packages to estimate the levels
of immune cell infiltration in each tumour sample in TCGA-OV to obtain the immune cell and immune-related
function scores. The ‘ggpubr’ and ‘reshape2’ were were applied to realise the visualisations. Hyperactivation of
immune checkpoints is important for tumour immune escape®®. We also investigated the expression levels of dif-
ferent immune checkpoints between the different subgroups. Furthermore, the ICIs treatment cohort IMvigor210
was utilised to speculate on immunotherapy response in CAFRI.

Drug response prediction

The R package ‘pRRophetic’ has been used to impute the sensitivity of antitumour drugs from transcriptome
expression levels®. This study explores the half-maximal inhibitory concentrations (IC50) of different antitumour
agents in the two risk groups by ‘pRRophetic’ to investigate the role of CAFRI in guiding the individualised
treatment of individuals with OV.

Results

CAFsinOV

Cells in the GSE151214 cohort were classified into nine types according to the TISCH annotations, including
CD4+T cells, CD8 +T cells, epithelial cells, endothelial cells, fibroblasts, malignant cells, mast cells, mono-
cytes and fibroblasts (Fig. 2B, C). The strip graph reveals the proportion of different cells in GSE151214 cohort
(Fig. 2A). And the pie chart shows the ratio of distinct cell types in the total sample, with CD8+ T cells being the
highest and fibroblasts in third place (Fig. 2D). Additionally, analysis of scRNA-seq data from the GSE151214
cohort identified 24 cell clusters, of which clusters 3, 5, 8, 11 and 17 were fibroblasts (Fig. 2E). Furthermore,
network diagrams showed the cellular communication between the different clusters of fibroblasts and other
cells (Fig. 2F-]), suggesting extensive interaction among CAFs and different cells in the TME.

Determination of hub CAFs-associated genes in OV

The Venn diagram showed 855 genes differentially expressed across fibroblasts and other cells, which were further
crossed over with the CAFs associated genes to yield 362 overlapping genes (Fig. 3A). The interactive network
plots showed the interactions between the proteins encoded by the 362 overlapping genes (Fig. 3B), with 152
genes having greater than 5 adjacent nodes in their neighbourhood. These genes were identified as CAF-related
hub genes in OV (Fig. 3C).

Establishment of a CAFRI based on Cox and LASSO

We performed univariate Cox analysis on 152 hub genes and obtained 13 genes associated with disease risk,
of which nine were risk factors and and four were protective factors (Fig. 4A). The machine learning LASSO
algorithm further identified the optimal genes involved in CAFRI construction (Fig. 4B) (Table 1). Addition-
ally, K-M curves for CAFRI genes in the training set showed CXCR4, IFNG, GZMB and IFI27 as good prog-
nosis genes, while the rest were poor prognosis genes, a result that was validated against the Cox regression
results described above (Fig. 4C). Further analysis showed that ANXA2, DNAJB1, CEBPB, RPS19 and JUNB
were expressed at high levels in fibroblasts (Fig. S1). Furthermore, CAFRI-related genes were differentially
expressed in OV tumour tissues, with the exception of CRYAB (Fig. 5A). Immunohistochemical images show
the expression of CAFRI-related proteins in the HPA database (Fig. 5B). Based on the regression coefficients and
expression of the CAFRI-related genes, we obtained a CAFRI score for each patient. CAFRI score = Expression
(RPS19) * (0.164449) + Expression (CEBPB) * (0.156762) + Expression (JUNB) * (0.083987) + Expression (LRPI)
*0.076594) + Expression (DNAJBI) * (0.075415) + Expression (CRYAB) * (0.067759) + Expression (ANXA2) *
(0.033018) + Expression (FOSL2) * (0.023497) + Expression (PDGFRA) * (0.009336) — Expression (IFI27) *
(0.021267) — Expression (GZMB) * (0.072410) — Expression (IFNG) * (0.079514) — Expression (CXCR4) *
(0.105466). Finally, all patients in the training and validation sets were risk stratified based on the median CAFRI
score of patients in the training set.

Validation of the CAFRI in OV

The expression heat map of CAFRI-related genes in the TCGA-OV cohort revealed the expression levels of four
genes with a favourable prognosis were lower in the high-risk subgroup, whereas nine risk factors were highly
expressed in the high-risk subgroup (Fig. 6A). K-M survival curves revealed that the prognosis of the high-risk
OV population, as determined by CAFRI, was significantly worse than that of the low-risk subgroup (p <0.001)
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Figure 2. Identification of CAFs in OV. (A) Proportion of distinct cells in eight OV samples from the
GSE151214. (B, C) All cells were categorised into nine types (CD4+ T cells, CD8+ T cells, epithelial cells,
endothelial cells, fibroblasts, malignant cells, mast cells, monocytes and fibroblasts). (D) Proportion of distinct
cell types in the total sample. (E) The identified cell clusters (n=24) in OV tissues in the GSE151214 cohort,
where clusters 3, 5, 8, 11 and 17 were fibroblasts. (F-J) The interrelationships between the different clusters of
fibroblasts and other cells.

(Fig. 6B). Meanwhile, individuals from the low-risk subgroup already exhibit a better prognosis with statistically
lower risk and fewer deaths (Fig. 6C, D). Subsequently, CAFRI scores were obtained for the four independent
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Figure 3. Identification of hub CAFs-related genes. (A) Venn diagram identified 362 CAFs-related genes in OV.
(B) Protein—protein interaction (PPI) network plot for the 362 CAFs-related genes. (C) The 152 genes having
greater than 5 adjacent nodes in their neighbourhood.

validation cohorts (ICGC-OV, GSE26193, GSE26712, and GSE19829) according to the CAFRI formula, and all
patients were risk-stratified according to the optimal cutoff value of the K-M method for each cohort. K-M

curves showed that the survival of the low-risk group was significantly better than that of the high-risk group
in all validation cohorts (Fig. 6E-H).

Assessment of the CAFRI and nomogram

The results of the univariate and multivariate Cox regression showed that the CAFRI-based risk score and age
were independent prognostic predictors of OV (P<0.001) (Fig. 7A, B). Additionally, ROC curves showed that
CAFRI had AUC values of 0.620, 0.651 and 0.667 at 1-, 3- and 5- years, while age had AUC values of 0.688,
0.639 and 0.589, respectively (Fig. 7C-F). Based on the multivariate Cox regression, the age and CAFRI-based
risk status were included in the nomogram construction. We estimated the OS rates for a patient with low-risk
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Figure 4. Establishment of a CAFRI in OV. (A) Univariate Cox analysis identifies 13 CAFs genes associated
with prognosis of OV. (B) LASSO regression analysis identifies 13 CAF-related genes involved in CAFRI
construction. (C) Kaplan-Meier curves for the 13 CAFRI genes in the training set.

and 39-year-old at 1-, 3- and 5-year to be 0.958, 0.812, and 0.605 (Fig. 7G). The calibration curves showed a
high agreement between the predicted outcomes based on the nomogram and the actual survival rates of OV
patients (Fig. 7H).

CAFRI-based enrichment analysis
GSVA analysis showed that pathways enriched in high-risk subgroup included signalling pathways such as TGF-
B, WNT, mTOR, Notch and MAPK, while pathways such as DNA replication, proteasome, primary immunode-
ficiency and antigen processing and presentation were enriched in the low-risk subgroup (Fig. 8A). Addition-
ally, heatmaps revealed a broad correlation among the expression of CAFRI-related genes and tumour-related
signalling pathways (Fig. 8B), suggesting possible crosstalk of these hub genes in different signalling pathways.
In addition, GSEA analysis showed the five pathways with the highest enrichment in the high- and low-risk
groups, and the results corroborated with GSVA (Fig. 9A, B).

To explore the molecular characteristics of the differences between different risk subgroups, we performed
GO enrichment analysis of DEGs between different risk subgroups. The outcomes showed that DEGs were
mainly enriched in molecular functions including glycosaminoglycan binding, extracellular matrix structural
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ANXA2 0.033018 | 1.218 | 1.017-1.460 | 0.032
CEBPB 0.156762 | 1.242 | 1.020-1.512 | 0.031
CRYAB 0.067759 | 1.091 | 1.017-1.170 | 0.014
CXCR4 —0.105466 | 0.883 | 0.793-0.984 | 0.025
DNAJB1 0.075415 | 1.201 | 1.002-1.440 | 0.048
FOSL2 0.023497 | 1.177 | 1.001-1.383 | 0.049
GZMB —0.072410 |0.892 |0.811-0.982 | 0.020
IF127 —-0.021267 | 0.934 | 0.878-0.993 | 0.030
IENG —0.079514 | 0.746 | 0.578-0.961 | 0.023
JUNB 0.083987 | 1.144 | 1.026-1.277 | 0.015
LRP1 0.076594 | 1.163 | 1.027-1.317 | 0.017
PDGFRA 0.009336 | 1.12 1.005-1.249 | 0.041
RPS19 0.164449 | 1.192 | 1.002-1.417 | 0.047

Table 1. CAFs-related index in OV. CAFs, cancer-associated fibroblasts; HR, hazard ratio.
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Figure 5. CAFRI-related genes in the OV. (A) Differential expression of the 13 CAFRI-related genes in tumor
and normal tissues of the TCGA-OV cohort. (B) Immunohistochemical images of CAFRI-related proteins in
OV from the HPA portal.

components, sulphur compound binding and immunoglobulin receptor binding. In addition, DEGs were also
enriched in cellular components such as collagen-containing extracellular matrix, endoplasmic reticulum lumen,
immunoglobulin complex and contractile fiber. Regarding biological processes, DEGs were mainly enriched in
muscle tissue development, external encapsulating structure organization and extracellular matrix organization
(Fig. 9C, D).

Correlation of the CAFRI and TMB

Violin plots showed no significant difference in TMB levels between the risk subgroups (Fig. 10A). Nevertheless,
K-M analyses showed that the best survival was observed for the combination of high-TMB and low-risk, and
the worst survival was observed for the combination of low-TMB and high-risk (p <0.001) (Fig. 10B), indicating
that the combination of CAFRI and TMB can be a promising predictor of clinical outcomes in OV. Additionally,
waterfall plots showed that TP53 and TTN were genes with high mutation frequencies in OV (Fig. 10C).
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Figure 6. Validation of the CAFRI in OV. (A) Expression heat map of CAFRI-related genes in the high and low
risk subgroups of the TCGA-OV set. (B) K-M curve for OS in the TCGA-OV set. (C, D) Risk score and survival
state in the TCGA-OV set. (E-H) Kaplan-Meier curves for CAFRI in the ICGC-OV, GSE26193, GSE26712 and
GSE19829 validation cohorts.

CAFRI predicts the TIME in OV

Considering the regulatory role of CAFs on TIME, we further analysed the correlation between CAFRI and
TIME in OV. The EPIC, CIBERSORT, MCPCOUNTER, TIMER, XCELL and QUANTISEQ algorithms of the
TIMER 2.0 platform showed that CD8+/CD4+T cells and M1 macrophages and other cells were negatively
correlated with CAFRI scores, while M2 macrophages were positively correlated with CAFRI scores (Fig. 11A).
CIBERSORT results showed that patients in the high-risk subgroup had lower levels of CD8+ T cells, activated
CD4+memory T cells, T follicular helper cells (Tfh) and M1 macrophages. In contrast, M2 macrophages were
significantly higher in the high-risk subgroup (Fig. 11B). Further ssGSEA results showed that patients in the
low-risk group had significantly higher infiltration of immune cells such as CD8+ T cells, natural killer (NK)
cells, Tth and tumour infiltrating lymphocytes (TIL) (Fig. 11C). Notably, in terms of immune function, immune
checkpoints also showed lower levels of expression in the high-risk subgroup (Fig. 11D). Further analyses showed
that the majority of immune checkpoints were highly expressed in the low-risk group (Fig. 11E). We further
introduced the ICIs treatment cohort IMvigor210 to validate the predictive value of CAFRI for immune efficacy.
The K-M curves showed that the IMvigor210 cohort had significantly worse survival in the high-risk group than
in the low-risk group (Fig. 11F). In addition, patients in complete response (CR) and partial response (PR) after
treatment with ICIs had significantly lower risk scores than those with stable disease (SD) and progressive disease
(PD) (Fig. 11G). Furthermore, the ROC curve showed that CAFRI demonstrated high predictive accuracy in
the IMvigor210 cohort (AUC=0.625) (Fig. 11H).

Application of the CAFRI in clinical treatment

Given the predictive value of CAFRI for prognosis and immunotherapy, we further explored the value of CAFRI
in the individualized medication of individuals with OV. Box plots showed that the predicted IC50 values for
some clinical treatments differed between the two risk groups (p <0.001) (Fig. 12A-I). Of these, the targeted
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Figure 7. Assessment of the CAFRI and nomogram in OV. (A, B) Univariate and multivariate Cox regression
suggests CAFRI and age are independent prognostic variables for OV. (C) ROC curves for the CAFRI in the
training set at 1, 3, and 5 years. (D-F) ROC curves for age, grade and stage at 1, 3, and 5 years. (G) Nomogram
including age and CAFRI risk status for predicting OS of OV. (H) The calibration curves of the nomogram at 1,
3, and 5 years. *P<0.05, **P<0.01, and ***P<0.001.

drugs tipifarnib, dasatinib, saracatinib, imatinib and pazopanib had higher IC50s in the low-risk group. In con-
trast, veliparib, tamoxifen, gefitinib and masitinib had higher predicted IC50 values in the high-risk population.

Discussion

Accumulating studies have shown that that CAFs are closely involved in tumour prognosis and the treatment
efficacy®®*!. Targeting CAFs has been shown to restore anti-tumour immunity* and improve the effectiveness
of immunotherapy®. Previous studies have demonstrated that crosstalk between CAFs and OV affects tumour
cell stemness**, promotes chemoresistance*’, and plays a crucial role in the spatial distribution of immune cells in
differentiated TME??. Furthermore, several studies have confirmed the link between tumour-infiltrating immune
cells and clinical outcome in patients with OV*~*%, Therefore, exploring the potential role of CAFs in evaluating
clinical outcome, TIME landscape and effectiveness of immunotherapy in individuals with OV will facilitate the
identification of valid biomarkers and therapeutic targets.

Previous studies have shown that the identification of molecular subtypes of OV not only improves our under-
standing of the molecular basis of OV, but also helps to identify potential therapeutic targets®. In this study, we
developed a CAFRI containing 13 CAFs-related genes based on an integrated analysis of scRNA-seq and bulk
RNA-Seq. Cox regression analysis suggested that the CAFRI-based risk score was an independent prognostic

Scientific Reports |

(2023) 13:21565 |

https://doi.org/10.1038/s41598-023-48653-w nature portfolio



www.nature.com/scientificreports/

>

| nmﬂill_mmm |Fn11ﬁl'|ﬁu

w

T ; 4|| HH\IJ

‘ |
r'ﬁ
1

i
I 'I Al

f|'+ iy

|
;|
IIII
1l
]

|
|

_ Risk Rlsk
KEGG_HEDGEHOG_SIGNALING_PATHWAY
A hlgh

KEGG_DILATED_CARDIOMYOPATHY
| KEGG HYPERTROPHIC_CARDIOMYOPATHY_HCM
I I \ I il KEGG_FOCAL_ADHESION

‘[ II JI || '|*||h ||| | KEGG_ECM_RECEPTOR_INTERACTION
|

|ﬁ

l I"

e Bt
| w‘ ‘r’" " IL‘ .' uh i ﬁ }| .""
Ul
i i afl yﬂ"w' .
| 'r. ' '|"|| !' } i l'f],l
h' I 'i' |,| 'I‘ i il H| |L'|'J,| 'i i M e S
(L
|| l|

||Il ,I hlll'l'

KEGG BASAL_CELL_CARCINOI
||’ I‘ KEGG_ARRHYTHMOGENIC_RIGHT_VENTRICULAR_CARDIOMYOPATHY_ARVC
I KEGG_GLYCOSAMINOGLYCAN_BIOSYNTHESIS_HEPARAN_SULFATE
KEGG _AXON_GUIDANCE 0
KEGG_WNT_SIGNALING_PATHWAY
KEGG_MELANOGENESIS

KEGG_TGF._BETA SIGNALING_PATHWAY
KEGG_| MELANOM;
KEGG_GAP_ JONCTION
KEGG_REGULATION_OF_ACTIN_CYTOSKELETON
KEGG_MAPK_SIGNALING_PATHWAY
KEGG_PATHWAYS_IN_CANCER
KEGG_LIMONENE_AND_PINENE_DEGRADATION -2

KEGG_OTHER_GLYCAN_DEGRADATION

KEGG_CIRCADIAN_RHYTHM_| MAMMAL
KEGG_TYPE_II_DIABETES_MI ITUS
| KEGG_INOSITOL _f PHOSPHATE METABOLISM

KEGG PHOSPHATIDYLINOSITOL_SIGNALING_SYSTEM
KEGG_MTOR_SIGNALING_PATHWAY

KEGG_ACUTE_MYELOID_LEUKEMIA

KEGG_SMALL_CELL_LUNG_CANCER

KEGG_NON_SMALL_CELL_LUNG_CANCER

KEGG_]| PANCREATIC CANCER

@

(E

KEGG_f RENAL CELL_CARCINOMA

KEGG_ERBB_SIGNALING_PATHWAY
KEGG_ENDOCYTOSIS

KEGG_NEUROTROPHIN_SIGNALING_PATHWAY

KEGG NOTCH_SIGNALING_PATHWAY
KEGG_DORSO_VENTRAL_ AXIS FORMATION

KEGG_ENDOMETRIAL_CANCER
KEGG_CHRONIC_MYELOID_LEUKEMIA
KEGG_PROSTATE_CANCER

EGG_THYROID_ CANCER
KEGG_ADHERENS_JUNCTION
KEGG_COLORECTAL_CANCER
KEGG DNA _| REPLICATION
KEGG_PROTEA

i H il
|IIIII Illlllfl il
| | | ] keag, SYSTEMIC LUF'US ERYTHEMATOSUS
KEGG_PRIMARY_IMMUNGDEFICIENCY
KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION

KEGG_WNT_SIGNALING_PATHWAY ek ek ke - ekek ek ek ek ek ek ekk

KEGG_VEGF_SIGNALING_PATHWAY ok ek ek ek ek n ok dekk ek ek ek ek
KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY | **  #% s s www wex  wwe | & | wor | mee oo | oo e

KEGG_TGF_BETA_SIGNALING_PATHWAY & *~ o B [ N - B |

KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY | ** | # s o k. aox  wox | ox | o | ax | wo | aontoon
KEGG_RIG_I_LI KE_RECEPTOR_SIGNALING_PATHWAY Hkk ekk kk Kkk Kkk Kk Kkk *k ke kk kk Hkk kk
KEGG_PPAR_SIGNALING_PATHWAY Hkk ek Hkk ek ok Hkk Kkk ke Hkk Hkk Hekk kK *

KEGG_P53_SIGNALING_PATHWAY *k Kk ko ok ke dkk dkk Hkk Hkk * Kk
KEGG_NOTCH_SIGNALING_PATHWAY | * e DR B Conelation
KEGG_NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY | *** [ e ook | oo ok oox | oo el 0 I S
KEGG_NEUROTROPHIN_SIGNALING_PATHWAY | ** | 0 [ s | oo | onx [k ok | o e oo | o
KEGG_MTOR_SIGNALING_PATHWAY | * wkk | wx e wkk e S O T 0.6
KEGG_MAPK_SIGNALING_PATHWAY | ** | =& | sk wwx | wwn bk wee | oo * Hoxx B 0.4
KEGG_JAK_STAT_SIGNALING_PATHWAY | ** | =& s s awx 7?:7 e *x KRk kR kkR RRK Rk 02
KEGG_INSULIN_SIGNALING_PATHWAY | ** | * | %o | oo [ % [k ok | oo o = I ’
KEGG_HEDGEHOG_SIGNALING_PATHWAY HEAENEET ElE B < 0.0
KEGG_GNRH_SIGNALING_PATHWAY | * = . = | el ¢ e ~02
KEGG_FC_EPSILON_RI_SIGNALING_PATHWAY | ** | % | x| o [ osee ok oon | oo S =l =
KEGG_ERBB_SIGNALING_PATHWAY | * * I I Kkk kkk ek
KEGG_CHEMOKINE_SIGNALING_PATHWAY | ** | & s wor wn das e Nkk ok kx| kkk ek
KEGG_CALCIUM_SIGNALING_PATHWAY dkk Rk kk kkk kkk dkk o wkk ek LR e e
KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY | ** & *% s s  sir  moe  oon e | o wie oo | oaow o
KEGG_ADIPOCYTOKINE_SIGNALING_PATHWAY | ** | xx | oo | oo [ oo [en oo oo x s i
2
Q} éC‘) v éQ, & ] QQ @" 0 N2 \l{,\ QY‘ N OO(
O > ) >
& v‘s\y &g & & &S ro;? & Q._\é"%

Figure 8. CAFRI-based GSVA in the TCGA-OV cohort. (A) GSVA identifies pathways enriched in high and
low risk subgroups. (B) Correlation between the CAFRI-associated genes and signalling pathways.

factor for patients with OV. Notably, the stability of the CAFRI was further validated in multiple verification
cohorts. As patient age is also an independent prognostic indicator for OV, to better predict the prognosis of
patients with OV, we created a nomogram based on the CAFRI that included the patient’s risk status and age.
The calibration curves showed that the predicted results of the nomogram were in high agreement with the
actual results. All results suggest that the CAFRI and nomogram developed in this study are reliable predictive
tools for prognosis of OV.

In the last decade, immunotherapy, represented by ICIs, has opened a new epoch of antitumour therapy®.
However, the low clinical efficiency of immunotherapy is a bottleneck problem in the treatment of ICIs. Studies
have confirmed that one of the main reasons for the low response rate of immunotherapy is the lack of infiltration
of effector immune cells in the TME, which is referred to as immune ‘cold tumour™®!, which limits the response
of tumours to ICIs. In contrast, immune "hot tumours’ are a category of tumours characterised by immune
checkpoint activation and massive infiltration of CD8+ T cells, and are referred to as immunoinflammatory
tumours®>*. The intrinsic characteristics of TME in ‘hot tumours’ allow for a better response to ICIs**. In the
present study, CAFRI-based risk stratification showed higher levels of CD8+ T-cell in the low-risk subgroup.
Additionally, immune checkpoints, including PD1, PD-L1 and CTLA4, were expressed at high levels in the
low-risk subgroup. Together, these outcomes suggest that the low-risk subgroup identified by CAFRI are more
likely to be "hot tumours" and may respond better to treatment with ICIs compared to the high-risk population.
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Figure 9. CAFRI-based GSEA and GO analysis. (A, B) GSEA revealed the five pathways with the highest
enrichment in the different risk subgroups. (C, D) GO analysis to determine the enrichment of DEGs in cellular
components, molecular functions and biological processes.

Tumour-associated macrophages (TAMs) are an important cell type in TIME and interact closely with
CAFs*>*¢, Inflammatory CAFs in TIME play a role in the transition of macrophages to an immune-compromised
state by promoting macrophage polarisation from the M1 to the M2 phenotype, which in turn promotes an
immunosuppressed state>”. M1 macrophages, an important subtype of TAM, can kill tumour cells by producing
pro-inflammatory factors and reactive oxygen species®®, whereas M2 macrophages promote tumour progression
by suppressing anti-tumour immunity*®*. Meanwhile, M2 macrophages have been shown to inhibit the function
of ICIs®. Infiltration of M2 macrophages often predicts a poor prognosis for OV. Recent studies have shown
that reprogramming the TAM phenotype to polarize M2 macrophages into M1 macrophages can reshape the
tumour immune microenvironment and has been suggested as a potential strategy to increase the response rate
to ICIs®. In this study, the low risk population of OV identified by index had higher levels of M1 macrophage
infiltration, while M2 macrophages revealed lower levels of infiltration in the low risk population. This result
further suggests that the low-risk population may have a higher response rate to treatment with ICIs. To further
validate the above findings, we risk-stratified and ICIs efficacy-stratified patients in the immunotherapy cohort
IMvigor210. The results were consistent with expectations, with the prognosis of the low-risk subgroup treated
with ICIs being significantly better than the high-risk subgroup. Also, risk scores were significantly lower in CR/
PR individuals than in SD/PD patients after treatment with ICIs.

The advent of polyADP-ribose polymerase (PARP) inhibitors has revolutionised the treatment paradigm
for OV. PARP inhibitors cause single-strand breaks in DNA that accumulate and convert to double-strand
breaks®?. These DNA damages in homologous recombination repair-deficient (HRD) tumours lead to synthetic
lethality®. Veliparib is an oral PARP inhibitor that has shown efficacy in clinical trials as a single agent and can
be used in combination with standard chemotherapy regimens®>®*. In a phase 3 randomised controlled clinical
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Figure 10. CAFRI-based TMB analysis. (A) TMB levels between the high and low risk subgroups. (B) Kaplan-
Meier curves based on the combination of TMB and CAFRI. (C) Mutation waterfall in the TCGA-OV cohort.

trial involving previously untreated patients with advanced OV, veliparib concomitantly with chemotherapy and
continued as maintenance therapy significantly prolonged progression-free survival (PFS) compared to induction
chemotherapy without veliparib maintenance therapy®. In the present study, the IC50 values for veliparib were
significantly higher in the high-risk subgroup, suggesting CAFRI as a potential complementary tool to predict
the benefit of veliparib. Additionally, pazopanib is an oral small molecule tyrosinase inhibitor (TKI) specific for
vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor (PDGFR).
In a phase II clinical trial of recurrent ovarian cancer conducted by Friedlander et al., pazopanib showed good
monotherapy activity®. The National Comprehensive Cancer Network clinical guidelines currently recommend
pazopanib for the treatment of platinum-resistant recurrent OV. In this study, the IC50 values for pazopanib
were significantly higher in the low-risk subgroup, indicating that the high-risk subgroup is more likely to be
the population to benefit from pazopanib.

Although we have used different cohorts and different algorithms to systematically verify and assess the
constructed CAFRI, the study still has certain limitations. Firstly, the present research fails to assess the bias of
the dataset in the retrospective analyses. Secondly, the predictive effect of CAFRI on clinical prognosis and drug
sensitivity of OV remains to be further validated in a large sample of prospective clinical trials. Furthermore, the
key genes in CAFRI are not specifically expressed genes for CAFs, and their regulatory mechanisms for CAFs
in the OV tumour microenvironment deserve further exploration.
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Figure 11. CAFRI-based TIME analysis. (A) Six algorithms to determine the relationship between index
score and different immune cells infiltration. (B) CIBERSORT algorithm identifies differences in the extent
of immune cells in different risk subgroups. (C, D) ssGSEA analysis determines immune cell scores and
immune function scores in different risk groups. (E) Differences in expression of immune checkpoints. (F)
Kaplan-Meier curves for CAFRI in the IMvigor210. (G) Differences in risk scores between patients with CR/
PR and individuals with SD/PD after treatment with ICIs in the IMvigor210. (H) ROC curve for CAFRI in the
IMvigor210. *P<0.05, **P<0.01, and ***P<0.001.
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Figure 12. IC50 prediction based on CAFRI. (A-I) The box plot shows drugs with different IC50 values
between the high and low risk groups.

Conclusion

The CAFRI developed in this study is a promising predictor of clinical outcomes in patients with OV. In addi-
tion, population stratification based on CAFRI can effectively classify individuals with different TIME landscape
and assist in determining immune ‘hot tumours” and ‘cold tumours. These results provide new insights for the
development of biomarkers and the selection of personalised treatment regimens in OV.
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The datasets used and/or analysed during the current study available from the corresponding author on reason-
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