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Wildlife monitoring in tropical rainforests poses additional challenges due to species often being 
elusive, cryptic, faintly colored, and preferring concealable, or difficult to access habitats. Unmanned 
aerial vehicles (UAVs) prove promising for wildlife surveys in different ecosystems in tropical forests 
and can be crucial in conserving inaccessible biodiverse areas and their associated species. Traditional 
surveys that involve infiltrating animal habitats could adversely affect the habits and behavior 
of elusive and cryptic species in response to human presence. Moreover, collecting data through 
traditional surveys to simultaneously estimate the abundance and demographic rates of communities 
of species is often prohibitively time-intensive and expensive. This study assesses the scope of drones 
to non-invasively access the Bukit Tigapuluh Landscape (BTL) in Riau-Jambi, Indonesia, and detect 
individual elephants of interest. A rotary-wing quadcopter with a vision-based sensor was tested to 
estimate the elephant population size and age structure. We developed hierarchical modeling and 
deep learning CNN to estimate elephant abundance and age structure. Drones successfully observed 
96 distinct individuals at 8 locations out of 11 sampling areas. We obtained an estimate of the elephant 
population of 151 individuals (95% CI [124, 179]) within the study area and predicted more adult 
animals than subadults and juvenile individuals in the population. Our calculations may serve as a vital 
spark for innovation for future UAV survey designs in large areas with complex topographies while 
reducing operational effort.

The Indonesian Island of Sumatra has one of the highest rates of deforestation in the world as a result of a variety 
of anthropogenic activities, including (1) the conversion of forests for industrial plantations, (2) semi-forest 
fires, (3) small-scale forest clearing, and (4) road construction1,2. A total of 16.2 million ha of Sumatra’s primary 
forest has been destroyed since 2000–2012 at a conversion rate of roughly 2,857 ha (17.63% year−1)1. Most for-
est loss (> 80%) has occurred in lowland areas with easy access, the most diverse ecosystems and significant 
carbon stocks3. There are 13 orders of mammals known to inhabit Sumatran tropical rainforests, one of which 
includes the highly renowned and endangered Sumatran elephant (Elephas maximus sumatranus). The species 
is protected under Indonesian laws4 and categorized as Critically Endangered on the IUCN Red List5. Based on 
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data compiled by the Indonesian Elephant Conservation Forum (FKGI) in 2019, the total elephant population 
in Sumatra, is estimated 924–1359 individuals6.

In order to effectively manage wildlife conservation efforts, it is crucial to have frequent, precise, and reliable 
information on the presence, population structure, and density of a species across its entire range. For various 
terrestrial mammal species, data on species’ presence, structure, and population density have been traditionally 
collected by observing and counting individuals along line transects by foot7,8 during general biodiversity9 or 
species-specific surveys10 together with camera trap surveys11,12. Population structures, i.e., age composition, 
sex ratio, growth rate, and survival rate, of wild animals are rarely known accurately. They are often estimated 
through direct observation of body size or the development of specific animal characteristics (e.g., skin color or 
growth of cheek pads in male orangutans)13. However, this method is often subjective and relies heavily on the 
researcher’s experience and judgment. As an alternative, scientists have begun measuring specific body parts and 
comparing them with other indicators to more accurately determine the animal’s age (e.g., the structure of the 
teeth of elephants14). Obtaining accurate morphometric data on wild animals is possible by directly measuring 
their body size in the field, however this requires individuals to be captured and chemically immobilised15,16. This 
method is invasive and not recommended for some species because it carries a high risk of stress and death17. 
Total body length is regularly used, given there is often a well-known, strong relationship between this variable 
and age18–22. In previous studies using an invasive approach, eye lens size, tooth eruption and wear patterns, tusk 
length, body weight, chest circumference, body length, and body height have been used to differentiate elephants 
into several age classes14. However, most invasive approaches used in anatomical studies (e.g., tooth eruption) 
are not feasible in field studies.

Accurately determining the age, sex, and population size of wild Sumatran elephants pose a challenge due to 
limited knowledge of effective and reliable methods, despite various techniques available to determine popula-
tion demographics, such as dung and DNA surveys23. The difficulty arises from the high degree of fission–fusion 
dynamics displayed by Sumatran elephants, where group members split into subgroups with varying sizes, mem-
bership, and spatial cohesion over time24. In addition, these species have subtle sexual dimorphism, have large 
home ranges, and move in areas with high tree density, which can make them difficult to survey and may result 
in unsurveyed populations in certain locations25. Additionally, the wide distribution of the species and the costs 
of conducting ground surveys further hinder factors26. Rapid changes in land use due to various anthropogenic 
activities have the potential to cause changes in Sumatran elephant population dynamics over time, which will 
determine the sustainability of the species. Hence, frequent surveys and monitoring are required to obtain data 
on population density and demographics at a pace comparable to land-use change. Realizing this requires the 
urgent testing of alternative, non-invasive methods.

Sumatran elephants are often elusive, widely dispersed, and commonly occur in complex environments or 
inhabit inaccessible areas, which increases the potential for imperfect detection and false detections during 
counts27. For cryptic, widely dispersed species, N-mixture models, in which repeated counts at survey sites are 
used to estimate both probabilities of detection and population size, are often considered the most useful and 
practical28,29. This is because they are the only repeat visit approach that allows abundance estimation while 
accounting for imperfect detection, a challenging and costly task for elusive species, particularly if they occur 
in private or inaccessible areas28. Therefore, N-mixture modeling is less time, cost- and labour-intensive than 
other repeat visit approaches, estimates can be made over larger areas, and the approach is suitable for protected 
species30.

Photogrammetry has recently been considered a viable alternative non-invasive approach to collecting demo-
graphic data20,31,32. In photogrammetry, knowledge and technology are used to obtain reliable information about 
a physical object and its surroundings through recording, observing/measuring and interpreting photographic 
images33. However, this approach involves ground observers using a camera, which puts researchers close to the 
animal target, poses a significant risk to observers and may disturb target species. More recently, photogram-
metry has been continuously developed using images collected from aerial surveys using drones18,34,35, taking 
advantage of the ability to capture animal data without being near the animals. Drones assist in pinpointing 
areas, monitoring behaviors and movements, and evaluating interactions between wildlife and their habitats36. 
In various studies, drones equipped with standard visual spectrum (RGB) cameras have been employed to gather 
information on the presence of species because of their capacity to cover vast territories expeditiously. Recently, 
drones have also been utilized to calculate population density20. There is a known relationship between body 
length and lifespan of wildlife37–41; using UAV, i.e., drone photogrammetry, that can capture images of wildlife, 
and the Sumatran elephant is a promising subject for developing rapid, accurate, and non-invasive methods to 
estimate population abundance and determining its age and sex.

Accounting for the potential of imperfect detection and false detections during drone surveys and the dif-
ficulty in obtaining total body length measurements of Sumatran elephants, the aim of this study was (1) to 
estimate the population abundance of a Sumatran elephant using N-mixture models from drone data derived 
RGB imagery and automated detection and (2) to establish a more reliable method to age Sumatran elephants 
by using body length measurements on photogrammetry from drone imagery and statistical analysis. Our study 
used statistical analyses to predict age and population structure in Sumatran elephants using drone photogram-
metry, with results validated using morphometric data from a zoo to produce a reliable and robust age estimation 
method for the Sumatran elephant population.

Results
Estimation of population size
We present the posterior summary statistics of three parameters of interest: Ntotal (the abundance estimate), � 
(the expected population size at each location) and ψ (the detection probability) in Table 1. The trace plot in 
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Fig. S1 and the R statistic (< 1.10) in Table 1 for each parameter indicates no lack of convergence, thus we may 
proceed to the inference on abundance estimation and detection probability.

We obtain the estimate of elephant abundance of 151 individuals within the study area with 95% credible 
interval [124, 179] . The expected population size � is estimated to be approximately 19 individuals per location and 
remain the same over 8 locations with 95% credible interval [14, 24] . This estimate implies that we expect popula-
tions of approximately between 14 and 24 individuals which are available for sampling at each location. Finally, 
we obtain the estimate of detection probability at each location ψ of 0.55 with 95% credible interval [0.44, 0.65] . 
The probability of 0.55 indicates that we may detect approximately 55% of the population at each location i.e., 
over half of the expected population. Note that the detection probability may vary within the locations depend-
ing on the geographical or environmental conditions, but within this study, we do not consider such variability.

Age prediction
We applied models to the elephant dataset with 23 known-age individuals from a zoo and obtained parameter 
estimates. Predictions of age based on these parameter estimates for each model, involving interpolated body 
lengths, produced prediction intervals (Table S1). Due to the high uncertainties in the von Bertalanffy model e.g., 
wide prediction intervals, we prioritize the GAM for further analysis. The GAM achieved an adjusted R2 of 0.89 
and explained 92.6% of the deviance, indicating a good fit. Figure S2 shows the partial effect of body length on the 
smooth function, s(Li) , indicating a positive effect of body length, particularly at lower values, with a non-linear 
decrease as body length approaches the asymptotic body length estimated from the growth model ( L∞ = 512).

Our next step involves age predictions for elephants based on aerial survey data. A dataset comprising imagery 
of thirty-three individual elephants across eight distinct locations was collected. Total body length calculations 
for each image were performed as a means of estimating the age of elephants. The calculated body length values 
span a range from 140 to 325 cm, which aligns with the range encompassed by the model-fitting dataset. We 
create an age group for predicted values from the GAM model according to: (0, 5), (5, 10), …, (35, 40) to aid 
the interpretation. Figure 1 illustrates the age structure of the thirty-three wild elephants, categorized into eight 

Table 1.   Posterior summary statistics of N-mixture model parameters fitted on the elephant count data, 
corresponding to the posterior mean, standard deviation (SD), median, the 95% lower and upper credible 
interval (LCL, UCL) and the R statistics. The model was fitted using a Bayesian approach for 50,000 iterations 
with priors: ψ ∼ Beta(1, 1)  , � ∼ Uniform(0, 100) , and Nj ∼ Poisson(�).

Parameter Mean SD Median LCL UCL R

ψ 0.55 0.06 0.55 0.44 0.65 1.00

� 19.01 2.41 18.83 14.45 23.74 1.00

Ntotal 151.16 14.79 149 124 179 1.01

Figure 1.   Age distribution estimated using GAM of wild elephants (n = 33) found during the survey.
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distinct classes. Notably, the highest concentration of individuals is observed within the age group of 20–25 years, 
representing the adult population that shows the skewed age structure of the population.

Discussion
Obtaining accurate calculations using conventional survey methods in tropical rainforests is challenging due to 
the need for well-trained field workers and long survey durations to cover large areas with challenging terrain. 
Detecting animals in tropical rainforests can be difficult due to weather conditions, dense and hard-to-reach 
canopies, and the visual camouflage of various species42,43. It is crucial to develop a method that can improve 
the accuracy, precision, and bias reduction in Sumatran elephant surveys. It has been acknowledged that drones 
have numerous benefits over traditional techniques44–46, and our recent research further validates the effective-
ness of drone surveillance, especially in monitoring endangered biodiversity in remote areas that are rapidly 
experiencing land use change and disturbance. In recent studies, drones have been recognized as an innovative 
and valuable tool for conducting conservation research on many species across different types of ecosystems in 
Indonesian tropical rainforests, for example, drones for biodiversity surveys36,47,48, studying primate behaviour 
and waterbird population survey36, and we confirm the feasibility of this method for conducting non-invasive 
aerial surveys on the Sumatran elephant. This species is ideal for drone monitoring because it behaves and lives in 
groups—congregating in relatively open forest areas to feed and shelter under forest stands—and is highly visible 
from the air. Also, they have a group defence system when they feel threatened by large carnivores and humans, 
which could potentially cause harm to humans who are near them. In addition, we observed that Sumatran 
elephants are less disturbed by drones than ther are by humans, resulting in fewer individuals hiding during aerial 
surveys, in accordance with studies in other remote areas36. The effect is especially true for smaller individuals 
and areas where threats by large carnivore species and humans are common, and groups of elephants tend to 
be more agitated49. Another crucial factor to consider is that drones can prevent "convenience sampling"50 by 
providing easier access to remote areas, allowing for comprehensive surveys of the entire potential distribution 
of known species with a greater chance of discovering unreported or elusive groups. Our firsthand experience 
validates this, as we were able to locate individuals or groups more efficiently through aerial surveys and with 
the assistance of the thermal sensors on the drones we employ (Fig. 2).

We successfully tested the suitability of drones and N-mixture models for monitoring the population status 
of the Sumatran elephant in its tropical forest habitat. The combination of multi-sensor cameras and Global 
Positioning System telemetry in our study could improve the accuracy of estimates for performing N-mixture 
models and analysing how species’ home ranges can affect the required size of the area sampled. Estimates 
obtained with the N-mixture models were more precise (narrower confidence intervals) but the numbers are 
not significantly different than those obtained using non-invasively collected DNA-based capture-recapture 
methods in previous research23. Moreover, the survey time is much shorter using drones and does not require 
comprehensive laboratory knowledge with expensive costs for collection and data analysis. Our population 
estimates are comparable to previous studies, indicating that drone surveys have the potential to continue to be 
developed and used to monitor multiple wildlife species in tropical forest areas. However, the elephant avoidance 
and thick canopy forest may present challenges in capturing the target species using drones and may potentially 
lead to bias in estimation. Therefore, we may need to increase the search effort and sampling areas, especially 
when no prior information on individuals is available. We also note that a sensitivity analysis of selecting a given 
sample area is suggested as a future direction of this research for the evaluation of its impact on the N-mixture 

Figure 2.   Sumatran elephant on RGB imagery confirmed via TIR imagery on drone flights in August 2023 at 
100–120 m altitude.



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21311  | https://doi.org/10.1038/s41598-023-48635-y

www.nature.com/scientificreports/

model parameters51. Furthermore, the reliability of the abundance estimates can be improved by incorporating 
external information e.g., information on elephant abundance from different sources, to construct informative 
prior on N  for Bayesian analysis. Within the scope of Sumatran elephant conservation throughout its native 
range, the use of drones as a monitoring tool should be encouraged to rapidly and accurately collect current 
data on elephant populations in 23 known elephant habitats52. In the past, there have been varying estimates of 
the elephant population in the BTL, which includes the Sumai and Riau-Jambi areas. Those estimates ranged 
from 300 to 400 individuals in 198453 to only 50 in 20071. However, with the exception of a dung count census 
from 200954 that estimated 117 elephants for the Sumai area and 47 elephants for the Riau-Jambi area, available 
estimates are either outdated, entirely based on guesswork, or both, and therefore do not likely reflect the current 
population size. While23 abundance estimates were very similar to those of the dung count from 200954, being the 
most recent and most precise study, our estimates of 151 individuals within the study area (95% CI [124, 179]) 
should be used for conservation planning and as a baseline for monitoring. It is important to note that the low 
elephant densities in the study site might be due to patchy habitat usage and increased elephant mortality caused 
by human activities. This assumption is supported by the skewed age structure of the population and evidence of 
elephant killing in the past. Although direct evidence is lacking, elephant killings were likely more frequent before 
2012, as the area was largely uncontrolled and unmonitored. Therefore, we can assume that human activities 
have influenced the population structure in BTL, as has been observed in other elephant populations in Asia55,56.

Differentiating the age categories of the Sumatran elephant can be challenging due to their activity patterns, 
which are often covered by a dense forest canopy, and the subtle sexual dimorphism of the species. Total body 
length is a reliable indicator of age, as it often correlates strongly with the animal’s age18,21. However, obtaining the 
necessary body measurements from images is not always feasible, particularly if the animal is partially obscured. 
There are various approaches to handling missing data. Usually, animals without the required measurements are 
excluded from further analysis57, or replaced with the average measurements of other individuals whose ages are 
confirmed, as we did in our study, where we utilized data on individual elephants in zoos to develop the initial 
model58. Our research shows that GAM is quite precise in predicting the age of elephants, which may be due 
to the similarity in the relationship between age and length in the inverse of von Bertalanffy’s growth model to 
GAM. In particular, the von Bertalanffy model specifies the predictor as a function of the asymptotic size ( L∞ ) 
and the body length ( Li)59, while GAM models the predictor as a smooth function of unknown parameters and 
seeks the best fitting line to the data, e.g., minimum prediction errors60. However, we note that GAM is a data-
driven model where the quality of the model, e.g., precision, depends on the data, and the associated parameters 
do not have a biological interpretation, like growth parameters in the von Bertalanffy model. Thus, GAM is not 
an appropriate model when the objective of the study is to obtain and understand such growth parameters but 
is a good model for predictive purpose. We further note that age prediction is feasible when prior information 
is available to build the models e.g., von Bertalanffy and GAM, thus requiring measurement data of captive 
individuals. When such data is not available, past research on growth parameters may still be utilized for predic-
tion (e.g.,61). The increasing number, class width narrows and natural variation in length may result in greater 
overlap of length between age classes, but the information obtained is still useful as can robustly discriminate 
between old and young individuals e.g., juvenile, sub-adults and adults. Finally, we note that sex characteristics 
may affect the age prediction due to their difference in body lengths62. To account for such variability, the model 
can be separated into two and obtain the estimate for each sex or the sex indicator may be included as a predic-
tor (only feasible for GAM).

Asian elephants generally live longer than African elephants and are slow reproductive animals with a rela-
tively high survival rate to old age after a slightly riskier postnatal year55. In natural populations in BTL, we 
found more adult animals than subadults and juveniles, as observed, inter alia, by63 and64 in India. Our sample, 
however, compared with the survey results of23 in 2011, and revealed an increasingly favourable age structure 
for the population in Bukit Tigapuluh, with an almost larger number of adults than other age classes. The adult 
sex ratio (ASR) of a population is a critical parameter in ecology due to its expected impact on demography and 
opportunities for selection. Biased ASR can lower reproduction or survival rates for the less abundant sex65,66. 
This can substantially reduce population growth and even lead to collapse66. Moreover, we found 2 to 3 calves 
per group of elephants. However, it should be noted that most elephant deaths due to conflict and poisoning in 
response to crop raids, occur in adult individuals. Based on computer simulations by55, the population suffering 
from increased adult mortality shows a relatively increased number of calves, shifting the general age distribution 
to a younger class. Thus, a young population does not necessarily mean recovery, but could instead be a sign of 
heavy losses in the older age classes.

In the management of the Sumatran elephant population, drones can provide informative observations and 
be seamlessly integrated into current monitoring practices. With low-cost drones, orthomosaic collection is 
easily replicable and produces high-resolution mosaics that enable the study of population demographic and 
spatial location of the elephants. This information is crucial for managing elephant populations and their habitat 
in BTL, particularly since most elephants reside outside protected areas. Orthomosaics that include the loca-
tion of individual elephants can reveal how they are distributed across the landscape, habitat condition, and the 
effects of human activity. This automated workflow can be used to assess the demographics and condition of 
populations of Sumatran elephants and other large mammals by increasing statistical power, and providing new 
tools for research and population management. Moreover, with advanced machine learning algorithms for data 
processing, the photogrammetry from drones might also reveal insights into population health or age and other 
parameters, which offers exciting opportunities.

The main concerns in the BTL, which drone surveys have monitored, are land conversion, deforestation and 
massive and uncontrolled installation of electric fences, leading to human-elephant conflict, poaching, and a 
decline in Sumatran elephants’ quality of life and restrictions on their movements (Fig. 3). This situation has 
the potential to increase the death rate of elephants beyond their birth rate. While drones can offer tailor-made 
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solutions for wildlife conservation management problems, the social implications must also be considered67, 
especially in areas such as the BTL, where conservation decisions are very sensitive and often affect human lives 
and livelihoods. Previous studies and our drone monitoring of the BTL indicate that most of the elephant’s roam 
outside protected areas. Illegal clearing of forests by communities to support their livelihoods through farming 
in the southwestern of BTL must be controlled, and strong law enforcement is needed to halt destructive prac-
tices. The co-existence of elephants and humans on the intensively used agricultural lands of the BTL may be 
improbable, but the extensive production forest concessions surrounding Bukit Tigapuluh National Park provide 
a potentially safe habitat. Within these concessions, wildlife-friendly management outside of statutory conserva-
tion commitments can convert large parts of the landscape into suitable elephant habitats without eliminating 
all commercial interests. Conservation of the elephant population and their habitat in this region should thus 
be a high priority. Conservation management is more of a political decision. However, close monitoring can 
be crucial in judicious decision-making to support conservation, particularly in conflicting human interests. 
Technology can assist, supplement and strengthen the exercise for that purpose.

Our study shows that drones have become a powerful tool in monitoring and mapping changes in species 
and disturbed ecological landscapes, offering a cost-effective and efficient way to access hard-to-reach areas 
and observe subtle environmental changes. This paper demonstrates that drone-acquired images can be pro-
cessed to generate valuable data layers that can provide insights into species and landscape conservation and 
inform restoration and management efforts, which can be adapted to other regions. Drone surveys combined 
with hierarchical modeling and machine learning to estimate population abundance and age structure could 
have wider applications for other species in other study systems. The demographic population data of species 
from programmed flights by drones, as the results of our study, enables tracking population trends that can be 
used to establish management priorities and guide the implementation of species conservation measures in the 
landscapes. The demographic population data from species enables tracking population trends that can be used 
to establish management priorities and guide the implementation of conservation measures in the landscapes.

Methods
Study area
The Bukit Tigapuluh landscape (BTL) is situated in the centre of Sumatra Island (1°4′27.72ʺS and 102°30′43.89ʺE) 
and spans across two provinces, namely Riau and Jambi (Fig. 4). The area encompasses over 3500 km2 of 
land, including the Bukit Tigapuluh National Park (1440 km2) and is home to the Talang Mamak indigenous 
community68. The study area of BTL includes the Datuk Gedang Essential Ecosystem Area (KEE), which covers 
618.29 km2. The original vegetation, composed of extremely species-rich dipterocarp rainforest69, is now largely 

Figure 3.   Land covers dominate the landscape: (A) oil palm plantations, (B) rubber plantations, (C) eucalyptus 
plantations, (D) secondary forests, (E) coal mines, (F) open areas, (G) land clearing for agriculture land, and (H) 
electric fence along the oil palm plantations area.
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limited to the rugged center of the landscape and surrounded by a patchwork of various land-use types, including 
oil palm, rubber tree plantations, and pulpwood plantations covering ± 75% of the total landscape, non-active 
former logging areas are now partly covered with secondary forest (17%), and surface coal mining areas, small 
settlements, and private farmland with the smallest proportion. Based on its function, Datuk Gedang is located 
in a cultivation area covering 457.12 km2 of Production Forest (PF), 157.97 km2 of Limited Production Forest 
(LPF) and 1.38 km2 of Other Uses Areas (OUA). The PF and LPF areas are industrial plantation forests of rubber 
and acacia trees which incorporate a social forestry area. The OUA is a residential area and a garden for the local 
community. Bukit Tigapuluh Landscape also has a concession in the form of an ecosystem restoration timber 
forest product utilization area. The climate is tropical, with warm temperatures throughout the year (mean annual 
temperature = 22 °C, min = 21 °C, max = 33 °C) and high rainfall (average rainfall = 2577 mm/year, max = 347 mm/
month, min = 83 mm/month), and altitudes ranging between 60 and 843 m asl68.

Drone surveys
Drone data was collected in November 2022 using a Dà-Jiāng Innovations (DJI) Matrice 300 RTK outfitted with 
a DJI Enterprise Zenmuse H20 Series multi-sensor camera. This camera includes a zoom, wide, and thermal 
camera (H20T), which utilizes an Uncooled Vanadium Oxide (Vox) Microbolom sensor for thermal detection. 
The drone has a maximum flight time of 30 min, a top speed of over 70 km h−1, a pilot-controlled range of more 
than 5 km, and a 20 MP camera capable of recording high-definition 4 K/60 fps video. We programmed all 
flight plans using Mission Planner (DJI Pilot version 1.9.0 by DJI Innovations Technology Co., Ltd., Shenzhen, 
China). All images were compiled and ortho-rectified using Agisoft Photoscan Pro ver. 1.2.5.2594, now known 
as Agisoft Metashape (https://​www.​agiso​ft.​com/​acces​sed as of 18 July 2023), before being imported into QGIS 
ver. 2.8.6 (QGis Development Team, Beaverton, OR, USA) for analysis.

Figure 4.   Study design of drone in Bukit Tigapuluh Landscape.

https://www.agisoft.com/accessed
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The entire study area of 3500 km2 in the BTL was divided into 140 grids of 5 km × 5 km each. Previous survey 
data and information, such as the direct presence of elephants in the landscape and indirect encounters through 
traces of activity from the ongoing long-term research, local field guards, and forest officials were integrated into 
the spatial layers and overlayed in ArcGIS 10.6. Our study focuses on the central and southeastern parts of BTL 
since GPS collar data shows elephants are no longer moving southwest due to the development of agricultural 
land, illegal settlements, and the construction of uncontrolled electric fences that cut off the movement paths of 
Sumatran elephants. However, in principle, elephant surveys using drones can indeed be conducted without using 
GPS collars, but still consider preliminary surveys regarding the locations of elephant movement boundaries. 
Surveys of presence indicators such as dung, footprints, and information from local communities can determine 
the limits of elephant movement, which is very useful in optimizing resources and references in limiting survey 
locations. Like the transect and DNA surveys conducted by Moßbrucker in 2011 in the BTL, pre-surveys are 
crucial for successfully identifying the research boundaries to be undertaken. In preparation for implementing 
drone surveys to study Sumatran elephants, we conducted tests to assess any potential disturbances caused by the 
drones, such as evasive maneuvers or attacks, that could impact the accuracy of the survey results and minimise 
the disturbance of elephants. Based on our findings, we determined the minimum flying height of 100 m for 
the drones to avoid disturbing the elephants, which was the same height as their last flight before fleeing. We 
ensured that our drone’s flying height did not exceed 120 m, which complies with the regulations outlined in the 
Regulation of the Minister of Transportation of the Republic of Indonesia No. 37/2020 regarding the Operation 
of Unmanned Aircraft in Airspace Served by the State of Indonesia.

Prior to conducting the drone survey, we verified the location coordinates acquired from the GPS collars. 
The collar information is used to cluster sample areas based on elephant movements throughout 2022 in BTL, 
thus narrowing the potential habitat of elephants. Moreover, the collar information is used to strengthen our 
assumption that elephants no longer move southwest for various reasons. The selection of survey locations is 
partially random, with a few referring to collar information. Before the drone flight is carried out, if we found 
any indication of the presence of elephants around the flight location from radio telemetry signals, we would 
launch the drone towards the sample location approximately 300–500 m from the GPS collar transmission point 
to avoid disturbing the elephants. Telemetry only functions as a reference for the elephant’s location to avoid 
interference and not as a reference in choosing a drone flight location. The minimum altitude for each flight was 
set to 100 m. We conducted optimal flight evaluations and carried out drone surveys at an ideal speed rate of 
5 m s−1, with a 90-degree camera orientation. The drone followed a pre-programmed flight plan autonomously, 
from take-off to landing. We conducted four flights at each site. The drone was programmed to take photos at 
regular intervals to ensure optimal photo collation and avoid shadows on maps, maintaining an 80% forward 
overlap and 80% lateral overlap between two consecutive images36,47. After conducting a field survey, we created 
maps and visually inspected them to detect the presence of the species (Fig. 5). We used photographs to capture 
each individual’s head or body shape and record their body length. To create high-resolution images of each site, 
we combined approximately 100 images and corrected the perspective using Pix4Dmapper (v4.7, Pix4D SA). 
We obtained Ground Control Points (GCPs) from a Google Satellite online map to ensure accurate positioning 
matching with the satellite data. We then selected 10 GCPs on each orthomosaic to match the coordinates of 
the satellite image70.

Automated detection and body size measurements of Sumatran elephant
To count the number of elephants accurately, we utilized Picterra, an online machine-learning (ML) platform 
that employs a Convolutional Neural Network (CNN) architecture for object segmentation. CNNs are advanced 
Deep Learning tools that can recognize and delineate specific object classes from raster images by analyzing 
patterns in pixel relationships. This method provides a reliable and automated alternative to traditional counting 
methods71. Our approach is ideal for detecting distinct objects that may not be identical but have similar visual 
characteristics in images. We trained Deep Learning models to automate object detection with drone imagery. 
This software utilizes a modified version of the U-NET architecture72, a type of CNN, to enable instance segmen-
tation without requiring a complex and data-intensive model such as Mask-R-CNN73. We created three detectors 
that specifically targeted calves and older elephants (age 1 + years old), and all elephants regardless of age (age 
0 + years) (Fig. 6). This approach enabled us to train each detector separately, ensuring no confusion between the 
classes. We utilized drone orthomosaics for training the software by outlining polygons around each elephant. 
Approximately 10 elephants were used for each class during training. We trained each detector with 4000 steps. 
The accuracy of the binary classification model, the F1 score, was estimated as in74:

In the context of this study, "precision" refers to the ratio of false positives (FP) and false negatives (FN) in the 
classifications. "Recall" is defined as TP/(TP + FN), where TP represents the true positive rate as determined by a 
human observer. The accuracy of the classifications was exceedingly high, with calves having a 94.14% accuracy 
rate, older elephants with 95.06%, and the entire elephant group with 90.75%. After running the detectors on 
the drone mosaics, each elephant was indicated with a polygon and data on its position (latitude and longitude), 
body area and perimeter were recorded.

We utilized the polygons classified by the ML for each elephant to determine body size. To automate the 
measurement of elephant length and width, we developed a custom-written R function (Fig. S3)75. Within this 
function, spatial polygons were plotted and analysed using the packages “sf ” and “lwgeom” with further manipu-
lation of the data using package “reshape2”76,77. To remove limbs from computation, polygons were smoothed 
by Gaussian Kernel regression with a bandwidth value of two, using the R-package “smoothr”78. To determine 

F1 =
2 ∗ Precision ∗ Recall

Precision+ Recall
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Figure 5.   23 individual Sumatran elephants recorded in orthomosaic images and depicting the fusion between 
the Ginting and Indah groups in a rubber plantation.

Figure 6.   Overview of the automated work-flow for wildlife surveys, from drone flights to image analysis. 
Drones are used to collect hundreds of images that are converted into orthomosaics. Thereafter, animals are 
identified by machine learning and their body sizes measured.
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the length of an elephant from head to tail, we used the two furthest points on its polygon to represent these 
body parts. We divided the polygon into two-line segments at these points and constructed a line that followed 
the curvature of the polygon by using a set of points midway between corresponding coordinate points in each 
line segment. Accounting for the effect of smoothing, we added the distance between the farthest points in the 
smoothed polygon and the original polygon to the length of this curved line. This value represented the length 
of the elephant from head to tail, following the curvature of its body. All relevant code is available.

We also manually estimated the standard body length of elephants using classified polygons and mosaics 
to validate the automatic calculation. To do this, we measured the straight-line distance from the head to the 
tip of each elephant’s tail79,80. We utilized 10 panels with known areas ranging from 1.2 to 7.5 m, which were 
photographed during 3 drone missions to calculate the error of body length measurements. While installing a 
radio collar on an elephant’s neck, one individual from each group of elephants is physically measured for their 
body length. As an example, the results of the analysis show the elephant’s body length was manually measured 
at 2.9 m, while the corresponding automatic measurement from a drone was 2.9 ± 0.58 m. The measurements 
taken by the drone closely matched the manually measured dimensions of the elephant’s body length (F = 1875, 
p < 0.001, R2 = 0.94, y = 1.25x + 0.0800; Fig. S4).

Estimation of population size
We consider a model for spatially replicated counts proposed by38, also known as N-mixture models. The objec-
tive of this model is to estimate the abundance of the species of interest without the need of individual iden-
tification, while the model can be easily extended for understanding the relationship between the abundance 
and site-specific covariates. Therefore, N-mixture model has been recently extended for modelling the aerial 
counts51,81,82. However, we note that some potential issues in applying N-mixture modeling to wildlife abundance 
have been highlighted, such as a lack of identifiable parameters when abundance, probability of detection, or the 
number of visits to survey sites is low51,82,83.

In this paper, we fit the aerial counts on the N-mixture model for estimating the abundance of the elephant. 
For clarity, we start by describing the notations for the model. Let njt be the number of unique individuals 
detected at location j at time t  for sampling occasions t = 1, . . . ,T and locations j = 1, . . . ,R . We assume that 
within the sampling occasion T , the target population is closed i.e., no birth/death and migration/emigration 
is allowed, and individuals are detected independently over locations and times. The count data is assumed to 
follow a binomial distribution such that:

where Nj is the population size at location j and ψ is the detection probability. In this paper, we further assume 
the detection probability to be constant over time and space i.e., ψ is the same for all j and t  for simplicity. The 
realized total population Ntotal is equal to the sum of the estimated population size for all locations j such that 
Ntotal =

∑R
j=1 Nj.

To estimate the model parameters, a Bayesian approach is used for this case considering the sample size 
which is quite small. Therefore, we need to assign prior distributions to each parameter in the model to obtain 
the posterior densities of parameters. We assume a Poisson prior distribution for Nj such that:

where � is the expected population size and � ∼ Uniform(0, 100) with the upper limit is chosen such that, it does 
not affect the posterior distribution of � i.e., Pr(� = 100) ≈ 0 . For detection probability, a Beta prior is assumed 
such that ψ ∼ Beta(1, 1) . Beta(1, 1) is chosen to constrain the detection probability ψ such that ψ ∈ [0, 1] . Note 
that28 suggested an alternative prior specification for � i.e., a gamma prior which is equivalent to the Negative-
Binomial prior for Nj . However, the Poisson-Uniform prior seems to be sufficient for our case therefore we 
restrict the analysis for given priors. Finally, site-specific covariates can be incorporated into � and/or ψ if such 
information is available. In this paper, we simply fit the simple model where � and ψ are assumed to be invariant. 
Let N =

{

Nj; j = 1, . . . ,R
}

 and n =
{

njt; j = 1, . . . ,R; t = 1, . . . ,T
}

 , thus the joint posterior distribution over 
the model parameters is given by:

where f
(

njt |p,Nj

)

 is the joint likelihood function of the data and p(.) denotes the prior distribution of the cor-
responding parameters defined earlier. We fit the count data of the elephant on the N-mixture model defined in 
Eq. ( π(N , �,ψ |n) ∝ f

(

n|p,N
)

p(ψ)p(N |�)p(�) ) using a Bayesian method. The count data was collected from 
the aerial survey using drones at 8 different locations ( R = 8) (Fig. S5). The survey was conducted for four days 
resulting in T = 4 , hence the closure assumption is well satisfied. Note that we only include locations with at least 
one individual being detected during the observations. We run Markov chain Monte Carlo (MCMC) algorithm 
for 50,000 iterations following an initial 5000 burn-in for each algorithm using 3 separate and independent 
chains. The model was fitted using the R package rjags84. Next, The trace plot and the Brooks–Gelman–Rubin 
statistic for each parameter are obtained for convergence check of the MCMC samples85.

Age prediction
We consider two models for age prediction of elephants in this paper: (i) Von Bertalanffy growth curve model, 
and (ii) generalized additive model (GAM). The growth curve derived by86 has been used for studying the 
growth phenomena on vertebrates including elephants80,87. The model is used to explain the growth curve of 
body sizes e.g., back length based on the individual ages59,61,86,88. Let Li be the body size (the total body length) 

njt ∼ Binomial
(

Nj ,ψ
)

,

Nj ∼ Poisson(�),

π(N , �,ψ |n) ∝ f
(

n|p,N
)

p(ψ)p(N |�)p(�),



11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21311  | https://doi.org/10.1038/s41598-023-48635-y

www.nature.com/scientificreports/

of individual i and ti denote the age of associated individuals for individuals i = 1, . . . , n . The von Bertalanffy 
growth function has a form of:

where L∞ is the asymptotic total body length, L0 is the body length at birth and K is a rate constant. Note that 
{L∞, L0,K} are growth parameters to be estimated.

The second model we consider for predicting the age of elephants is generalized additive model (GAM). 
Under the GAM, we assume that age, a dependent variable, is a function of an unknown smooth function. The 
form of the generalized additive model for age can be written mathematically as:

for i = 1, . . . , n where β0 is a constant, g(.) is a link function to be chosen; and ǫi is a zero mean error term with 
variance σ 2 . The function s(.) denotes an unknown smooth function. In this work, we consider a basis expan-
sion to approximate s(.) such that s(Li) =

∑m
r=1 βrbr(Li), where br(Li) is a B-spline basis function and βr are 

coefficients to be estimated60. The link function g(.) is chosen such that it constrains the age into the interval 
[0,∞] . Therefore, a Gamma distribution is assigned to fit the model to the age given the body length since the 
function is defined for all positive real numbers, and the log-link function is chosen such that g ≡ log. Note that 
a Gaussian distribution with a log-link function may be an alternative distributional form for modelling age with 
a constant variance. However, we prefer a Gamma distribution where the variance is not necessarily constant 
i.e., we expect to have smaller uncertainties for smaller body length. We also note that the inverse of the von 
Bertalanffy growth function can be written as a linear function of the body length59 such that:

which is equivalent to the GAM equation with β0 = 1
K log(L∞ − L0) and s(Li) = − 1

K log(L∞ − Li) . Fitting the 
inverse of von Bertalanffy growth equation to the age assuming a Gamma distribution with a log-link function 
is somehow similar to the initial GAM but a different function in s(Li) . Thus, we consider GAM is an appropriate 
and a reasonable approximation to the original von Bertalanffy growth function when the main objective is the 
prediction not the relationship itself.

Note that drone photogrammetry has been used to predict the age of hippopotamuses in nature using mul-
tiple imputation statistical analyses61. However, the conclusions of such data-driven models are limited without 
ground-truthing the findings with direct measurements from morphometric data collected in the field. Consid-
ering the difficulties in obtaining total body length data and other body measurements of Sumatran elephants 
in nature, validation data is needed in the form of appropriate morphometric measurements for age and sex, 
commonly available in ex-situ locations such as zoos. Therefore, we collect an additional dataset from the zoo 
corresponding to body measurements and their associated ages of 23 individuals with a range of age between 1 
and 40 years old. We treated the additional dataset from the zoo as training data to obtain the parameter estimates 
of the von Bertalanffy growth model and GAM. The growth parameters obtained are used to derive the inverse 
of the von Bertalanffy model to back-calculate age from the total body length59. We use the R package FSA to 
obtain the maximum likelihood estimates of the von Bertalanffy growth parameters89 where the 95% confidence 
interval of corresponding parameters are derived using a nonparametric bootstrap. For GAM, we fit the model 
by setting age as a dependent variable and the body length as a predictor assuming a Gamma model with a log-
link function using R package mgcv90. Parameter estimates from both the Von Bertalanffy growth model and 
GAM are used for comparing the age prediction for given body lengths while assessing the uncertainties e.g., 
95% prediction intervals of the prediction. The primary objective of building such models is to estimate the age 
of elephants from the aerial survey data i.e., predicting individual ages based on the total body length estimated 
from the snapshot of aerial survey (Fig. S5). We further classify the age group into four classes according to their 
maturity, i.e., calf (0–1 year), juvenile (1–5 years), sub-adult (5–15 years) and adult (> 15 years)80.
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