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Predicting long‑term outcomes 
of kidney transplantation in the era 
of artificial intelligence
Samarra Badrouchi 1,2,3*, Mohamed Mongi Bacha 1,2,3, Abdulaziz Ahmed 4, 
Taieb Ben Abdallah 1,2,3 & Ezzedine Abderrahim 1,2

The ability to accurately predict long‑term kidney transplant survival can assist nephrologists 
in making therapeutic decisions. However, predicting kidney transplantation (KT) outcomes is 
challenging due to the complexity of the factors involved. Artificial intelligence (AI) has become 
an increasingly important tool in the prediction of medical outcomes. Our goal was to utilize both 
conventional and AI‑based methods to predict long‑term kidney transplant survival. Our study 
included 407 KTs divided into two groups (group A: with a graft lifespan greater than 5 years and group 
B: with poor graft survival). We first performed a traditional statistical analysis and then developed 
predictive models using machine learning (ML) techniques. Donors in group A were significantly 
younger. The use of Mycophenolate Mofetil (MMF) was the only immunosuppressive drug that was 
significantly associated with improved graft survival. The average estimated glomerular filtration 
rate (eGFR) in the 3rd month post‑KT was significantly higher in group A. The number of hospital 
readmissions during the 1st year post‑KT was a predictor of graft survival. In terms of early post‑
transplant complications, delayed graft function (DGF), acute kidney injury (AKI), and acute rejection 
(AR) were significantly associated with poor graft survival. Among the 35 AI models developed, the 
best model had an AUC of 89.7% (Se: 91.9%; Sp: 87.5%). It was based on ten variables selected by an 
ML algorithm, with the most important being hypertension and a history of red‑blood‑cell transfusion. 
The use of AI provided us with a robust model enabling fast and precise prediction of 5‑year graft 
survival using early and easily collectible variables. Our model can be used as a decision‑support tool 
to early detect graft status.

Chronic Kidney disease (CKD) is a significant global health issue due to its high prevalence and associated risk 
of progression to end-stage renal disease (ESRD). ESRD affects more than 7 million people  worldwide1. Kidney 
transplantation (KT) is the most desired and cost-effective treatment for ESRD, which improves the life quality 
and survival rates of  patients2. Despite the increasing number of KTs performed each year, the number of people 
on waiting lists continues to grow. In 2019, there were more than 113,000 people on the US national kidney 
transplant waiting list, with an average of one person added every 10 min. Approximately 20 people die every 
day while waiting for a kidney  transplant3. Thus, kidney allograft failure is a fatal outcome that contributes to the 
backflow of people to already-overburdened lists. Improving KT outcomes is therefore crucial.

Medical advancements in surgical techniques and immunosuppressive drugs have improved short-term 
outcomes of kidney allografts since the early 1980s. However, there has been no significant improvement in 
long-term graft survival since the  2000s4–6. Consequently, there is now a shift in focus toward forecasting the 
long-term survival of kidney  allografts7.

An accurate prediction of long-term graft survival can aid nephrologists in understanding the progression of 
graft function in each patient and providing more personalized monitoring and clinical care. Enhanced predic-
tion of KT outcomes would not only help in daily clinical care, therapeutic decisions making, and counseling 
of patients but also facilitate conducting clinical trials aiming to assess long-term  outcomes8. Such studies are 
needed to assess immunosuppressive drugs that are intended to improve long-term graft survival as the pau-
city of KT long-term outcomes is partly linked to these drugs. Regulatory agencies and medical societies have 
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highlighted the need for an early reliable alternate tool in transplantation that pertinently predicts long-term 
graft  survival9. Prediction of kidney graft survival is difficult due to the diversity and complexity of factors lead-
ing to graft failure.

Artificial intelligence (AI), specifically machine learning (ML), is playing an increasingly important role in 
prediction tasks in medicine by enabling the analysis of complex and big data. ML offers algorithms that can 
improve prediction accuracy compared to conventional statistical models by capturing complex relationships 
among variables. They are also efficient in handling data with a large number of variables. Few studies have used 
advanced ML techniques to build models that predict long-term kidney graft survival. This research aims to 
investigate the viability of AI techniques to predict long-term kidney graft survival by:

– Using ML algorithms to develop a predictive model for early prediction of long-term kidney graft survival.
– Evaluating the ML-based model using several performance measures.
– Performing parallel classical statistical analysis.

Methods
Study design
We conducted a longitudinal research study, using the Charles Nicolle Hospital KT database which contains 
data collected over 33 years (1986–2019). We included 407 KTs and used a threshold of 5 years to define the 
long-term survival of kidney transplants. After a preliminary traditional statistical analysis, we developed an 
ML-based predictive model.

Definitions

• Artificial intelligence AI is a branch of computer science that involves the use of computers to model intelligent 
behavior with minimal human intervention. AI is widely used in medicine to analyze complex medical data 
in the diagnosis, treatment, and prediction of outcomes.

• Machine learning A subset of AI that focuses on the development of computer programs able to learn from 
data without explicit programming for a specific task. ML algorithms can learn from data and improve 
through experience without human intervention.

• Data preparation The manipulations and transformations applied to a dataset to make it suitable for analysis 
by ML algorithms during the training and testing process.

• Feature selection The selection of a subset of input variables that are significant in affecting the output of inter-
est (long-term survival). It involves removing irrelevant variables without the loss of predictive information 
to improve the performance of the model. Various methods can be used, from traditional statistical methods 
to ML-based methods.

• Model training The process of automatically building a model is referred to as “training”. The process of train-
ing an ML model involves providing the learning algorithm with training data to learn from. In a supervised 
learning problem, the training data must contain the correct output that we wish to predict. The learning 
algorithm learns from the training data the function that matches the input variables to the desired output, 
resulting in an ML model that captures these patterns. The trained model will be applied to new data for 
forecasting the likelihood of a particular outcome.

• Model testing The process of evaluating a model using data, other than the training data, with a known output 
and comparing the predictions of the model to the actual outcomes to calculate performance measures.

Patients and methods
Of all the kidney transplants in the database (1986–2019), we only included those performed before December 
2014 to have a minimum follow-up period of 5 years for all KTs. We did not include pediatric transplants, where 
the recipient was under 15 years old at the time of the transplant. We also excluded transplants with graft failure 
and return to dialysis within the first month, as well as patients with one or more missing values in any of the 
variables retained after data preparation. During data analysis, our patients were divided into two groups:

Group A including patients with a functional graft for 5 years or more.
Group B including patients who returned to dialysis in less than 5 years.

Classical statistical analysis
We conducted a preliminary statistical analysis to gain insight into our database. We described continuous 
variables by using means and standard deviations. We compared means between groups by using the student’s 
t-test and we used the Chi-square (chi2) test (or Fisher’s exact test if appropriate) to compare proportions to 
test whether the difference between the two groups is significant. The null hypothesis was rejected if the p-value 
was below 5%.

Machine learning modeling
We developed a model that enables us to predict whether the graft will survive for at least 5 years or not based 
on a set of variables (features) selected by an ML algorithm. The robustness of the predictive model was evalu-
ated using several performance measures. The model development consisted of two steps: (1) feature selection 
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as defined previously then (2) the model training on data containing only the selected features. The process 
followed is summarized in Fig. 1.

Feature selection
We tested seven methods. We implemented these methods with ML algorithms: Least Absolute Shrinkage and 
Selection Operator Logistic Regression (LASSO), Random Forests (RF), Decision Trees (DT), and Chi2.

Model training
We tried five training algorithms which are: (1) Artificial Neural Network (ANN), (2) Extreme Gradient Boosting 
(XGB), (3) K-Nearest Neighbor (KNN), (4) DT, and (5) Logistic regression (LR).

Finally, we trained and tested 35 models. The model with the best performance measures was considered 
the final one.

Model evaluation
After implementing each model, we used the testing set of data to find out how effective the predictions of the 
model are, based on the correctness of the model’s predictions, we calculated five performance measures which 
are: (1) sensitivity (Se), (2) specificity (Sp), (3) F1 measure, (4) accuracy, and (5) Area Under Curve (AUC).

Previous research
The current study builds upon prior research by our  team10. In that work, we laid the foundation for the ML 
techniques employed. The previous publication delved deeply into the technical aspect and model development; 
it was tailored for readers in the ML community. In contrast, the present manuscript has been designed address 
the medical community, with a specific emphasis on the final retained model’s utility in a clinical setting.

Ethical considerations
Informed consent from individual patients was waived by the ethics committee of Charles Nicolle Hospital 
in Tunis (Tunisia) since the analyses were performed on anonymized data from Charles Nicolle Hospital KT 
database. The anonymity of the patients was maintained throughout the study, and all data were analyzed in a 
manner that protected patient privacy.

Ethical approval
This research was carried out following the institutional and national ethical guidelines for human studies and 
according to the ethical principles outlined in the Declaration of Helsinki. All the procedures in the present study 
were approved by the ethics committee of Charles Nicolle Hospital in Tunis (Tunisia).

Ethical statement
The authors of this manuscript certify that this material is their original work and it has not been previously 
published or submitted for publication elsewhere. All authors have actively contributed to this research and take 
responsibility for its content.

Figure 1.  Process followed to develop a predictive model.
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Results
Graft survival
Figure 2 shows the evolution of the percentage of KTs with poor graft survival (group B) per year. A maximum 
of 36% was observed in 1991. The trend line (the black dotted line) shows a decrease in the rate of KTs with poor 
long-term survival during the study period.

In the overall population, the median survival time was 15 years. The estimated 5-year and 10-year overall 
cumulative survival rates were 86% and 69%, respectively. In Fig. 3, the red curve shows the cumulative graft 
survival rate in group B. The median survival time in this group was 2 years. Graft failure occurred during the 
first 3 years in 70% of them. In group A (the blue curve), more than half of the patients had a functional kidney 
graft 15 years after KT.

Classical statistical modeling
Table 1 presents the relative risk of graft failure within 5 years and the corresponding 95% confidence interval 
(CI) of each one of the considered variables in the univariate analysis.

Donor age ≥ 45, Azathioprine therapy, first-year readmissions ≥ 3, delayed graft function (DGF), acute kidney 
injury (AKI), and acute rejection (AR) have a negative impact. Mycophenolate mofetil (MMF) therapy has a 
positive impact on graft survival. The 3-month estimated glomerular filtration rate (eGFR) was also a predictor 
of 5-year graft survival.

We retained five predictors of 5-year graft survival after the multivariate analysis which are:
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Figure 2.  Evolution of the rate of transplantations with poor long-term survival.

Figure 3.  Kaplan–Meier plots of cumulative graft survival of the study groups.
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Variables Group A Group B RR 95% CI p

Recipient

Age/year (mean) 33.4 32 0.986 0.955–1.017 NS

Gender (%)
Male 66.2 67.4 1 – –

Female 33.8 32.6 0.948 0.493–1.823 NS

Hypertension (%)
No 39.9 32.6 1 – –

Yes 60.1 67.4 1.371 0.715–2.631 NS

Diabetes (%)
No 94.7 97.8 1 – –

Yes 5.3 2.2 0.275 0.036–2.072 NS

Viral hepatits B (%)
Negative 97 93.5 1 – –

Positive 3 6.5 2.220 0.596–8.271 NS

Viral hepatits C (%)
Negative 85.2 86.5 1 – –

Positive 14.8 13.5 0.899 0.331–2.443 NS

Nephropathy (%)

Vascular 8 6 1 – –

Glomerular 41.3 43.5 0.649 0.240–1.755 NS

Tubulo-interstitial 21.6 15.2 0.434 0.135–1.399 NS

Hereditary 5.8 2.2 0.230 0.026–2.057 NS

Undetermined 23.3 26.1 0.690 0.238–2.007 NS

Dialysis modality (%)
PD 19.4 10.9 1 – –

HD 74.5 87 2.082 0.792–5.471 NS

Dialysis duration/year (Mean) 3.5 3.7 1.001 0.994–1.009 NS

Transfusion (%)
No 38.2 26.1 1 – –

Yes 61.8 73.9 1.753 0.878–3.501 NS

Cytotoxic antibodies (%)
Negative 85.9 82.6 1 – –

Positive 14.1 17.4 1.280 0.565–2.899 NS

Total HLA MM (%)

0 17.5 19.6 1 – –

1–2 33.5 32.6 0.868 0.360–2.094 NS

 ≥ 3 49 47.8 0.870 0.380–1.990 NS

HLA- MM A (%)

0 MM 34.9 32.5 1 – –

1 MM 56.2 47.8 1.111 0.564–2.190 NS

2 MM 14.4 15.2 1.096 0.401–2.994 NS

HLA-MM B (%)

0 MM 29.4 36.9 1 – –

1 MM 56.2 47.8 0.676 0.344–1.327 NS

2 MM 14.4 15.2 0.839 0.328–2.150 NS

HLA-MM DR (%)

0 MM 40.4 43.5 1 – –

1 MM 50.7 47.8 0.878 0.461–1.670 NS

2 MM 8.9 8.7 0.913 0.292–2.852 NS

Donor

Age/year (mean) 40.1 43.5 1.022 0.997–1.048 NS

Age (%)
 < 45 years 63.2 43.5 1 – –

 ≥ 45 years 36.8 56.5 2.229 1.198–4.147  < 0.02

Gender (%)
Male 52.9 50 1 – –

Female 47.1 50 0.890 0.482–1.644 NS

Gender match (%)
Donor → recipient

M → M 30.5 28.3 1 – –

F → F 16.9 10.9 0.694 0.236–2.038 NS

F → M 35.5 36.9 1.124 0.523–2.417 NS

M → F 17.1 23.9 1.501 0.635–3.552 NS

Donor type (%)
Living 84.8 82.6 1 – –

Deceased 15.2 17.4 1.171 0.519–2.645 NS

Procedure

Cold ischemia/hour (mean) 21.8 21.4 0.981 0.856–1.124 NS

Cold ischemia (%)
 < 20 h 36.4 25 1 – –

 ≥ 20 h 63.6 75 0.880 0.189–4.085 NS

Warm ischemia/min (mean) 38.2 40.2 1.018 0.990–1.046 NS

Warm ischemia (%)
 < 30 min 18.6 17.4 1 – –

 ≥ 30 min 81.4 82.6 1.082 0.483–2.427 NS

Continued
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• donor age;
• MMF therapy;
• 3-month eGFR;
• DGF;
• number of hospital readmissions during the first year.

The primary reasons for readmissions during the first year, in our patients, were predominantly related to 
infectious complications and alteration of graft function.

Machine learning predictive models
Feature selection
As mentioned previously, we tried seven feature selection algorithms to select the most important variables 
(recipient characteristics, donor characteristics, immunological data, KT procedure, immunosuppressive treat-
ment, and post-transplant characteristics). MMF therapy and early AKI were selected as important variables 
affecting 5-year graft survival by all the feature selection methods. Four variables were selected by more than 
half of the methods. These variables are the length of the 1st hospitalization, 3-month-eGFR, tacrolimus therapy, 
and donors’ age.

Table 1.  Relative risk of 5-year graft failure in the univariate analysis. MMF mycophenolate mofetil, HLA 
human leucocyte antigen, MM mismatch, eGFR estimated glomerular filtration rate, CMV cytomegalovirus, 
NS not significant, KT kidney transplantation.

Variables Group A Group B RR 95% CI p

Immunosuppressive treatment

Induction (%)
Yes 88.9 91.3 1 – –

No 11.1 8.7 0.993 0.870–2.662 NS

Polyclonal anti-lymphocyte (%)
No 20.5 19.6 1 – –

Yes 79.5 80.4 1.060 0.490–2.294 NS

Anti-CD3 (%)
No 99.2 93.5 1 – –

Yes 0.8 6.5 8.326 1.629–42.547  < 0.02

Anti-CD25 (%)
No 91.4 95.7 1 – –

Yes 8.6 4.3 0.467 0.108–2.018 NS

Cyclosporine A (%)
No 43.8 54.3 1 – –

Yes 56.2 45.7 0.654 0.353–1.211 NS

Tacrolimus (%)
No 65.7 60.9 1 – –

Yes 34.3 39.1 1.229 0.654–2.309 NS

Azathioprine (%)
No 63.4 47.8 1 – –

Yes 36.6 52.2 1.893 1.021–3.507  < 0.05

MMF (%)
No 20.8 47.8 1 – –

Yes 79.2 52.2 0.286 0.152–0.538  < 0.001

Post-KT

Length of 1st hospitalization/day (mean) 36.4 42.3 1.009 0.998–1.020 NS

3-month eGFR ml/min (mean) 71 56.7 0.977 0.963–0.990 0.001

Number of 1st year readmis-
sions (%)

 < 3 87.3 73.9 1 – –

 ≥ 3 12.7 26.1 2.417 1.168–5.001  < 0.02

Delayed graft function (%)
No 88.7 73.9 1 – –

Yes 11.3 26.1 2.755 1.322–5.739 0.007

Acute kidney injury (%)
No 64.8 34.8 1 – –

Yes 35.2 65.2 3.455 1.814–6.578  < 0.001

Acute rejection (%)
No 78.4 58.7 1 – –

Yes 21.6 41.3 2.553 1.349–4.833  < 0.005

Infections (%)
No 25.8 13 1 – –

Yes 74.2 87 2.313 0.950–5.633 NS

Urinary tract infection (%)
No 60.7 58.7 1 – –

Yes 39.3 41.3 1.085 0.582–1.025 NS

CMV infection (%)
No 80.3 69.6 1 – –

Yes 19.7 30.4 1.787 0.906–3.526 NS

Surgical complication (%)
No 82 80.4 1 – –

Yes 18 19.6 1.108 0.510–2.408 NS
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Performance of the developed models
Five models resulted in AUCs over 80%. The highest AUC (89.7%) was obtained in the model developed with 
XGB with the features selected by the RF algorithm. This model was retained as the final model.

The best model
Ten variables were selected as important variables affecting 5-year graft survival. Each feature was assigned 
an importance score that indicates how useful or valuable it was in the construction of the boosted decision 
trees within the model. The more an attribute is used to make key decisions with decision trees, the higher its 
relative importance is. The selected variables are in decreasing order of importance: Hypertension, history of 
red-blood-cell transfusion, early AKI post-KT, early AR, CMV infection, the length of the 1st hospitalization, 
MMF therapy, donor’s age, 3-month eGFR and the duration on dialysis before KT. The performance measures 
of the best model are summarized in Fig. 4.

Discussion
An enhanced ability to predict graft survival at individual kidney transplant recipients is the key to improving 
KT outcomes, as it would help in providing more personalized clinical care. A predictive model of graft survival 
can be used as a decision tool for nephrologists to make therapeutic and counseling decisions for patients. Sup-
posing that the proposed best model predicts a patient’s graft will fail within five years, a doctor may need to 
investigate ways to improve the chance of survival based on the patient profile (the selected predictors). Thus, 
safer and more personalized clinical practice guidelines can be developed.

The main limitation of our study is that data collection was retrospective which prevented us from considering 
some important variables because they weren’t available for all the patients, such as histological variables as we 
don’t practice protocol graft biopsy. Also, DSA screening wasn’t included as their detection in our center began 
in 2015, and our study period started in 1986. The limited number of patients is another weakness of our study.

The use of AI and the ML subtype in the world has been enabled by the explosion of numeric data available 
thanks to markedly enhanced computing power and cloud storage. With a sufficiently large database, an ML 
technique with appropriate algorithms can “learn” from the numerical correlations hidden in the dataset via a 
nonlinear fitting process and perform precise predictions. With such a technique, we don’t need to consider each 
variable separately, and we can directly acquire a precise prediction with a well-developed predictive model. ML 
is lying at the intersection of computer science and statistics.

While ML focuses on prediction by evaluating the conditional relations among variables, classical analyses 
often concentrate on survival estimation by identifying the most important predictors.

The most commonly used traditional statistical approaches in the field of organ transplantation are the 
Kaplan–Meier estimator, LR, and Cox proportional hazards models.

Classical statistical models, in general, assume the independence of the predictors. They are not designed to 
handle complex interactions among predictors and are not often used to model non-linear relationships among 
predictors and  outcomes11. Added to the problem of statistical modeling assumptions such as linearity, normality, 
and equality of variance, these methods become ineffective when the number of predictors is  large8.

Statistics make mathematical inferences about an output based on sample data. In statistics the question 
is: “is X related to Y?”. The goal of ML is to optimize predictive accuracy rather than inference. Hence, in ML 
the question is “given X, what is Y?”. In our study, we used both methods and each method resulted in a set of 
predictors (Table 2).

Many authors used AI to predict KT outcomes. For short-term outcomes,  Brier12 and  Decruyenaere13 pre-
dicted DGF within the first week after KT. Shaikhina predicted acute antibody-mediated rejection at 30 days 
post-KT14.

For long-term graft survival (Table 3), the main endpoint over time in some of the published studies was 
defined as the time of graft failure by either returning a patient to dialysis or  retransplantation15. Other studies 

Figure 4.  Performance measures of the best model.
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developed models for a combined outcome of graft failure and  death11. In our study, we only considered graft 
failure (death censored) for a more accurate prediction because graft survival and patient survival may have 
different predictors.

The main results of the published studies aiming to predict long-term graft survival are summarized in Table 3. 
Our model achieved a high AUC, ranking among the top performers in the reviewed studies. XGB, which is the 
training algorithm resulting in this model is a very powerful advanced ML algorithm. In order to confirm the 
reliability of our model we also performed cross-validation. These results are promising and the ML framework 
we  used10 may give better results with larger databases.

The results of the existing studies are very encouraging, some of them are already validated and used as sur-
rogate endpoint in clinical trials about long-term22. However, such big studies using advanced ML algorithms 
are awaiting in order to take advantages of AI superpower in this era of data abundance.

Conclusions and perspectives
The use of ML in our study provided us with a reliable model enabling fast and precise prediction of 5-year graft 
survival using early, simple, non-invasive, and easily collectible variables with a good AUC (89.6%), high Se 
(91%), and a satisfying Sp (87%).

Our model relies on easily obtainable variables in the context of a developing country and does not necessitate 
invasive techniques such as graft biopsy.

Various features have been explored in the literature to predict 5-year graft survival (Table 3), categorized 
into pre-transplant and post-transplant attributes. Our database encompasses the most commonly encountered 
pre-transplant and post-transplant features, rendering our study comprehensive in its coverage of all facets of 
KT. Our model was trained using data from both living and deceased donors, with a focus on post-transplant 
features within the first year. This emphasis aligns with the fact that the most critical complications affecting 
long-term graft survival typically manifest during this initial period. Our approach aimed to construct a broadly 
applicable and comprehensive model capable of early prediction across various KT scenarios. While existing 
literature acknowledges statistical differences based on donor type, it does not compromise the model’s quality, 
as this factor may be considered as one of the influences on the outcome of interest: graft survival.

Regarding the donor’s features, the age of the donor appeared as an important factor that influences the prog-
nosis of the long-term graft survival. All the studies that considered this factor have come to the same conclusion: 
the younger is the donor (whether alive or deceased), the better is graft  survival23–25, which is ascertainable in 
our study population. DGF appeared also as a significant feature influencing long-term graft survival, despite 
a similar number of deceased donors between the groups. This disparity can be attributed to the influence of 
additional factors that contribute to DGF in KT from living donors, which appeared to have a significant impact 
on long-term survival. It is important to remind that, in our study, we defined DGF as the necessity for dialysis 
during the first week following KT.

In conclusion, our study leveraged the power of ML techniques to discern the most influential factors in 
long-term graft survival. Our model has enabled us to provide accurate predictions. However, it’s essential to rec-
ognize that our model’s reliability and generalizability must be substantiated through external validation. We are 
currently in the process of collaborating with the Tunisian Society of Nephrology, embarking on a multicentric 

Table 2.  Comparison between the results of machine learning and classical statistics. MMF mycophenolate 
mofetil, eGFR estimated glomerular filtration rate, CMV cytomegalovirus, HLA human leucocyte antigen, MM 
mismatch. *Bivariate and multivariate logistic regression (SPSS 25).

Variable Machine learning Univariate LR* Multivariate LR*

Donor age ✓ ✓ ✓

MMF therapy ✓ ✓ ✓

3-month eGFR ✓ ✓ ✓

Acute rejection ✓ ✓

Acute kidney injury ✓ ✓

CMV infection ✓

Length of the 1st hospitalization ✓

Hypertension ✓

Transfusion ✓

Dialysis duration ✓

Readmissions 1st year ✓ ✓

Delayed graft function ✓ ✓

Azathioprine therapy ✓

HLA MM A

HLA MM DR

Dialysis modality

Proteinuria
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References Target Data size Feature selection Selected predictors Model’s performance

Our study 5-year graft survival 407 KTs (living + deceased 
donors) ML algorithm

History of hypertension, his-
tory of transfusion, duration 
on dialysis before KT, donor 
age, AKI post-KT, AR, CMV 
infection, length of the 1st 
hospitalization, 3-month 
eGFR, MMF therapy

AUC: 89.7%
Se: 91%
Sp: 87%

Loupy (2019),  France8 Graft failure at different time 
points

4000 KTs (living + deceased 
donors) Cox regression

Time of post-transplant risk 
evaluation, eGFR, proteinu-
ria, histological parameters 
(interstitial fibrosis,tubular 
atrophy, glomerulitis, peritu-
bular capillaritis, interstitial 
inflammation, tubulitis and 
transplant glomerulopathy) 
and DSA

Discrimination ability at 
5 years (C index)
0.819 (95% confidence 
interval (0.799 to 0.839),

Nematollahi (2017),  Iran16 Graft failure at 5 years post 
KT

717 KTs (living + deceased 
donors)

Clinical expertise and cur-
rent available evidence

SCr at discharge, recipient 
age, donor age, donor blood 
group, cause of ESRD, 
recipient hypertension after 
KT and duration on dialysis 
before KT

Sn: 97.3%
Sp: 26.1%
Accuracy: 85.9%
AUC: 76.9%

Shahmoradi (2016),  Iran17 Graft survival at different 
time points

513 KTs (donor type not 
specified) Not mentioned

Donor age, donor gender, 
recipient age, recipient gen-
der, cause of ESRD, dialysis, 
duration on dialysis, panel 
test, BMI, donor type

Sn: 90.8%
Sp: 52.0%
Accuracy: 87.2%

Lofaro (2010),  Italy18 Chronic allograft nephropa-
thy at 5 years

80 KTs (living + deceased 
donors) ML algorithm

Recipient age, number of 
transplants, 6-month eGFR, 
6-month 24-h urine protein 
excretion, 6-month serum 
hemoglobin and 6-month 
hematocrit

Sn: 62.5%
Sp: 92.8%
AUC: 84.7%

Greco (2010),  Italy19 Graft failure at 5 years 194 KTs (living + deceased 
donors) Not mentioned

Recipient BMI, DGF, AR 
episode and chronic allo-
graft nephropathy

Sn: 88.2%
Sp: 73.8%

Akl (2008),  Egypt20 Graft survival at 5 years 1900 KTs (living donors) Univariate statistical analysis

Recipient age, donor age, 
transfusions, total HLA 
MM, HLA DR MM, 
Haplotype (sibling/related/
unrelated donor), time to 
diuresis, total steroid dose 
(first 3 months), immuno-
suppression, acute tubular 
necrosis, AR episodes (first 
3 months)

Sn: 88.4%
Sp: 73.2%
Accuracy: 95%
AUC: 88%

Lin (2008),  USA11 Graft survival at different 
time points including 5 years

57,383 KTs (liv-
ing + deceased donors)

Clinical expertise and cur-
rent available evidence

Recipient: age, gender, race, 
height, weight, cause of 
ESRD, history of hyperten-
sion, diabetes or CV disease, 
duration between date of 
current KT and failure 
date of the previous KT (if 
applicable), dialysis modal-
ity, predominant dialysis 
modality, and primary 
source of pay for treatment
Donor: type, age, gender, 
race, height, weight and 
cause of death
Number of matched HLA 
antigens, CIT and procedure 
type…

AUC: 77%

Krikov (2007),  USA21 Graft survival at different 
time points including 5 years

92,844 KTs (liv-
ing + deceased donors)

Survival analysis and multi-
ple logistic legression

Recipient: race, gender, age, 
height, weight, multiple KT 
(yes/no), number of KTs, 
time on waiting list, pre-
dominant RRT modality, % 
on PD before KT, number of 
RRT modalities used before 
transplant, specific combina-
tion of RRT modalities, 
recipient comorbidity score, 
history of CV disease, his-
tory of unstable angina, his-
tory of diabetes, history of 
hypertension, VHB, VHC, 
peak and most recent level 
of panel reactive antibodies 
and primary source of pay 
for medical services
Donor: race, gender, age, 
height, weight, donor type 
(living or deceased)

AUC: 71.7%
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study that encompasses all KT centers in Tunisia. This collaborative effort will significantly augment our dataset, 
enhancing the robustness and applicability of our predictive model.

Data availability
The datasets used and analyzed during the current study are available from the corresponding author on reason-
able request.

Received: 16 January 2023; Accepted: 29 November 2023

References
 1. Hill, N. R. et al. Global prevalence of chronic kidney disease—A systematic review and meta-analysis. PLoS ONE 11(7), e0158765. 

https:// doi. org/ 10. 1371/ journ al. pone. 01587 65 (2016).
 2. Abecassis, M. et al. Kidney transplantation as primary therapy for end-stage renal disease: A National Kidney Foundation/Kidney 

Disease Outcomes Quality Initiative (NKF/KDOQITM) conference. Clin. J. Am. Soc. Nephrol. 3(2), 471–480 (2008).
 3. Facts and Myths about Transplant. https:// www. ameri cantr anspl antfo undat ion. org/ about- trans plant/ facts- and- myths/ (2020).
 4. Coemans, M. et al. Analyses of the short- and long-term graft survival after kidney transplantation in Europe between 1986 and 

2015. Kidney Int. 94(5), 964–973. https:// doi. org/ 10. 1016/j. kint. 2018. 05. 018 (2018).
 5. Meier-Kriesche, H. U., Schold, J. D., Srinivas, T. R. & Kaplan, B. Lack of improvement in renal allograft survival despite a marked 

decrease in acute rejection rates over the most recent era. Am. J. Transplant. 4(3), 378–383 (2004).
 6. Rana, A. & Godfrey, E. L. Outcomes in solid-organ transplantation: Success and stagnation. Texas Hear Inst. J. 46(1), 75–76 (2019).
 7. Yoo, K. D. et al. A machine learning approach using survival statistics to predict graft survival in kidney transplant recipients: A 

multicenter cohort study. Sci. Rep. 7(1), 1–12. https:// doi. org/ 10. 1038/ s41598- 017- 08008-8 (2017).
 8. Loupy, A. et al. Prediction system for risk of allograft loss in patients receiving kidney transplants: International derivation and 

validation study. BMJ 366, l4923 (2019).
 9. Stegall, M. D., Morris, R. E., Alloway, R. R. & Mannon, R. B. Developing new immunosuppression for the next generation of 

transplant recipients: The path forward. Am. J. Transplant. 16(4), 1094–1101 (2016).
 10. Badrouchi, S., Ahmed, A., Mongi Bacha, M., Abderrahim, E. & Ben, A. T. A machine learning framework for predicting long-term 

graft survival after kidney transplantation. Expert Syst. Appl. 182, 115235 (2021).
 11. Lin, R. S., Horn, S. D., Hurdle, J. F. & Goldfarb-Rumyantzev, A. S. Single and multiple time-point prediction models in kidney 

transplant outcomes. J. Biomed. Inform. 41(6), 944–952 (2008).
 12. Brier, M. E., Ray, P. C. & Klein, J. B. Prediction of delayed renal allograft function using an artificial neural network. Nephrol. Dial. 

Transplant. 18(12), 2655–2659. https:// doi. org/ 10. 1093/ ndt/ gfg439 (2003).
 13. Decruyenaere, A. et al. Prediction of delayed graft function after kidney transplantation: Comparison between logistic regression 

and machine learning methods. BMC Med. Inform. Decis. Mak. 15, 83 (2015).
 14. Shaikhina, T. et al. Decision tree and random forest models for outcome prediction in antibody incompatible kidney transplanta-

tion. Biomed. Signal Process Control 52, 456–462 (2019).
 15. Brown, T. S. et al. Bayesian modeling of pretransplant variables accurately predicts kidney graft survival. Am. J. Nephrol. 36(6), 

561–569. https:// doi. org/ 10. 1159/ 00034 5552 (2012).
 16. Nematollahi, M., Akbari, R., Nikeghbalian, S. & Salehnasab, C. Classification models to predict survival of kidney transplant 

recipients using two intelligent techniques of data mining and logistic regression. Int. J. Org. Transplant. Med. 8(2), 119–122 (2017).
 17. Bashiri, A., Ghazisaeedi, M., Safdari, R., Shahmoradi, L. & Ehtesham, H. Improving the prediction of survival in cancer patients by 

using machine learning techniques: Experience of gene expression data: A narrative review. Iran. J. Public Health 46(2), 165–172 
(2017).

 18. Lofaro, D. et al. Prediction of chronic allograft nephropathy using classification trees. Transplant. Proc. 42(4), 1130–1133 (2010).
 19. Greco, R. et al. Decisional trees in renal transplant follow-up. Transplant. Proc. 42(4), 1134–1136 (2010).
 20. Akl, A., Ismail, A. M. & Ghoneim, M. Prediction of graft survival of living-donor kidney transplantation: Nomograms or artificial 

neural networks? Transplantation 86, 10 (2008).
 21. Krikov, S. et al. Predicting kidney transplant survival using tree-based modeling. ASAIO J. 53(5), 592–600 (2007).
 22. Aubert, O. et al. Application of the iBox prognostication system as a surrogate endpoint in the TRANSFORM randomised con-

trolled trial: proof-of-concept study. BMJ Open 11(10), e052138 (2021).
 23. Alexander, J. W., Bennett, L. E. & Breen, T. J. Effect of donor age on outcome of kidney transplantation. A two-year analysis of 

transplants reported to the United Network for Organ Sharing Registry. Transplantation 57(6), 871–6 (1994).
 24. Carter, J. T. et al. Evaluation of the older cadaveric kidney donor: The impact of donor hypertension and creatinine clearance on 

graft performance and survival. Transplantation 70(5), 765–771 (2000).
 25. Moreso, F. et al. Donor age and delayed graft function as predictors of renal allograft survival in rejection-free patients. Nephrol. 

Dial. Transplant. 14(4), 930–935 (1999).

Author contributions
S.B.: Conceptualization, Methodology, Investigation, Resources, Data Curation and preprocessing, Statistical 
analysis, Writing the original draft. M.M.B.: Conceptualization, Resources, Data Curation, Supervision. A.A.: 
Methodology, Software, Formal analysis. T.B.A.: Investigation, Resources, Supervision. E.A.: Data Curation, 
Resources, Supervision.

Competing interests 
The authors declare no competing interests.

Table 3.  Machine learning based studies for predicting 5-year kidney graft survival. KT kidney 
transplantation, AKI acute kidney injury, AR acute rejection, CMV cytomegalovirus, eGFR estimated 
glomerular filtration rate, MMF mycophenolate mofetil, DSA donor specific antibody, ESRD end-stage renal 
disease, BMI body mass index, HLA human leucocyte antibody, MM mismatch, CIT cold ischemia time, PD 
peritoneal dialysis.

https://doi.org/10.1371/journal.pone.0158765
https://www.americantransplantfoundation.org/about-transplant/facts-and-myths/
https://doi.org/10.1016/j.kint.2018.05.018
https://doi.org/10.1038/s41598-017-08008-8
https://doi.org/10.1093/ndt/gfg439
https://doi.org/10.1159/000345552


11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21273  | https://doi.org/10.1038/s41598-023-48645-w

www.nature.com/scientificreports/

Additional information
Correspondence and requests for materials should be addressed to S.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Predicting long-term outcomes of kidney transplantation in the era of artificial intelligence
	Methods
	Study design
	Definitions
	Patients and methods
	Classical statistical analysis
	Machine learning modeling
	Feature selection
	Model training
	Model evaluation

	Previous research
	Ethical considerations
	Ethical approval
	Ethical statement

	Results
	Graft survival
	Classical statistical modeling
	Machine learning predictive models
	Feature selection
	Performance of the developed models
	The best model


	Discussion
	Conclusions and perspectives
	References


