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AI‑assisted quantification 
of hypothalamic atrophy 
in amyotrophic lateral sclerosis 
by convolutional neural 
network‑based automatic 
segmentation
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Jan Kassubek 2,3,6 & Volker Rasche 1,4,6

The hypothalamus is a small structure of the brain with an essential role in metabolic homeostasis, 
sleep regulation, and body temperature control. Some neurodegenerative diseases such as 
amyotrophic lateral sclerosis (ALS) and dementia syndromes are reported to be related to 
hypothalamic volume alterations. Despite its crucial role in human body regulation, neuroimaging 
studies of this structure are rather scarce due to work-intensive operator-dependent manual 
delineations from MRI and lack of automated segmentation tools. In this study we present a 
fully automatic approach based on deep convolutional neural networks (CNN) for hypothalamic 
segmentation and volume quantification. We applied CNN of U-Net architecture with EfficientNetB0 
backbone to allow for accurate automatic hypothalamic segmentation in seconds on a GPU. We 
further applied our approach for the quantification of the normalized hypothalamic volumes to 
a large neuroimaging dataset of 432 ALS patients and 112 healthy controls (without the ground 
truth labels). Using the automated volumetric analysis, we could reproduce hypothalamic atrophy 
findings associated with ALS by detecting significant volume differences between ALS patients and 
controls at the group level. In conclusion, a fast and unbiased AI-assisted hypothalamic quantification 
method is introduced in this study (whose acceptance rate based on the outlier removal strategy was 
estimated to be above 95%) and made publicly available for researchers interested in the conduction 
of hypothalamus studies at a large scale.

The hypothalamus has a crucial role in the regulation of the human body, involved in metabolic1, neuroendocrine2, 
immune3, and cardiovascular activity4. Detailed hypothalamic imaging has become of major interest to better 
characterize disease-associated clinical abnormalities including metabolism5. Several neurodegenerative diseases 
such as frontotemporal dementia (FTD)6 and Huntington disease (HD)7 are assumed to be related to hypotha-
lamic volume atrophy. Specifically in amyotrophic lateral sclerosis (ALS), previous studies from different groups 
indicated that the total volume of the hypothalamus is substantially reduced in patients with ALS compared 
with controls8–10. ALS is traditionally conceptualized as a neurodegenerative disease affecting primarily the 
motor neurons whose degeneration is responsible for the severe motor phenotype of ALS. However, within the 
additional, non-motor symptoms of ALS with substantial impact on patient well-being and overall survival, 
proofs are available of a substantial hypermetabolic phenotype which predates, accompanies, and influences 
the clinical onset of ALS11. The cause of the hypermetabolic state in ALS has been subject to several mechanistic 
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investigations, including the demonstration of an altered hypothalamic physiology8–10. The quantification of 
hypothalamic atrophy is thus an in vivo measure for the neuroimaging phenotype of neurodegenerative diseases 
like ALS and might be used for correlation analyses e.g., with the individual metabolic characteristics.

Due to the low size of the hypothalamus, the volumetric analysis in high resolution magnetic resonance 
imaging (MRI) is challenging. Due to limited image contrast in the vicinity of the hypothalamus, morphological 
landmarks require experience by the rater to be exactly determined in manual segmentation from MRI. As a 
consequence, results of different studies regarding hypothalamic volumetry show high variability during manual 
segmentation12,13. Moreover, manual segmentation is a very time-consuming and tedious procedure. Therefore, 
there is a need in neuroimaging for a reliable and unbiased technique to perform reproducible hypothalamic 
segmentation and volumetric analysis of large datasets, with a minimum of human intervention.

The success of deep learning methods in image classification has extended their use to solve more complex 
tasks including semantic segmentation14, which is the task of labeling pixels with a corresponding class of what is 
being represented. While there have been previous attempts at segmentation tasks, it was not until Ronneberger 
et al.15 with U-Net that a significant improvement in biomedical image segmentation performance was achieved16. 
The network is based on fully convolutional network (FCN) which consists of a contracting path (encoder) 
constituted by the general convolutional process to capture context and a symmetric expanding path (decoder) 
constituted by transposed convolutional layers that enables precise localization. Trained end-to-end from very 
few images, it outperforms the previously best methods and represents the state-of-the-art class of methods in 
terms of segmentation accuracy15. Because of its simplicity and effectiveness, U-Net has been widely adopted 
within the medical imaging community, improving the originally fully-convolutional network approach17. Since 
its inception in 2015, U-Net has seen many advancements in its architecture, e.g., U-Net architecture can be 
built with many different styles of backbone which is the architectural element which defines how the layers 
are arranged in the encoder network and determines how the decoder network should be built. Different clas-
sification networks as the backbone of the semantic segmentation network may show different performance18. 
There are several state-of-the-art pre-trained networks widely explored in the literature. Some famous examples 
in computer science applications are VGG16, ResNet50, Inceptionv3, and EfficientNetB0. VGG, ResNet, and 
Inception families are fundamental deep learning backbones already used for years for different tasks achieved 
excellent backbone-building performance18. EfficientNet networks are a recent family of architectures that have 
been shown to significantly outperform other networks in classification tasks while having fewer parameters19 
and have been explored for medical image segmentation as an encoder20.

However, very few deep-learning based methods are available in the literature for hypothalamus segmentation 
on T1-weighted MR images. First, Rodrigues et al.21 implemented a fully automatic method based on max-tree 
to detect a bounding box around the hypothalamus in axial, sagittal, and coronal MR images and convolutional 
neural networks (CNNs) of 2D U-Net architecture to segment the hypothalamus within the detected region 
in each of three views with subsequent creation of a consensus from all three models’ outputs in order to help 
eliminate false positives. Their consensus model achieved a Dice coefficient of 0.77. Later, Billot et al.22 used a 
3-D U-Net-based architecture with aggressive data augmentation to segment the hypothalamus and its subunits 
from one dataset with a Dice coefficient of 0.83 for the whole hypothalamus. Finally, Rodrigues et al.23 provided 
the first public benchmark composed of a diverse annotated dataset and achieved a Dice coefficient of 0.83 with 
the Teacher-Student-based model composed of modified EfficientNetB4 architectures for segmentation and 
correction.

The rationale of the current study is to present a fully automated approach to segment the hypothalamus on 
T1-weighted MRI scans and, based on this segmentation, to perform volumetric analyses of the hypothalamus in 
a large sample of healthy controls and in ALS patients to identify volume differences at the group level, i.e. atrophy 
associated with ALS. The method relies on application of CNN to segment both hypothalamus and intracranial 
volume (ICV) for hypothalamic volume normalization. The final validation of the AI-based segmentation was 
performed by comparison with volumetric results of an established manual delineation procedure, which has 
been used in previous studies and already obtained a high level of reproducibility in some hundred sporadic 
ALS cases and controls9.

Results
Performance of neural network hypothalamic segmentation
Figure 1 shows the comparison of segmentations predicted by four different models with ground truth seg-
mentations overlaid on the MR images in five exemplary coronal slices of a single control test dataset. Visual 
inspection of the automated segmentations shows that the overall anatomy of the hypothalamus is well learned 
by all networks. Disagreements between the ground truth and predicted segmentations were observed at the 
edge slices (anterior, posterior) where false pixels were predicted by all networks to some extent.

Table 1 summarizes the comparison of performance of hypothalamic segmentation by four investigated 
network architectures in the test dataset. All investigated network architectures achieved similar performance 
in terms of intersection over union (IoU) metric which measures the amount of overlapping between predic-
tion and ground truth. The highest value was achieved for EfficientNetB0 (0.88). High Recall values for all 
models indicated that a high fraction of pixels that should be predicted as hypothalamus was also predicted as 
hypothalamus. The highest Precision, i.e., most of the pixels predicted as hypothalamus were true predictions, 
was achieved with EfficientNetB0 (0.87). Dice similarity coefficient was also highest for EfficientNetB0 (0.87) 
balancing Precision and Recall better than other models. The fastest prediction per image was achieved with 
EfficientNetB0, permitting segmentation of the whole hypothalamus (50 slices) in 1.43 s on a GPU.

No significant difference between the ground truth volume and the volume segmented by EfficientNetB0 was 
observed, whereas all other networks significantly overestimated the segmented volumes.
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Statistical results were confirmed by Bland–Altman plots (Fig. 2). The minimal mean difference between pre-
diction and ground truth among the investigated networks was achieved with EfficientNetB0 (Fig. 2a) which only 
slightly underestimated the hypothalamus volumes (mean difference of − 0.01 cm3). The data points are equally 
distributed within a rather narrow range of the limits of agreement ([− 0.14, 0.11] cm3). Inceptionv3 consistently 
overestimated the hypothalamic volume (mean difference of 0.14 cm3 with 95% limits of agreement [0.0, 0.28] 
cm3) (Fig. 2b). ResNet50 also tends to overestimate the volumes (confidence interval of the mean difference above 
zero line) (Fig. 2c). Although the confidence interval on the mean difference for VGG16 contains the zero line 
(Fig. 2d), the range of limits of agreement is the largest ([− 0.19, 0.26] cm3), and an outlier falling outside of the 
confidence interval of − 1.96 SD limit of agreement is observed in these data, which may significantly impact 
the results by erroneously shifting the mean difference towards zero line.

Figure 1.   Comparison of segmentations (green contour) provided by four different U-Net models vs. ground 
truth (yellow contour) in five exemplary coronal slices of a single control test dataset.

Table 1.   Comparison of performance of hypothalamic segmentation by four investigated network 
architectures in the test dataset. § The reported p-values means that paired t-test was applied as statistics. 
$ Wilcoxon signed-rank test.

Ground truth EfficientNetB0 Inceptionv3 ResNet50 VGG16

IoU – 0.88 ± 0.03 0.87 ± 0.02 0.87 ± 0.02 0.85 ± 0.04

Precision – 0.87 ± 0.05 0.79 ± 0.05 0.82 ± 0.05 0.82 ± 0.05

Recall – 0.86 ± 0.05 0.93 ± 0.04 0.87 ± 0.04 0.85 ± 0.11

Dice – 0.87 ± 0.03 0.85 ± 0.03 0.85 ± 0.03 0.83 ± 0.07

Prediction time per image/ms – 29 31 35 42

Hypothalamic volume/cm3 0.82 ± 0.10 0.80 ± 0.10 0.96 ± 0.12 0.87 ± 0.11 0.85 ± 0.16

p-value – 0.336§ 1.189·10–11§ 0.0003§ 0.045$
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Moreover, EfficientNetB0 has a much lower number of parameters, meaning faster training and lighter model.

Volumetric analysis in the test group
After being re-trained on augmented data including images with limited contrast, EfficientNetB0 model achieved 
a Dice coefficient of 0.84 ± 0.03 in ALS and 0.86 ± 0.02 in controls. 95% HD was 0.82 ± 0.39 mm in ALS and 
0.70 ± 0.38 mm in controls.

Non-significant differences in calculated hypothalamic volumes between prediction and ground truth 
were observed both in ALS patients (0.80 ± 0.10 cm3 vs. 0.77 ± 0.09 cm3 in ground truth, p = 0.15) and controls 
(0.86 ± 0.07 cm3 vs. 0.86 ± 0.08 cm3 in ground truth, p = 0.76). Fig. 3a demonstrates qualitative results of hypo-
thalamus segmentation in control and ALS patient as compared to ground truth.

To allow adjustments of the hypothalamic volumes between subjects with different head sizes, hypothalamic 
volumes in the test group were further normalized to intracranial volumes (ICV) (i.e., the sum of gray matter, 
white matter, and cerebrospinal fluid), which were automatically segmented using the same neural network 
approach. During generation of the training data for the ICV segmentation, the two-threshold technique did not 
work perfectly due to intensity inhomogeneities in the whole head image so that random errors at the borders 
(such as partial overlap with other brain structures) could appear (Fig. 3b as an example). Due to the intrinsic 
properties of the CNN approach, these non-associated random errors were not “learned” by the algorithm and 
the predicted volumes do not show these effects anymore.

Normalized to the ICV (Fig. 4a), significant differences in hypothalamic volumes (− 10%, p = 0.0011) could 
be obtained between the ALS (775 ± 62 mm3) and control group (863 ± 66 mm3). Respective average volumes of 
manually segmented hypothalamus normalized to ICV comprised 870 ± 96 mm3 (controls) and 750 ± 66 mm3 
(ALS) (ALS: − 14% vs. controls). Thus, differences between ground truth and automatically segmented hypotha-
lamic volumes comprised 3% on average in the ALS group and did not exceed 1% in controls.

Hypothalamic analysis in the group comparison
EfficinetNetB0 model trained without data augmentation could not perform any segmentation in 57 ALS cases 
and 2 control cases due to limited contrast of MRI scans, whereas the model trained with augmented data (with 
modified contrast distribution) in the training dataset could deliver segmentation results in 100% of cases.

According to box-whiskers plot for all data included in our dataset, three outliers above the upper limit of 
agreement in the ALS group were removed because the segmented ICV volume was highly underestimated 
(781 ± 191 cm3) in comparison to average ICV volume (1481 ± 165 cm3) in this group (p = 0.035). For 18 outli-
ers below the lower limit of agreement in ALS group, the hypothalamus was significantly under-segmented 
(0.48 ± 0.16 cm3) as compared to average hypothalamus segmentation in this group (0.78 ± 0.11 cm3, p < 0.0005). 

Figure 2.   Bland–Altman plots assessing agreement between volumetric results provided by each of four 
investigated network architectures and ground truth: (a) EfficientNetB0, (b) Inceptionv3, (c) ResNet50, (d) 
VGG16. Mean difference and ± 1.96 SD limits of agreement are shown as blue and red dashed lines, respectively. 
Blue and red bands show confidence intervals on the mean difference and limits of agreement plotted over the 
95% range, using the approximate method described by Bland and Altman.
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In the control group, lower hypothalamus volumes (0.58 ± 0.09 cm3 vs. average 0.84 ± 0.09 cm3, p = 0.033) in 
combination with large ICV volumes (1714 ± 75 cm3) were detected as outliers after normalization in three cases; 
in two cases the ICV volume was underestimated (1258 ± 33 cm3 vs. average 1532 ± 139 cm3, p = 0.036), leading 
to outliers above the upper limit after normalization. With outliers, average hypothalamic volume in ALS group 
was calculated to be 812 ± 127 mm3 and in controls 847 ± 99 mm3 (ALS: − 4% vs. controls, p = 0.0009).

After outlier removal (Fig. 4b), a significant reduction in hypothalamic volume could still be achieved in the 
ALS group (823 ± 84 mm3) as compared to controls (852 ± 77 mm3) (ALS: − 3% vs. controls, p = 0.002).

In conclusion, based on the outlier removal strategy, the acceptance rate of the proposed automatic approach 
for hypothalamus segmentation with consecutive brain normalization was estimated to be above 95%.

Figure 3.   Predictions (green) and ground truth segmentations (yellow) of hypothalamus (a) and intracranial 
volume (b) as rendered 3-D models in a control (upper row) and an ALS patient (lower row) from the test 
dataset. MR image inlays with overlaid segmentation contours show localization of corresponding coronal 
slices. The smoothed surfaces of the ground truth intracranial volume are a result of the applied two-threshold 
technique for the manual segmentation. A partial overlap with other brain structures (dura) is marked in red.

Figure 4.   Comparison of automatically segmented hypothalamic volumes normalized to ICV in ALS vs. 
control groups in (a) test dataset containing ground truth data and (b) large neuroimaging dataset without the 
ground truth data. Median (red line), mean (red rhombus), and individual volumes (colored dots) are shown 
on the box-whiskers of ALS and controls. Double asterisk denotes statistical significance below 0.005 calculated 
applying unpaired t-test.
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Discussion
Hypothalamic atrophy, together with alterations in hypothalamic peptides controlling energy metabolism, is 
known to be associated with metabolic derangements in ALS24. Given that this hypothalamic involvement can, 
like metabolic alterations in general, be regarded as a potential treatment target in ALS8, hypothalamus volume 
quantification might be developed as an imaging-based biological marker by unbiased, time-efficient approaches. 
However, segmenting the hypothalamus is very challenging due to its low size and low contrast in its vicinity 
where it is surrounded by grey matter structures. Although a growing number of neuroimaging studies in the 
literature aims to assess volume alterations of the hypothalamus6,7,25–27, only few have focused on implementing 
an automated method to reduce human variability and enhance studies’ robustness23.

This study has to be considered to include several strengths. In the first line, we have presented an artifi-
cial intelligence-based approach to automatically segment the hypothalamus (and the intracranial volume) in 
T1-weighted MR images of the brain by use of convolutional neural networks of U-Net architecture. U-Net has 
been developed primarily for image segmentation tasks and obtained a high utility within the medical imag-
ing community. There are several variants which adopt an encoder-decoder architecture of U-Net, aiming to 
improve performance compared to the original fully-convolutional network approach. In this study, a comparison 
is performed using four significant U-Net variants on the same dataset to observe an effect on segmentation 
performance as well as trade-offs with respect to computational time and complexity.

Most data-driven methods are very susceptible to data variability: this challenge is especially apparent when 
applying deep learning to brain MRI, where intensities and contrasts vary due to acquisition protocol, scan-
ner-, and center-specific factors28. Our data originated from the same center and had been acquired at the same 
scanner, but were heterogenous in terms of protocol, software release, and operator, since acquired over several 
years. Thus, our algorithm was complemented by data augmentation to implicitly regularize our trained network 
by making it robust against contrast variations and increasing generalization at inference. Our segmentation 
approach permitted extremely fast hypothalamus segmentation at inference (in less than 1.5 s on GPU) as com-
pared to even semi-automated approaches requiring 20–40 min processing time per hypothalamus29. With the 
Dice coefficients of 0.86 ± 0.02 in controls and 0.84 ± 0.03 in ALS patients, the state-of-the-art automatic segmen-
tation methods presented in the literature (0.77 from21 and 0.83 from22,23, respectively) could be improved. The 
predicted differences between ALS patients and controls were about 10% in the test group, whereas differences 
between manual and AI-based segmentation did not exceed 3% in this group.

Finally, we performed a volumetric analysis of the hypothalamus normalized to ICV in ALS patients vs. con-
trols in a large neuroimaging dataset as a typical scenario for which our approach was intentionally developed 
for. Basically, our results were in line with previous independent MRI studies from different groups, reporting 
hypothalamic atrophy in ALS9,10,30, recently confirmed in a neuropathological study31. This significant hypotha-
lamic volume reduction in ALS in comparison to controls at the group level could be confirmed in the current 
dataset. The predicted differences between ALS and controls in the large dataset comprised 3%. This value is 
highly significant, however, lower than previously reported9,31. This accuracy is sufficient for studies at the group 
level; however, in order to obtain robust clinical results at the individual level e.g., in clinical diagnostic proce-
dures of a given disorder, further improvements should be necessary.

This study also has to be regarded in the context of its limitations. It might be regarded as a limitation that 
the technique did not work in all cases. Inaccuracy in ICV volume prediction of 5% leads to a maximum inac-
curacy in hypothalamus volume calculation of about 10%. This value approaches the expected difference in the 
hypothalamic volume between ALS and healthy controls9. Therefore, outliers identified in predicted ICV volumes 
which fell out of the 5% range of average ICV volumes were considered to be outliers and were removed from 
the analysis, simultaneously defining the acceptance rate of AI-based approach. So, automatic segmentation of 
hypothalamus and/or ICV was rejected in 5 controls (out of 112) and 21 ALS (out of 432) cases, resulting in a 
rejection rate of the method below 5%. We identified as main reason for failure in hypothalamus segmentation 
the distortions of the MR images during pre-processing or due to breathing-related motion artifacts, especially 
in patients with high disease burden. This challenge can be tackled in the future by augmenting the training 
dataset with spatially deformed images. ICV segmentation failed in MR volumes with reduced contrast since such 
data were not part of the training. Generally, the challenge of contrast variation in MR images can, alternatively 
to the augmentation approach applied here, be addressed with z-score normalization of the data without the 
need for data augmentation. Better contrast can be obtained at a 3.0 T MRI scanner, potentially resulting in an 
improvement of the accuracy of segmentation. However, for the current study, some hundred T1-weighted MRI 
scans of MND patients as part of the standard clinical MRI protocol were available at 1.5 T. Future studies with 
the use of 3 T (or higher) should be performed. A final limitation of the current study is the use of data from 
a single imaging center which can lead to performance losses when predicting images from different datasets 
than those used in the training.

In conclusion, we present an AI-based technique for automated hypothalamus segmentation and volumetric 
analysis to be performed in an unbiased, reproducible manner and at a large scale. We applied this technique 
to study hypothalamic atrophy associated with ALS at the group level. Future work will focus on extending this 
automated analysis to applications to other neurological diseases, such as dementia syndromes (like FTD or 
Alzheimer’s disease), Huntington disease or Parkinson’s disease. To encourage other researchers to reproduce 
our results on their own datasets, we provide the source code as well as the trained models on GitHub: https://​
github.​com/​verni​kousk​aya/​hypot​halam​us_​segme​ntati​on.

https://github.com/vernikouskaya/hypothalamus_segmentation
https://github.com/vernikouskaya/hypothalamus_segmentation
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Material and methods
Ethical approval
The ethics application includes the recording and the analysis of MRI data, irrespective of the analysis technique; 
no additional MRI scans have been performed for the current study. Previous studies on the analysis of MRI 
data have already been performed (9,32) and have been approved by the Ethics Committee of the University of 
Ulm (references #19/12 and #20/12) in accordance with the ethical standards laid down in the 1964 Declaration 
of Helsinki and its later amendments. Written informed consent was obtained from all individual participants 
included in the study.

MRI dataset
Six-hundred-and-sixty-four T1-weighted whole head MRI datasets were acquired on a 1.5 T MRI scanner 
(Symphony, Siemens Medical, Erlangen, Germany) (Table 2A). Morphological data were obtained with a 
MPRAGE sequence (144 sagittal slices, no gap, 1.0 × 1.2 × 1.0 mm3 voxels, 256 × 192 × 256 matrix, TE = 4.2 ms, 
TR = 1600 ms), which is part of a standard clinical MRI examination protocol for patients with motor neuron 
diseases (MND). One-hundred-and-fifty-four healthy subjects without any neurological/psychiatric disease or 
other medical condition composed the control group. Five-hundred-and-ten patients with sporadic ALS were 
recruited in the outpatient and inpatient settings of the Department of Neurology, University of Ulm, Germany 
and composed the ALS group. One-hundred-and-twenty datasets (78 ALS patients and 42 controls) out of these 
groups were available with corresponding manual delineations of hypothalamus. After pre-processing based on a 
visual quality check, 12 ALS hypothalamic volumes were removed from the dataset due to limited contrast of the 
MR images. Thus, a subset of 108 hypothalamic volumes (50 slices each) were used for the training of different 
network architectures and the comparison of their performance. These data were randomly split on the subject 
level into training (47 ALS, 24 controls), validation (4 ALS, 3 controls), and previously unseen test (15 ALS, 15 
controls) datasets, respectively, at a ratio of 66%/6%/28%, resulting in 3550 images for training, 350 images for 
validation, and 1500 images for test (Table 2B). Controls and ALS groups in the test sample were gender- and 
age-matched.

Data‑preprocessing and manual segmentation protocol of hypothalamus
T1-weighted MRI data were used for manual delineation of the hypothalamus in the coronal plane in three-
step pre-processing pipeline using the Tensor Imaging and Fiber Tracking (TIFT) software package expanded 
by a volumetric extension package33. The ground truth was obtained as a subsample from results of a previous 
analysis of some hundred sporadic ALS cases and 112 healthy controls9. First, the rigid body normalization of 
T1-weighted MRI data was performed along the anterior commissure (AC)—posterior commissure (PC) axis 
such that the coronal cutting plane was perpendicular with respect to the AC-PC axis to correct for individual 
tilt of the head and to minimize potential partial volume effects. Then, spatial upsampling was performed to 
improve the accuracy in visually identifying landmarks and hypothalamic borders. The hypothalamic section 
of each dataset was pre-selected in 50 slices of 0.5 mm thickness. Finally, manual delineation of the left- and 
right-hemispheric hypothalamus was performed using the highly reproducible technique adapted from Gabery 
et al.12, as previously described9,34,35. In short: boundaries in coronal sections were defined anterior when the optic 
chiasm was first seen to be attached to the ventral part of the septal area and posterior where the fornix appears 
to be merged with the mammillary nucleus. The hypothalamus was medially bounded by the third ventricle, 
the inferior border was defined by the junction of the optical chiasm for the anterior part, and by the border of 
the cerebrospinal fluid for the more posterior slices. The hypothalamus was laterally bounded by the diagonal 
band of Broca in the preoptic area, the internal capsule and the cerebral peduncle for the more posterior slices 
together with non-hypothalamic grey matter structures such as the fields of Forel on the most posterior slices. 
The optical tract was excluded from all slices. An appropriate visualization of the hypothalamic localization is 
provided in Fig. 5. With this manual delineation procedure, a high level of reproducibility was obtained with 
an intra-rater variability with a coefficient of variation < 4% and an intraclass correlation coefficient > 0.9 for 
inter-rater variability.

Table 2.   Overview of available datasets and their splits during hypothalamic segmentation: (A) Total amount, 
(B) Network implementation, (C) Neuroimaging dataset. Numbers in brackets show effect of adding 12 ALS 
datasets that have been discarded due to limited contrast during data augmentation and re-training of the 
network.

No. of subjects No. of images

Control ALS All Percentage all Control ALS

(A) Total (w. and w/o GT) 154 510 664

(B) Network implementation

Training 24 47 (+ 12) 83 66% (69%) 3550 (27,350)

Validation 3 4 7 6% 350 (2250)

Test 15 15 30 28% (25%) 750 750

Total (w. GT) 42 66 (+ 12) 108 (+ 12) 100% 5400 (31,100)

(C) Neuroimaging dataset Test (w/o GT) 112 432 544 5600 21,600
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Choice of network architecture
In the first stage of our work we compared the performance of four classification networks (VGG16, ResNet50, 
Inceptionv3, and EfficientNetB0) as backbones in the U-Net network for segmentation of the hypothalamus in 
the same experimental environment and with the same data.

All mentioned backbones weights were pre-trained on The ImageNet dataset36 to shorten the learning pro-
cedure, to speed up convergence, and to achieve high performance as compared to a non-pre-trained model. 
The 50 images representing the hypothalamic region had a size of 512 × 512 pixels with an in-plane resolution of 
0.125 × 0.125 mm2. All models were trained on a GeForce GTX 1060 6 GB GPU for 25 epochs with early stop-
ping with a batch size of 4 samples per pass. The loss function was the sum of the categorical Cross Entropy and 
Jaccard loss. Adaptive Moment Estimation (Adam) with the Keras default settings was used as the optimizer. 
The IoU was used as a metric to evaluate the model during training. Training was stopped when the validation 
loss was observed to have ceased improving for 10 consecutive epochs and the model with the lowest validation 
loss was chosen for prediction.

The segmentation performance of each CNN model was evaluated in terms of IoU. Further, true-positives 
( TP ), i.e., the intersection between segmentation and ground truth; true-negatives ( TN ), i.e., part of the image 
beyond the union between segmentation and ground truth; false-positives ( FP ), i.e., segmented parts not over-
lapping the ground truth; false-negatives ( FN ), i.e., missed parts of the ground truth—were calculated for each 
volume to estimate the average Precision, Recall, and Dice coefficient. Average prediction time per image was 
assessed.

Data augmentation
Because the contrast variation in the acquired MRI scans was a significant segmentation challenge, the training 
dataset was extended by the 12 ALS datasets excluded in the previous stage (resulting in 120 datasets) and the 
dataset was augmented by shifting the contrast of each image with some sampled values, such that the variability 
in the training set was similar to what is seen in real world clinical data, while preserving anatomical informa-
tion, in order to make the network robust against contrast variations. That way, 27,350 images were obtained for 
training and 2250 images for validation (Table 2B). In the second stage of this work we re-trained the best model 
from the previous experiment on these data and repeated the evaluation in the same test dataset consisting of 
15 ALS and 15 control datasets.

Total intracranial volume—segmentation and normalization
We utilized the neural network with the best performed backbone used in previous experiments to automatically 
segment the ICV from original MRI volumes. To generate ground truth data of the ICV for training the network, 
manual delineation by visual intensity-based 3-dimensional marking of the ICV was performed by the TIFT 
software. In total, 10 ICV volumes (5 volumes from each test group from the previous experiment) were available 
for training (9 volumes, 4608 images) and validation (1 volume, 512 images) of the network.

Since no ICV ground truth data were available for the investigated hypothalamic test group, the evaluation 
was performed visually by 3-D reconstruction of the automatically segmented ICVs.

Finally, volumetric analysis was performed by calculating the normalized hypothalamus volume as:

Figure 5.   Exemplary coronal section with manually segmented hypothalamus in red and respective brain 
structures labeled. The inlay (central sagittal slice) shows the localization of this coronal section.
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where V  denotes the automatically segmented volume of individual hypothalamus or ICV, respectively, and 
VICVmean(control) is the average ICV volume of controls.

Application to hypothalamic volumetry in ALS
Then, we accessed the ability of the previously trained neural networks to reliably segment the hypothalamus (and 
consequently also the ICV) in a neuroimaging group level study (Table 2C), which represents a major application 
for the proposed method. Table 3 provides gender and age characteristics of ALS patients and controls in the 
neuroimaging dataset, as well as ALS-FRS-R score and disease duration for ALS patients.

Since manual delineations were not available for the whole dataset, a quality check of the automated segmenta-
tion was performed based on the outliers detected in the predicted hypothalamus volume and ICV. The outliers 
were identified by applying interquartile range (IQR): any point outside the range [Q1 − 1.5*IQR; Q3 + 1.5*IQR] 
was considered to be an outlier.

Statistical analysis
We used two evaluation criteria of the segmentation performance: first, Dice similarity coefficient measuring 
the overlap between predicted segmentation and ground truth and second, 95% Hausdorff distance which is 
similar to maximum HD, but based on the calculation of the 95th percentile of the distances between boundary 
points in the ground truth and prediction in order to eliminate the impact of a very small subset of the outliers.

The agreement in volume quantification between the ground truth and automatic segmentation provided by 
each model was analysed based on Bland–Altman plots. Comparison between the ground truth of the hypotha-
lamic volumes and the hypothalamic volumes predicted by the networks was performed by applying a paired 
t-test or Wilcoxon signed-rank test as appropriate according to Shapiro–Wilk test for normality. The differences 
between ICV normalized hypothalamus volumes in the control and the ALS group were assessed applying 
unpaired t-test. A p-value < 0.05 was assumed statistically significant. The mean value and the standard deviation 
of the differences are reported.

Data availability
The original contributions presented in the study are included in the article, further inquiries can be directed to 
the corresponding author on reasonable request.
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