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Downregulated NPAS4 in multiple 
brain regions is associated 
with major depressive disorder
Berkay Selçuk 1, Tuana Aksu 1, Onur Dereli 1 & Ogün Adebali 1,2*

Major Depressive Disorder (MDD) is a commonly observed psychiatric disorder that affects more 
than 2% of the world population with a rising trend. However, disease-associated pathways and 
biomarkers are yet to be fully comprehended. In this study, we analyzed previously generated RNA-
seq data across seven different brain regions from three distinct studies to identify differentially and 
co-expressed genes for patients with MDD. Differential gene expression (DGE) analysis revealed that 
NPAS4 is the only gene downregulated in three different brain regions. Furthermore, co-expressing 
gene modules responsible for glutamatergic signaling are negatively enriched in these regions. 
We used the results of both DGE and co-expression analyses to construct a novel MDD-associated 
pathway. In our model, we propose that disruption in glutamatergic signaling-related pathways might 
be associated with the downregulation of NPAS4 and many other immediate-early genes (IEGs) that 
control synaptic plasticity. In addition to DGE analysis, we identified the relative importance of KEGG 
pathways in discriminating MDD phenotype using a machine learning-based approach. We anticipate 
that our study will open doors to developing better therapeutic approaches targeting glutamatergic 
receptors in the treatment of MDD.

Major Depressive Disorder (MDD), also known as depression, is a common psychiatric disorder that affected 
more than 2% of the world population (163 million people) in  20171. It is characterized by low mood sustained 
for at least 2 weeks, often with low self-esteem, loss of interest in normally enjoyable activities, low energy, and 
pain without a clear cause. Among more severe symptoms, suicidal behaviors are observed in patients with major 
depression, making it one of the most common fatal disorders in the  world2. Recently, the severe depression rate 
among youth escalated from 9.4 to 21.1% between 2013 and  20183. This suggests a rising trend in the number of 
depressive patients and emphasizes the importance and urgency of the problem. Therefore, immediate research is 
needed to define fine-established markers of major depression to address this ongoing global well-being problem.

Several attempts have been made to identify the transcriptional profiles of patients with major depression by 
using next-generation sequencing (NGS) data obtained from postmortem patients. Pantazatos et al.4 have discov-
ered thirty-five differentially expressed genes in the dorsolateral prefrontal cortex of depression sudden deaths 
(MDD) and depression suicidals (MDD-S) compared to the control group (padj < 0.1). The DLPFC is impli-
cated in regulating impulsivity, decision-making, cognitive control of mood and other tasks related to suicidal 
 tendencies5,6. However, only a single brain region, with a limited sample size of 59, was investigated in that study.

Labonté et al.7 examined six brain regions including DLPFC, nucleus accumbens (nACC), ventral subiculum 
(vSUB), anterior insula (aINS), cingulate gyrus 25 (Cg25), and orbitofrontal cortex (OFC). The nACC is integral 
to the reward system and has been a target for investigation of chronic stress and  depression8. The vSUB acts 
as a modulator of the hippocampus that has been associated with  depression9. The aINS is key for perceiving 
internal states and subjective  emotions10,11, but there’s no consensus on its association with MDD. The Cg25 plays 
a pivotal role in regulating emotions and guiding  behavior12. Imaging studies in patients with depression have 
shown increased subcallosal cingulate gyrus activity, which may be reversed via antidepressant  treatment13. The 
OFC is pivotal for emotion and evaluating reward value across various stimuli, distinguishing between expected 
rewards and non-rewards. An imbalance in reward and non-reward processing at the OFC, marked by altered 
activity and connectivity, plays a crucial role in the manifestation and treatment of  depression14. Labonte et al. 
showed differences in transcriptional patterns of men and women in these regions, proposing sexual dimorphism 
for depression. Although researchers have discovered a 5–10% overlap for the differentially expressed genes for 
the females and males, the data did not yield any outstanding common genetic marker associated with MDD.
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Similarly, in 2017, Ramaker et al.15 investigated transcriptional profiles of patients with schizophrenia, bipolar 
disorder, and major depression by using brain regions DLPFC, nACC and anterior cingulate (AnCg). While fun-
damental cognitive processes such as motivation, decision-making, learning, cost–benefit calculation, as well as 
conflict and error monitoring are associated with the  AnCg12, there’s no clear linkage to MDD yet. Although they 
have identified differentially expressed genes (padj < 0.05) for schizophrenia and bipolar disorder, they have not 
identified any for major depression. Sequencing data from these three valuable studies can be analyzed together 
to increase the sample size and improve the resolution of the results.

In this study, we combined and analyzed previously used RNA-seq data from multiple  studies4,7,15 to identify 
genes that are differentially expressed for MDD by considering the factors of gender, age, postmortem interval, 
brain region, and the study they belonged to. We conducted differential gene expression analysis across seven 
distinct brain regions DLPFC, nACC, vSUB, aINS, AnCg, Cg25 and OFC. Out of these, only regions DLPFC, 
nACC and vSUB exhibited differential gene expression in patients with MDD. These three regions were further 
studied for significant gene expression changes and co-expressing gene modules. Lastly, used a non-linear, 
machine learning based approach to determine biological pathways that can be used for diagnostic purposes by 
using samples from all brain regions. We present significant genetic biomarkers and pathways associated with 
the major depression phenotype.

Results
We combined RNA-seq datasets from three different  sources4,7,15 containing sequenced brain tissue samples from 
postmortem control and major depression patients to identify statistically significant transcriptional changes. 
We analyzed the raw RNA sequencing reads and measured the expression levels of genes for each sample. The 
quality of each sample was assessed, and a few samples were discarded from the analysis due to having low quality 
(see "Methods"). Then, we followed the general pipeline of RNA-seq data analysis (see "Methods") by perform-
ing alignment to the human genome and counting the reads aligned with each gene. We grouped the counts 
according to the brain region they belonged to and identified genes that are differentially expressed relative to 
the control group (padj < 0.05) for each region by using the DESeq2 R  package16. We did not apply any log-fold 
change cut-off to our analysis.

To investigate the potential transcriptional similarities between different brain regions, we first calculated 
pairwise Spearman’s correlations using log2FC values of commonly expressed genes (Fig. 1A). No strong cor-
relation was observed between the two regions. The strongest correlation was observed between the orbitofrontal 
cortex and ventral subiculum with pairwise Spearman’s correlation score of 0.28. Therefore, we can conclude 
that different disease-related signatures were observed in different brain regions.

Then, we focused on genes that are differentially expressed for each region independently. Out of the seven 
regions, we identified at least one differentially expressed gene in DLPFC, nACC, and vSUB but not in other brain 
regions. The highest number of differentially expressed genes was observed in DLPFC (sample size of n = 150) 
with 87 differentially expressed genes, and this was followed by nACC (n = 94) with six genes and vSUB (n = 43) 
with two genes (Fig. 1B). When we intersected lists of differentially expressed genes for these three regions, 
we discovered that a brain-specific transcription factor  NPAS417 was the only common gene (Fig. 1b) that was 
downregulated in all three regions. It was previously shown in  mice18–21 and in a study monitoring 152 ischemic 
stroke  patients22 that decrease in NPAS4 expression is correlated with the MDD phenotype.

Figure 1.  Differential gene expression analysis for different brain regions (A) Spearman’s correlation of log2FC 
values between investigated brain regions. (B) Venn diagram showing the number of differentially expressed 
genes for DLPC, vSUB, and nACC.
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Because NPAS4 was identified as the single common downregulated gene, we aimed to further investigate 
the shared transcriptional profile between different regions. Therefore, we combined samples from three regions 
(DLPFC, nACC, and vSUB) which we observed differential gene expression and reached a sample size of 287 
(143 CTRL, 144 MDD) to perform a DGE analysis by adding a covariate of “brain region” to eliminate region-
specific variations in gene expression. As presented in the volcano plot (Fig. 2A), 149 genes were found to be 
differentially expressed (padj < 0.05) with a general trend of downregulation. We suggest that this was mainly 
due to the top three (padj:2 ×  10–27, 4.9 ×  10–11, 2.3 ×  10–8) downregulated transcription factors (NPAS4, FOS, 
and FOSB) (Fig. 2B).

To gain more insight into the pathways involved in MDD phenotype, we performed a co-expression analysis 
using  CEMiTool23 for the brain regions we observed NPAS4 downregulation to reveal correlating gene modules. 
As an input, we used the same normalized count matrix for DGE analysis. The co-expression analysis yielded 
two co-expressed gene modules (padj < 0.1) as modules 1 and 2. After introducing sample annotations as MDD 
and control, we identified that both of the modules show positive enrichment in control patients and negative 
enrichment in MDD patients (Supplementary Fig. 1). For the first module (128 genes) control group had nor-
malized enrichment score (NES) of 1.49 (padj = 0.048) and MDD group had -1.48 (padj = 0.036). Furthermore, 
for the second gene (60 genes) module control group had NES of 1.42 and MDD group had −1.44 (padj = 0.065). 
Overall, higher enrichment means a higher activity of the module for a given group and the opposite is true for 
the negatively enriched group. Because the activity of each module is correlated with the expression levels of 
the samples, we can conclude that co-expressed genes are mainly downregulated for patients with depression. 
Although we repeated the same analysis by including all samples, we couldn’t identify functionally relevant 
co-expressing modules. Therefore, we can conclude that NPAS4 downregulation is likely to be the driving force 
behind the changes observed in co-expression modules. We further explored the functional implications of these 
modules to understand their possible disease relevance.

We performed gene set enrichment analysis through a web-based tool  Enrichr24–26, and presented the top 10 
KEGG (Kyoto Encyclopedia of Genes and Genomes)27–29 pathways based on their combined score (Tables 1, 2 and 

Figure 2.  DGE and co-expression analysis of DLPFC, vSUB and nACC (A) Volcano plot for the DGE analysis 
of three regions. (B) Box plots for the top three differentially expressed genes NPAS4, FOSB, and FOS. (C, D) 
Top genes in glutamatergic signaling and synaptic vesicle cycle, and secretion co-expression modules enriched 
in KEGG pathways. Edges indicate co-occurrence in the same pathway. Higher edge width indicates higher 
co-occurrence. Force directed layout is used for visualization.
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3) for differentially genes and co-expressed gene modules. Enrichment of differentially expressed genes yielded 
18 pathways (padj < 0.05) related to inflammation, such as the IL17 signaling pathway, Rheumatoid arthritis, NF-
kappa B signaling pathway. It has been previously suggested that IL-17A induces depressive behavior in  mice30,31, 
but studies including human  subjects32–34 have contradicting conclusions. Lui et al.35 showed that higher serum 
levels of IL-17 are positively correlated with the severity of anxiety in patients with rheumatoid arthritis. The 
involvement of interleukins and cytokines was previously discussed numerous  times36–38. However, the genes 
highlighted in both these studies and our own analysis lack a strong association with the disorder. Therefore, they 
should be mainly considered as biomarkers. We suggest that a single pathway might be insufficient to capture the 
full breadth of disease biology; instead, contrasting multiple pathways can provide a more holistic perspective 
on observed patterns, in our case inflammation related genes. It should be noted that 91 out of 147 differentially 
expressed genes (including NPAS4) are not present in any KEGG pathway. This suggests that these pathways 
should not be considered representatives of all differentially expressed genes.

Table 1.  KEGG 2021 pathway enrichment for the differentially expressed genes. Overlap: The overlap between 
the gene set and the pathway.

KEGG pathway Overlap Padj Odds ratio Combined score

IL-17 signaling pathway 9/94 5.20E-06 15.17 262.43

TNF signaling pathway 8/112 1.49E-04 10.93 144.84

Rheumatoid arthritis 7/93 3.18E-04 11.49 138.95

Legionellosis 5/57 0.001585773 13.41 129.97

Bladder cancer 4/41 0.0048795 14.98 125.53

AGE-RAGE signaling pathway in diabetic complications 7/100 3.86E-04 10.62 123.33

NF-kappa B signaling pathway 7/104 4.00E-04 10.18 115.59

Malaria 4/50 0.008858662 12.04 91.64

MAPK signaling pathway 10/294 0.001585773 5.03 48.47

Kaposi sarcoma-associated herpesvirus infection 7/193 0.008858662 5.29 39.48

Table 2.  KEGG 2021 pathway enrichment for the glutamatergic signaling co-expression module (Module 1).

KEGG pathway Overlap Padj Odds ratio Combined score

Amphetamine addiction 8/69 1.04E-06 22.02 401.59

Cocaine addiction 6/49 1.79E-05 23.06 329.55

Circadian entrainment 9/97 1.04E-06 17.30 317.75

Glutamatergic synapse 9/114 2.51E-06 14.48 245.48

Gastric acid secretion 7/76 1.76E-05 16.88 244.71

Long-term potentiation 6/67 9.99E-05 16.24 201.68

Dopaminergic synapse 9/132 6.70E-06 12.35 193.68

GABAergic synapse 6/89 3.31E-04 11.92 128.40

Morphine addiction 6/91 3.44E-04 11.64 123.89

Oxytocin signaling pathway 8/154 1.30E-04 9.16 110.15

Table 3.  KEGG 2021 pathway enrichment for the synaptic vesicle and secretion co-expression module. 
(Module 2).

KEGG pathway Overlap Padj Odds ratio Combined score

Synaptic vesicle cycle 10/78 2.72E-12 59.64 1870.16

Insulin secretion 7/86 3.41E-07 33.84 640.54

Endocrine and other factor-regulated calcium reabsorption 5/53 1.09E-05 38.37 558.02

Salivary secretion 6/93 1.09E-05 25.83 386.58

Aldosterone synthesis and secretion 6/98 1.09E-05 24.42 357.87

Gastric acid secretion 5/76 4.77E-05 25.91 329.90

Glutamatergic synapse 6/114 1.99E-05 20.79 286.04

Bile secretion 5/90 8.56E-05 21.63 257.31

Pancreatic secretion 5/102 1.42E-04 18.94 213.74

Vasopressin-regulated water reabsorption 3/44 0.003 26.00 211.24
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We further investigated pathways enriched for individual co-expressed gene modules comparatively to 
reveal the significant patterns observed within modules. We called the first module as “glutamatergic signaling 
module” (Table 2) because we observed a strong enrichment for the  addiction39,40 glutamatergic synapse, and 
circadian  entrainment41,42 pathways that were mainly controlled by AMPA (α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid) and NMDA (N-methyl-D-aspartate) glutamate receptor activity. To visualize the impor-
tant co-expressed genes in pathways, we constructed a network visualized in Fig. 2C. In this visual presentation, 
we added edges between genes based on their co-occurrence in top 9 KEGG. Here, genes with high co-occurrence 
are clustered closely. Notably, glutamate receptors GRIN1, GRIN2B, GRIA2,  Ca2+ dependent CALM3, CAMK3B, 
PRKCB, ADCY5, and G proteins GNAO1, GNG7 are form the core of this network. Lastly, we called the sec-
ond module “synaptic vesicle and secretion module” (Fig. 2D and Table 3) because it contained genes ATP2B2 
responsible for  Ca+2 secretion, ATP1A3, ATP1A1 responsible for  Na+/K+ transport, CAMK2A associated with 
 Ca+2, GNAS and ADCY1 associated with G proteins. Therefore, the synaptic vesicle cycle, different secretion-
related pathways, and pathways related to calcium transport are highly enriched. Negative enrichment scores 
of these two modules for the MDD suggest that glutamatergic signaling activity is downregulated for the brain 
regions where we observed NPAS4 as a common downregulated gene. This suggests a sequence of events leading 
NPAS4 downregulation. Previous research has highlighted the significance of both glutamatergic signaling and 
 Ca2+ release in regulating NPAS4  induction43. Our findings postulate that the downregulation of glutamatergic 
pathways may trigger a dysregulation in  Ca2+ transport resulting in to decreased NPAS4 expression and activity. 
NPAS4 has been involve in controlling the expression of genes linked to glutamatergic synapses, suggesting a 
reciprocal relationship between NPAS4 and these  synapses44. The downregulation of these genes and pathways 
can result in reduced synaptic plasticity leading  MDD45. Interestingly, when we extended the co-expression 
analysis across all brain regions in our study, we failed to reveal a significant pathway enrichment, reinforcing 
the unique association between NPAS4 and the identified pathways.

While DGE and co-expression analyses provided important insights about the changes in observed MDD 
patients, they are specifically designed to identify linear associations observed in expression data for pre-deter-
mined conditions (e.g., disease and control). However, in reality, disease biology can be much more complex that 
these analyses may not capture the true essence of the changes especially for the diseases such as MDD. Thus, 
in addition to DGE and co-expression analyses, we adopted a machine learning-based approach called multiple 
kernel learning (MKL). This method is specifically designed to capture non-linear relationships between genes 
and gene groups, helping identify disease-associated biological mechanisms. Notably, the same computational 
framework was shown to be successful in identifying features that predict cancer  stages46 and the survival of 
 individuals47. In our analysis, KEGG pathways were used to identify the informative gene groups to discriminate 
MDD patients from the control group. In this method, each pathway was mapped to a gene expression matrix, 
and distinct kernel matrices were calculated for each pathway. Using the optimized weighted combination of 
these kernel matrices, the algorithm finds a sparse set of pathways by discarding uninformative ones from the 
collection. We can infer the relative importance of the pathways by considering their resulting kernel weights. We 
used the normalized gene expression values from all brain regions and samples (n = 457) to identify the common 
underlying biological mechanisms associated with MDD.

We reported the area under the receiver operating characteristic curve (AUC) values over 100 replications to 
evaluate the algorithm’s performance. The predictive performance of the MKL algorithm is increased when we 
included samples from all regions compared to three regions containing differentially expressed genes (Fig. 3A) 
indicating that including more brain regions and samples in the analysis increases the reliability of the prediction 
model. We achieved an average AUC score of 0.84 with a standard deviation of 0.04 for the model including all 
brain regions (Fig. 3A). 21 pathways were selected as informative, at least in 50 replications (Fig. 3B). Pathways 
“Linoleic acid metabolism,” “Viral protein interaction with cytokine and cytokine receptor,” “Olfactory trans-
duction,” “Staphylococcus aureus infection,” “Chemical carcinogenesis—DNA adducts,” and “Graft-versus-host 
disease” were selected as informative in all replicates. Because some of the chosen pathways do not directly 
relate to brain tissue, we would like to elaborate on the results by categorizing them based on the gene groups 
they share. Thus, we divided pathways into two main categories based on their functional relevance and gene 
composition. The first cluster contained eight pathways (Linoleic acid metabolism, Chemical carcinogenesis—
DNA adducts, Ovarian steroidogenesis, Primary bile acid biosynthesis, Fat digestion and absorption, Maturity 
onset diabetes of the young, Metabolism of xenobiotics by cytochrome P450, Retinol Metabolism, and Drug 
metabolism—cytochrome P450) containing genes related to synthesis, absorption, and metabolism of lipids. 
In this group, genes related to the cytochrome p450 (CYP) family are abundant and shared between different 
pathways. Previous studies have focused on variants in CYP genes and their association with SSRI metabolism 
and the effectiveness of the  treatment48–51 On the other hand, our approach puts forward the idea that they can 
be used for diagnosis. “Nitrogen metabolism” and “Maturity onset diabetes of the young” can also fit in this 
category because they are related to metabolism. Several  studies52,53 demonstrate the role of metabolism in 
patients with MDD. The second major group contained five pathways (Viral protein interaction with cytokine 
and cytokine receptor, Staphylococcus aureus infection, Graft-versus-host disease, Hematopoietic cell lineage, 
and Cytokine-cytokine receptor interaction) related to inflammation and immune system which is parallel to 
the enrichment of differentially expressed genes that we identified. The remaining four pathways were related to 
perceiving external stimuli through receptors (Olfactory transduction, Neuroactive ligand-receptor interaction, 
and Phototransduction) and glycosylation (Mucin type O-glycan biosynthesis). Overall, using KEGG pathways 
as features, we discriminated against MDD patients with high accuracy. The pathways we identified as discrimi-
native can serve as a starting point for the research on MDD diagnosis.
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Discussion
Our study combined multiple publicly available RNA-Seq datasets to identify novel pathways and genetic mark-
ers associated with MDD. A large sample size increased the sensitivity of the analysis, which led to the discovery 
of novel gene-disease associations. On the other hand, combining datasets from different sources introduces a 
certain amount of noise to the analysis. Moreover, Brodmann areas, individual segments of the cerebral cortex 
defining boundaries of each brain region, for a given region might slightly differ between studies. Therefore, we 
performed a preliminary quality filtration step and used the “study” covariate in our DGE analysis to eliminate 
some of that noise.

Our results show that the dorsolateral prefrontal cortex is the most affected region based on the number of 
differentially expressed genes, and downregulation of NPAS4 is observed for multiple brain regions. It should be 
highlighted that the larger change observed in DLPFC can also be attributed to its larger sample size. It has been 
previously demonstrated that NPAS4 plays a role in  memory54, modulating inhibitory-excitatory  balance55–57, 
epileptogenesis in mice, cocaine-induced  hyperlocomotion43, cognitive well-being and many other  diseases19,58,59. 
While the association between NPAS4 and MDD has been shown in mice  previously20, we validated the same 
relationship for humans and multiple brain regions. Supporting our findings, Gu et al. showed that patients with 
post-stroke depression had lower expression levels of NPAS4 in their peripheral blood mononuclear  cells22, which 
makes NPAS4 a potential diagnostic biomarker in the future. Our study suggests the central role of NPAS4 in 
major depression as an association factor. Although this study suggests a potential causation role of NPAS4 in the 
downregulation of synaptic plasticity in MDD, this hypothesis needs to be tested experimentally in model species.

To highlight the role of NPAS4 and understand that the relationship between differentially genes and co-
expressed gene modules, we gathered our findings into an MDD model (Fig. 4). In this model, we combined our 
findings with the existing literature on connections between genes and pathways. In our model, we show that 
NMDA and AMPA glutamate receptors can induce the expression of NPAS4 and other IEGs through controlling 
 Ca2+  influx60,61. Previous research points to a synergistic interaction between glutamatergic synapses and NPAS4, 
where both amplify each other’s activity to increase synaptic  plasticity43,44. ChIP-seq enhancer data of NPAS4 
within mouse cortical neurons show that NPAS4 regulates immediate early  genes62. Differentially expressed genes 
and this experiment include IEGs in common; FOS, FOSB, NR4A1, NR4A3, JUNB, and NPAS4 itself. ChIP-seq 
data of NPAS4 embryonic mouse 14 days medial ganglionic eminence (mostly containing excitatory neurons) 
and cortex (mostly inhibitory neurons) shows that NPAS4 regulates distinct sets of late-response genes in inhibi-
tory and excitatory  neurons57. Genes identified in our DGE analysis PTGS2, ATF3, ETV3, and CSRPN1 which 
were also regulated by NPAS4 in inhibitory neurons. By controlling the expression of other IEGs, which are also 
transcription factors, NPAS4 indirectly regulates the expression of many different genes as a master transcription 
factor controlling synaptic plasticity. Supporting our model, existing studies have shown that FOS, FOSB, and 
their splice  variants63–65 are associated with motivation and depressive  behavior66. Also, some antidepressants 
have been shown to increase the expression of  FOS67 and  NPAS468. These immediate early genes play important 
roles in maintaining essential synaptic  functions69–71. In our analysis, we observed a significant downregulation 

Figure 3.  Multiple kernel learning results. (A) Area under curve comparison of multiple kernel learning for 100 
replications. (B) Pathways selected as discriminative in 100 replication more than 50 times.
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trend in pathways regulated by glutamatergic receptors. These pathways influence IEGs that regulate synaptic 
plasticity, circadian  entrainment72–74, and learning abilities (long-term potentiation) in patients with MDD.

Building on the insights from our model which highlights the significance of glutamatergic receptors in the 
context of MDD, it’s worth revisiting existing therapeutic strategies. Traditionally, the focus has been on aminer-
gic receptors, especially serotonin and  dopamine75. However, these monoamine-oriented treatments have been 
ineffective, especially for patients with treatment-resistant  depressions76,77. Our study suggests that glutamatergic 
receptors can be used as drug targets in the treatment of MDD, aiming to restore the lost synaptic plasticity. In 
support of our hypothesis, NMDA antagonist ketamine and its enantiomer esketamine have been shown to be 
effective for patients with treatment resistant  MDD76,78–80. Although esketamine is an antagonist of the NMDA 
receptor, it leads to the activation of AMPA  receptors81 that increase synaptic plasticity. Furthermore, the trial 
of NMDA co-agonist glycine triggered depressive symptoms in  mice82. Thus, we conclude that the results of 
these drug trials align with the model we proposed in this study. We anticipate that antidepressants targeting 
glutamatergic signaling pathways will gain more popularity.

Materials and methods
Datasets
In this study, three postmortem RNA-seq datasets from Gene Expression Omnibus (GSE101521, GSE80655, 
and GSE102556)4,7,15 were combined to increase the sample size and perform a statistically significant analysis 
of the MDD profile. A total of 216 control (28.70% female) and 241 major depressive disorder samples (42.74% 
female) were investigated based on their gene expression profiles (Table 4). The average age of death of CTRL 
and MDD samples are 47.66 and 46.78, respectively. Samples from 7 brain regions, including the dorsolateral 
prefrontal cortex (DLPFC), nucleus accumbens (nACC), ventral subiculum (vSUB), anterior insula (aINS), ante-
rior cingulate cortex (AnCg), cingulate gyrus 25 (Cg25), and orbitofrontal cortex (OFC) were analyzed (Table 5).

Data analysis
Quality trimming
FASTQC 0.11.7 was used to check the quality of each sample. We eliminated some of the samples directly from 
the analysis due to having very low quality in general. For the samples having low quality towards the 3’ end, we 

Figure 4.  Summary of differentially and co-expressed genes and the enriched pathways.

Table 4.  Demographics of study groups.

Control MDD

Sample size N = 216 N = 241

Age (years, avg) 47.66 (sd = 15.18) 46.78 (sd) = 15.21)

Gender (male–female) 154–62 138–103

PMI (hours, avg) 24.08 (sd = 16.22) 26.32 (sd) = 16.24)
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used  Cutadapt83 with the “–quality-cutoff 10” option. After performing 3’ trimming we concatenated fasta files 
for each patient when there are multiple fasta files for a single patient.

Alignment to the human genome
TopHat 2.1.184 was used for aligning reads to the human genome (GRCh37)85. At this step, we converted fasta 
files into bam files. Then by using the  samtools86 sort option we converted bam files to sam.

Read count
HTSeq87 was used to obtain read counts for each patient. The distribution of counts for each region is given in 
Fig. 1. Ensembl GRCh37 annotation list was used as a reference.

Differential gene expression analysis
Differential gene expression analysis based on the negative binomial distribution was performed in R with 
DESeq2  package16. Genes that significantly differentially expressed (adjusted p-value < 0.05) between 
major depressive patients and the control group were identified regarding sex, age, study and brain 
region that the sample is obtained from, and postmortem interval covariates (full model, design ~ sam-
pleDataset + sampleGender + sampleAge + PMI + brainRegion + condition; brain region-specific model, 
design ~ sampleDataset + sampleGender + sampleAge + PMI + condition).

Co-expression analysis
R package  CEMiTool23 was used to perform co-expression analysis. Normalized count data from DLPFC, vSUB 
and nACC were included in the analysis. Variance stabilizing transformation was not applied before filtering 
the genes and default filtering p-value was used (0.1). Label of each sample was provided to obtain normalized 
enrichment scores for each of the modules in control group and MDD patients.

Identification of MDD-associated pathways using MKL algorithm
A multiple kernel learning (MKL)-based machine learning  approach46 was used to identify informative pathways 
in discriminating MDD patients. Instead of first identifying the expressed genes and then performing a gene set 
enrichment analysis using these selected genes, the proposed MKL-based algorithm considers whole expression 
matrix and each pathway from the given collection at the same time. In this method, each pathway is mapped 
to a different kernel function using the expression profiles of the genes in the given pathway. Kernel functions 
are defined as the similarity measures between pairs of samples, and it is known that weighted combination of 
several kernel functions (i.e., MKL) increases the predictive ability of the kernel-based  methods88. At the end, the 
proposed method converges to a solution where kernels with non-zero weights are included in the final model 
for the classification. We considered that a pathway is selected to be used in the final model if the corresponding 
kernel weight was greater than 0.01.

The experimental setting that we used in machine learning model is as follows. We split our dataset by 
randomly picking 80% as training and 20% as test set. While splitting the data, we kept the ratio between the 
control group and MDD patients same in the training and test partitions. We repeated this procedure 100 times 
to obtain more robust performance measures and reported the experimental results over these 100 replications. 
We performed fourfold inner cross-validation for selecting the model parameters (i.e., regularization parameter 
C). Since the gene expression is a normalized count data, we first log2-transformed our dataset. Following that, 
we further normalized the training set to have zero mean and unit standard deviation, while we normalized the 
test set using the mean and the standard deviation of the original training set. We followed the same computa-
tional setting as proposed  in46 to obtain the relative importance of pathways.

Data availability
The open-source code and supplementary data are available at our GitHub repository: https:// github. com/ 
CompG enome Lab/ mdd- analy sis.
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Table 5.  Distribution of samples by brain regions and the study groups that they belong to.

Brain region Control (N) MDD (N) Total

Anterior cingulate cortex (AnCg) 24 23 47

Anterior insula (aINS) 22 26 48

Cingulate gyrus 25 (Cg25) 15 13 28

Dorsolateral prefrontal cortex (DLPFC) 71 79 150

Nucleus accumbens (nACC) 43 51 94

Orbitofrontal cortex (OFC) 22 25 47

Ventral subiculum (vSUB) 29 24 43

https://github.com/CompGenomeLab/mdd-analysis
https://github.com/CompGenomeLab/mdd-analysis
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