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Sea level variability and modeling 
in the Gulf of Guinea using 
supervised machine learning
Akeem Shola Ayinde 1,2,3*, Huaming Yu 1,2* & Kejian Wu 1,2

The rising sea levels due to climate change are a significant concern, particularly for vulnerable, 
low-lying coastal regions like the Gulf of Guinea (GoG). To effectively address this issue, it is crucial 
to gain a comprehensive understanding of historical sea level variability, and the influencing 
factors, and develop a reliable modeling system for future projections. This knowledge is essential 
for informed planning and mitigation strategies aimed at protecting coastal communities and 
ecosystems. This study presents a comprehensive analysis of mean sea level anomaly (MSLA) trends 
in the GoG between 1993 and 2020, covering three distinct periods (1993–2002, 2003–2012, and 
2013–2020). It investigates the connections between interannual sea level variability and large-scale 
oceanic and atmospheric forcings. Furthermore, the study evaluates the performance of supervised 
machine learning techniques to optimize sea level modeling. The findings reveal a consistent rise 
in MSLA linear trends across the basin, particularly pronounced in the northern region, with a total 
linear trend of 88 mm over the entire period. The highest decadal trend (38.7 mm) emerged during 
2013–2020, with the most substantial percentage increment (100%) occurring in 2003–2012. Spatial 
variation in decadal sea-level trends was influenced by subbasin physical forcings. Strong interannual 
signals in the spatial sea level distribution were identified, linked to large-scale oceanic and 
atmospheric phenomena. Seasonal variations in sea level trends are attributed to seasonal changes in 
the forcing factors. The evaluation of supervised learning modeling methods indicates that Random 
Forest Regression and Gradient Boosting Machines are the most accurate, reproducing interannual sea 
level patterns in the GoG with 97% and 96% accuracy. These models could be used to derive regional 
sea level projections via downscaling of climate models. These findings provide essential insights for 
effective coastal management and climate adaptation strategies in the GoG.

Climate change is a pressing global concern, with its escalating impacts significantly affecting sea  levels1. By 
comprehending and modeling sea level trends, we can gain crucial insights into how climate change is impacting 
coastal regions, especially in the Gulf of Guinea, a wide expanse of land on the West African coast, where coast-
lines are predominantly low-lying. Therefore, there is an urgent need for sea level projection models to assess the 
potential impacts of sea level rise. These models are invaluable for policymakers and coastal planners, enabling 
them to proactively prepare for and mitigate the consequences on coastal communities and ecosystems. The 
examination of regional sea level variability and the identification of its driving factors are of paramount impor-
tance in understanding the consequences of climate change on coastal  areas2. The range of sea level variability 
encompasses a wide spectrum of challenges, with profound implications for coastal communities, infrastructure, 
and marine ecosystems. These challenges encompass elevated storm surges, coastal erosion, flooding, saltwater 
intrusion, disruption of marine ecosystems, and infrastructure damage, all of which carry substantial economic 
implications. The intensification of these impacts, particularly in low-lying coastal regions, underscores the 
critical need for comprehending the mechanisms underlying sea level variability and for establishing precise, 
cost-effective models to elucidate regional sea level drivers and projections.

Conventional numerical models, including deterministic numerical models which are based on mathemati-
cal equations that describe the physical processes governing a system (such as dynamical or physical models), 
have a long history of demonstrating their effectiveness in forecasting variations in sea state and sea  level3–5. 
Nevertheless, the practical deployment and execution of these models can entail substantial intricacies and 
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expenses, meaning that they come with challenges and costs when it comes to implementing and using them in 
real-world applications. Lately, the emergence of machine learning techniques has offered promising avenues to 
enhance the prediction and forecasting capabilities of sea levels. These advancements extend beyond predictions 
and forecasts, with machine learning showcasing its potential in refining ’best-estimate’ ensemble forecasts for 
ocean  waves6 and predicting storm surges with  precision7. Particularly, the performance of ANN matches that 
of deterministic hydrodynamic models in capturing extreme events. In recent times, ANN has been successfully 
employed for storm surge hindcasts in estuarine ports in the UK, enabling accurate coastal flood  predictions8. 
Furthermore, the predictive aptitude of ANN extends to oceanic variables such as subsurface temperature (ST) 
and even climate phenomena like El Niño/Southern Oscillation (ENSO) over 1.5  years9. Impressively, ANN 
surpasses state-of-the-art dynamical forecast systems in forecasting ENSO, highlighting remarkable advance-
ments in ENSO  predictions10.

The ascendant integration of Artificial Intelligence (AI) in the scientific realm has necessitated the develop-
ment of diverse machine learning approaches, encompassing Convolutional Neural Networks (CNN), Recurrent 
Neural Networks (RNN), Feedforward Neural Networks (FNN), and traditional regression methods. While 
CNNs excel in image recognition, object detection, and classification  tasks11–13, RNNs are well-suited for tem-
poral analyses, natural language processing, and speech  recognition14,15. In contrast, FNNs are adept at pattern 
recognition, function approximation, and mapping input features to output targets. The efficacy of the machine 
learning models hinges upon data quality, quantity, and a solid understanding of the system to discern requisite 
input data (predictors/training data) for the analysis at hand. Marine meteorological data have been particularly 
successful as input variables, demonstrating effectiveness in modeling and forecasting sea level  variability16–18.

This study examines the spatial linear trend of sea levels and its drivers in the GoG, focusing on decadal 
trends. Additionally, it investigates seasonal variability and the impact of large-scale oceanic and atmospheric 
phenomena on interannual sea level fluctuations. We develop and evaluate five supervised machine learning 
models, including two artificial neural networks (ANN): Multi-layer Perceptron Regression (MLPR), which is 
an FNN, and Long Short-Term Memory (LSTM), an example of RNN. We also employ traditional regression 
models: Multiple Linear Regression (MLR), Random Forest Regression (RFR), and Gradient Boosting Machine 
(GBM). These models utilize marine meteorological and hydrological variables, including thermosteric sea level 
anomaly (TSLA), halosteric sea level anomaly (HSLA), wind stress curl (WSC), atmospheric pressure, net heat 
flux (NHF), precipitation, evaporation, and freshwater runoff. These variables have been widely recognized and 
studied in previous research, and their influence on sea level fluctuations is well-documented19–21. The manuscript 
is structured as follows: Section "Results" introduces the study area, data sources, and variable parameterization. 
In Section "Discussion/conclusion", we detail the methodology and model specifications. Subsequently, in Sec-
tion "Methodology", we present and discuss the experimental outcomes.

Results
Interannual-to-interdecadal spatial trends and variability of MSLA and its forcings
In this section, we analyzed the interannual-to-interdecadal spatial trends and variability of MSLA and its associ-
ated drivers, including SSLA, TSLA, HSLA, ocean heat content (OHC), WSC, air temperature, NHF, precipitation, 
evaporation, freshwater runoff, and atmospheric pressure. We aimed to investigate their potential contributions 
to MSLA during the period from 1993 to 2020 in the GoG. Subsequently, we compared the spatial trends and 
variability for the three distinct periods: 1993–2002, 2003–2012, and 2013–2020. This division was based on the 
need to capture and analyze long-term trends while avoiding the potential masking of significant shorter-term 
variability. This approach allows us to distinguish between gradual, sustained changes and shorter-term varia-
tions, and to assess how sea level variability and its drivers have evolved over time. In general, analysis of MSLA 
variability revealed a distinct spatial and temporal pattern across the basin, which was significantly influenced 
by subbasin-scale drivers.

Linear trends during 1993–2002
The spatial distribution of linear trends in MSLA from 1993 to 2002 reveals notable variations in trends 
( 11.8mmdecade−1 ) across the GoG basin (Fig. 1A). Substantial trends are evident along the northern coast, 
particularly pronounced ( ∼ 55−60mmdecade−1 ) along Sierra Leone, Guinea Conakry, Guinea Bissau, Gambia, 
and Senegal. Comparatively higher trends are observed along the continental shelf, except for Nigeria, Benin, 
Togo, Ghana, Gabon, and Congo, which exhibit lower trends. The variability in these spatial trends is closely 
tied to the underlying sub-basin forcing factors. TSLA’s basin-wide negative trend (-19mmdecade−1 ) mirrors 
MSLA’s coastal trend (Fig. 1A,C), while HSLA’s basin-wide positive trend (0.6 mmdecade−1 ) exhibits pronounced 
variability on the northeast coast (Fig. 1D). Both TSLA and HSLA contribute to SSLA’s overall spatial trend 
(-18.6mmdecade−1 ), aligning closely with MSLA’s trend along the northern coast (Fig. 1A–D). Notably, regions 
experiencing decreased evaporation trends coincide with increased MSLA trends, while areas with high (low) 
runoff and precipitation correspond to regions with high (low) MSLA, and vice versa (Fig. 1A,E,F,G). While there 
is no significant change in the WSC trend offshore, cyclonic WSC trends dominate the northern basin, influenc-
ing MSLA variations (Fig. 1J). Negative current velocity trends are linked with cyclonic WSC trends, leading to 
low MSLA, except along the Gambia coast, where high MSLA is observed (Fig. 1A,I,J). The role of cyclonic WSC 
in coastal upwelling and MSLA modulation is well-documented22–24. Atmospheric pressure shows a strong spatial 
trend (4.9 hPa decade−1 ), decreasing meridionally from the south to north basin. High atmospheric pressure in 
the south drives northward flow, raising (lowering) water levels respectively (Fig. 1A,L). The NHF’s spatial linear 
trend is negative ( −7.2Wm−2 decade−1 ), signifying ocean heat release into the atmosphere and a net heat loss. 
This contributes to decreasing OHC ( −8.6× 108 Wm−2 decade−1 ), leading to a lower MSLA trend (Fig. 1A,H,K).
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Figure 1.  The spatial linear trend of mean sea level anomaly (MSLA) (A) and its forcing factors, including 
steric sea level anomaly (SSLA) (B), thermosteric sea level anomaly (TSLA) (C), halosteric sea level anomaly 
(HSLA) (D), precipitation (E), evaporation (F), runoff (G) ocean heat content (OHC) (H), Current (I), wind 
stress curl (WSC) (J), net heat flux (NHF) (K), and atmospheric pressure (L) for the period 1993 to 2002 in the 
Gulf of Guinea. The trends were obtained by subjecting the monthly mean of each dataset to a linear regression 
model, which calculates decadal slope at each grid point. The calculations, as well as the maps, were produced 
with a Python (3.10.9) script.
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Linear trends during 2003–2012
The period from 2003 to 2012 witnessed distinctive changes in the spatial distribution of linear trends in MSLA 
and its driving forces, compared to 1993–2002, with heightened sea level trends in the northwestern basin 
(Fig. 2A). Specifically, the northwest basin along the coasts of Guinea Conakry, Guinea Bissau, Gambia, and Sen-
egal experienced the highest trends, at approximately 100mmdecade−1 , while the northeast basin and offshore 
areas showed lower trends. In general, MSLA exhibited a remarkable increase in spatial linear trend, with a value 
of 23.5mmdecade−1 , constituting a 100% surge from the previous decade in the GoG. Similarly, TSLA and HSLA 
displayed overall increased spatial linear trends, with values of −16.3mmdecade−1 decade and 0.81mmdecade−1 , 

Figure 2.  The spatial linear trend of mean sea level anomaly (MSLA) (A) and its forcing factors, including 
steric sea level anomaly (SSLA) (B), thermosteric sea level anomaly (TSLA) (C), halosteric sea level anomaly 
(HSLA) (D), precipitation (E), evaporation (F), runoff (G) ocean heat content (OHC) (H), Current (I), wind 
stress curl (WSC) (J), net heat flux (NHF) (K), and atmospheric pressure (L) for the period 2003 to 2012 in the 
Gulf of Guinea. The trends were obtained by subjecting the monthly mean of each dataset to a linear regression 
model, which calculates decadal slope at each grid point. The calculations, as well as the maps, were produced 
with a Python (3.10.9) script.
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respectively, with varying magnitudes across subbasins (Fig. 2C,D). These trends notably contributed to SSLA and 
MSLA at the coasts (Fig. 2A,B). Hydrological variables, including precipitation, runoff, and evaporation, demon-
strated consistent spatial linear trend patterns, which had a similar impact on MSLA compared to the previous 
decade. This was particularly evident along northern coasts, where high trends in these variables correlated with 
MSLA trends. However, an exception was observed on the Nigerian coast, where a higher evaporation trend led to 
lower HSLA and MSLA (Fig. 2A,D–G). The spatial linear trend of WSC and current velocities resembled the pre-
vious decade’s pattern but with slightly lower overall linear trends ( 0.004Nm−2 decade−1 and 0.2ms−1 decade−1 
respectively). Conversely, atmospheric pressure showed a unique pattern, characterized by a decreased spatial 
linear trend of − 16.5 hPa, influencing MSLA in areas like Guinea Conakry, Guinea Bissau, Gambia, and Senegal 
(Fig. 2A,L). Low linear trends in WSC, current velocity, and atmospheric pressure negatively correlated with sea 
level, enhancing MSLA (Fig. 2A,I,J,L). Despite a negative NHF spatial linear trend ( −1.007Wm−2 decade−1 ), it 
represented an 86% increase from the prior decade, impacting OHC trends ( −7.5× 108 Wm−2 decade−1 ) and 
further amplifying SSLA and MSLA trends during this period (Fig. 2A,B,H,K).

Linear trends during 2013–2020
In the period spanning 2013 to 2020, the behavior of MSLA diverges from the previous two decades, showcasing 
distinct spatial trends and magnitudes with elevated sea level trends in the eastern basin (Fig. 3A). Notably, a 
considerable upsurge in MSLA is observed across the basin, with a spatial linear trend of 31.7mmdecade−1 . This 
trend marks a substantial increment of about 169% in comparison to the 1993–2002 periods, and a 32% increase 
from the 2003–2012 spans. The eastern basin stands out with a notable linear trend, particularly evident along 
the coasts of Cameroon and Equatorial Guinea. However, the trend in HSLA presents a contrasting scenario, 
experiencing a significant decrease (-0.43mmdecade−1 ) in comparison to the previous two decades (Fig. 3D). 
This reduction amounts to approximately 28% from the first decade and 47% from the second, yet the distribution 
of spatial trends remains akin to that of MSLA. This decrease in HSLA predominantly stems from negative trends 
along specific coasts, particularly the Nigerian coast, a result of diminishing freshwater runoff and heightened 
evaporation in these areas. Meanwhile, TSLA displays an overall positive spatial linear trend of 13.6mmdecade−1 , 
reflecting substantial increments of 183% and 172% from the preceding decades, respectively (Fig. 3C). However, 
the spatial pattern of TSLA slightly diverges from MSLA during this timeframe, with the highest trend observed 
in the western basin and particularly the northwestern shelf. The combined spatial trends of HSLA and TSLA 
significantly contribute to the spatial linear trend of SSLA (Fig. 3B–D), reaching a peak of 14.1mmdecade−1 . 
This indicates an impressive increment of 191% and 175% in comparison to the previous decades, respectively. 
The linear trends of precipitation and runoff display a consistent pattern along the coast, counterbalancing 
evaporation, with the northern basin exhibiting a high precipitation trend corresponding to low evaporation in 
the southern basin (Fig. 3E–G). During this period, the spatial linear trend of both WSC ( 0.44mmdecade−1 ), 
and current velocity ( −0.07ms−1 decade−1 ) displays a negative trend, representing a decrease of about 300% for 
WSC and 158% for current velocity compared to the previous decade (Fig. 3I,J). Similarly, atmospheric pressure 
exhibits a negative trend of ( −5.5 hPa decade−1 ), signifying a 67% increase from the last decade, with a distinct 
distribution along the coasts and offshore regions (Fig. 3L). The spatial linear trend of NHF portrays a positive 
trend ( 0.008Wm−2 decade−1 ), indicating an increase of 108% from the previous decade (Fig. 3K). Similarly, 
OHC demonstrates a positive trend of 6.6× 108 Wm−2 decade−1 , corresponding to a remarkable 188% increment 
(Fig. 3H). These affirmative trends contribute to the observed heightened SSLA and MSLA during this period. 
The summarized analysis is presented in Table 1.

Leading modes of interannual MSLA variability
The following section discusses the results of the EOF analysis to further investigate the climate and oceanic 
phenomena that dominate the interannual variability of MSLA in the GoG. This investigation was conducted 
using the detrended spatial MSLA dataset, which isolates interannual variability by removing long-term effects 
from the time series data.

The first mode, EOF1, which is the dominant mode (Fig. 4A), explains 57% of the total variance in MSLA. 
This mode exhibits a mountainous tripole pattern. The base of the mountain displays high variability of MSLA, 
culminating from the eastern coasts and extending up to the coasts of Côte d’Ivoire and parts of Liberia in the 
west. It has a shoulder extending to the equatorial region, with the slopes of the mountain displaying moderately 
high sea levels that decay with increasing latitudes on both sides of the slope (north and south basins). These 
features demonstrate the classical characteristic of the barotropic Kelvin waves (equatorial and boundary) as 
described  by25. “The wave propagates equatorward along the western boundary, poleward along the eastern 
boundary, and cyclonic circulation around a closed boundary (counterclockwise in the Northern Hemisphere and 
clockwise in the Southern Hemisphere). It has the highest amplitude at the boundary which exponentially decays 
away from the boundary. Furthermore, it consistently propagates eastward at the equator, attaining its maximum 
magnitude and subsequently decaying exponentially with increasing latitude”. This wave is usually wind-induced 
due to atmospheric pressure gradients acting on the ocean surface. This suggests that the teleconnectivity of the 
equatorial and eastward propagation of Kelvin waves modulate the interannual sea level in the GoG, with the 
highest contribution observed around 1998 and a persistent slowdown during the 2016–2020 periods.

The second mode, EOF2, accounts for 17% of the variance fraction and exhibits a tripole pattern. It shows 
low sea levels along the northwest and northeast coasts, surrounding a high sea level in the central north coasts. 
The low sea level extends to the equatorial basin, separating the two high sea levels in the central north coasts 
and the south basin. This pattern closely corresponds to the temperature distribution of the surface oceanic 
circulation in the GoG, primarily driven by wind (Fig. 4B).
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Figure 3.  The spatial linear trend of mean sea level anomaly (MSLA) (A) and its forcing factors, including 
steric sea level anomaly (SSLA) (B), thermosteric sea level anomaly (TSLA) (C), halosteric sea level anomaly 
(HSLA) (D), precipitation (E), evaporation (F), runoff (G) ocean heat content (OHC) (H), Current (I), wind 
stress curl (WSC) (J), net heat flux (NHF) (K), and atmospheric pressure (L) for the period 2013 to 2020 in the 
Gulf of Guinea. The trends were obtained by subjecting the monthly mean of each dataset to a linear regression 
model, which calculates decadal slope at each grid point. The calculations, as well as the maps, were produced 
with a Python (3.10.9) script.
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The third EOF of the interannual variability of MSLA explains 12% of the total variance and exhibits a meridi-
onal dipole pattern with high variability observed in the northern basin, a pattern that bears the hallmark of 
Atlantic Meridional Overturning Circulation (AMOC). AMOC is a powerful oceanic current system that plays 
a crucial role in regulating the climate in the Atlantic by transporting warm surface water northward and cold 
deep water  southward26. The temperature distribution by AMOC consequently affects the sea level variability 
as observed in EOF3 (Fig. 4C).

Seasonal variability
Analysis of the spatial seasonal variability of MSLA in the GoG, as depicted in Fig. 5, shows a distinct spatial 
seasonal variability of sea level across the basin. The northern basin, which has the highest MSLA distribution 
throughout the seasons compared to the southern basin, records its lowest value towards the end of RONS, 
through the ROFFS seasons. Notably, Cameroon and Nigerian coasts have an overall highest seasonal sea level 
trend compared to other coasts with the highest during RONS season. This is because the highest sea level along 
the northwest coasts is observed in December (DMON). This seasonal sea level pattern in the northern basin is 
similar to that of the south, with the highest in RONS, specifically in the southwestern basin.

The overall seasonal trend of MSLA across the basin (Fig. 6) shows two distinct peaks (April and November) 
and troughs (July and August), with November and August being the highest and lowest troughs, respectively. 
These peaks and troughs correspond to the observed HSLA peaks and TSLA troughs (Fig. 6a). Noticeably, the 
first peak of MSLA was preceded by the current trough in March, and the current peak in July preceded the MSLA 
trough (Fig. 6b). However, OHC, which follows a similar pattern with SSLA, shows a striking resemblance to the 
seasonal pattern of MSLA, with only a deviation in the period of the observed highest MSLA peak. Meanwhile, 
the atmospheric pressure demonstrates an inverse relationship with MSLA, rising as the sea level falls and vice 
versa throughout the season (Fig. 6d). WSC exhibits a seasonal pattern similar to the ocean current as they lead 
MSLA by a month. The same is observed for NHF; however, the impact of NHF on MSLA contrasts with both 
current and WSC, as MSLA peaks precede NHF peaks.

Correlations between MSLA and the forcing variables
The results of the Pearson correlation and regression analysis conducted on the detrended and filtered MSLA 
and its forcings in GoG are presented in Fig. 7. Our analysis revealed a significant level of association between 
MSLA and its various forcing variables. This connection provides a comprehensive understanding of the intricate 
relationships at play within the GoG. For instance, we observed that MSLA exhibited a positive relationship 
with SSLA, TSLA, HSLA, OHC, NHF, precipitation, freshwater runoff, and air temperature. These positive 
associations highlight the interdependence of these variables, emphasizing how changes in one component can 
influence MSLA and, in turn, contribute to the sea level variability in the GoG. Conversely, we noted negative 
relationships between MSLA and certain other variables, including current, WSC, atmospheric pressure, and 
evaporation. These negative associations provide additional depth to our understanding of the complex inter-
actions governing sea level changes. They reveal the counteracting forces at play, where these variables act in 
opposition to MSLA, influencing sea levels by exerting forces in different directions. Additional observations 
include strong positive correlations between current and WSC, evaporation and NHF, air temperature with 
OHC and TSLA, and vice versa. On the other hand, strong negative correlations are found between precipita-
tion and evaporation, TSLA and OHC with current and WSC, and vice versa. These findings further elucidate 
the intricate relationships between MSLA and its forcing variables, shedding light on the complex dynamics of 
sea level variability in the GoG.

Table 1.  Summary of the magnitude and percentage changes in the trends of MSLA and its forcing factors for 
the periods 1993–2002, 2003- 2012, 2013–2020, and 1993–2020 in the GoG.

Variable

Period /trend %Changes

1993–2002 2003–2012 2013–2020 2003–2012 2013–2020 1993–2020

MSLA 18.8 30.5 38.7 100 32 169

TSLA − 19 − 16.3 13.6 14 183 172

HSLA 0.6 0.81 0.43 35 − 47 − 28

SSLA − 18.6 − 15.5 14.1 17 191 175

Precipitation 0.15 0.13 0.44 − 13 238 193

Evaporation − 0.17 − 0.06 − 0.15 65 150 12

Runoff − 0.15 − 0.09 0.21 40 333 240

AtmPressure 4.9 − 16.5 − 5.5 − 437 67 − 212

WSC 0.004 0.002 − 0.004 − 50 − 300 − 200

Current 0.2 0.12 − 0.07 − 40 − 158 − 185

NHF − 7.2 − 1.007 0.08 86 108 101

OHC − 8.6e8 − 7.5e8 6.6e8 13 188 176
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Figure 4.  The first three (A–C) leading EOF modes of the filtered and detrended MSLA estimated over the 
period 1993–2020, along with their time series Principal Components (PCs) on the right. The labeling in B 
showcases the five principal currents and their flow regions, forming the circulation pattern in the Gulf of 
Guinea: SECC (south equatorial counter-current), SEC (south equatorial current), GC (Guinea current), NECC 
(north equatorial counter-current), and CC (canary current). The calculations and the maps were produced with 
a Python (3.10.9) script.
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Model performance
Following the model procedures and evaluation metrics presented in the methodology section of this paper, we 
present the results of the model performance and their associated feature importance in Fig. 8. Interestingly, we 
found no significant difference in the models’ performance between splitting the data and using the entire dataset 
for training and testing. Therefore, we depict the plots of the model where we use the entire dataset for training 
and testing to show the full temporal extent of the data. However, in practical terms, such as for model deploy-
ment, the splitting model is considered standard. Our observations show that RFR and GBM models with R2 and 
RMSE of 0.97, 0.96, and 1.14, 1.36 respectively, exhibit the best performance among the evaluated models in this 
study. However, the relative importance of input features (predictor variables) in making predictions or explain-
ing the target variable’s variance varies among the models. While it was demonstrated that current and WSC are 
related in the previous section of this paper in the GoG, they play dominant roles in the performance of RFR 
and GBM models, respectively. Additionally, the LSTM model, outperforming MLR and MLPR models, closely 
follows RFR and GBM, with TSLA emerging as the most influential variable. Notably, freshwater runoff stands 
out by dominating over other features in both MLR and MLPR models. However, the MLPR model exhibits the 
lowest performance when compared to all the models considered in the study. In general, the performance of 
machine learning models depends on several factors, including the complexity of the model, data distribution, 
feature selection methods, hyperparameter tuning, and the model’s assumptions about the datasets. The sum-
mary of the results of the models’ evaluation metrics is presented in Table 2.

Discussion/conclusion
In this study, we have undertaken a comprehensive analysis of the linear trend of MSLA, focusing on the changes 
in the decadal trend and their underlying drivers in the GoG. Our investigation involved separate examinations 
of decadal trends for the periods 1993–2002, 2003–2012, and 2013–2020. Additionally, we explored the seasonal 
variability of MSLA and investigated potential links between interannual sea level variability and large-scale oce-
anic and atmospheric forcings spanning from 1993 to 2020. To model sea levels in the GoG, we assessed various 
supervised machine learning models, including artificial neural networks such as LSTM and MLPR, alongside 
traditional regression methods like MLR, GBM, and RFR.

Our analysis revealed a consistent increase in the linear trend of MSLA across the entire basin, with the 
northern region exhibiting a more pronounced trend. The total linear trend from 1993 to 2020 amounts to 
approximately 88mm . The highest decadal trend ( 38.7mm ) was observed during 2013–2020, while the most 
substantial percentage increment occurred during 2003–2012 (100%). Zonal differences were evident in the 
variability of the linear trend of sea level across decades, with the western region showing unique behavior 

Figure 5.  Spatial trend of seasonal variability of MSLA obtained by calculating the mean value of undetrended 
MSLA for each month at each grid point for the periods 1993–2020 in the Gulf of Guinea. The calculations and 
the maps were produced with a Python (3.10.9) script.
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during the 2013–2020 period. The spatial variabilities of the linear decadal sea level trend across the basin are 
driven by variations in physical forcings within the sub-basins. These forcings, SSLA, TSLA, HSLA, OHC, WSC, 
air temperature, atmospheric pressure, NHF, precipitation, evaporation, and freshwater runoff, exert distinct 
impacts on sea levels. While WSC, current velocity, atmospheric pressure, and evaporation negatively correlate 
with sea levels, SSLA, TSLA, HSLA, OHC, air temperature, NHF, precipitation, and freshwater runoff exhibit 
positive associations.

Our study also highlighted the significant influence of large-scale oceanic and atmospheric phenomena on 
the spatial distribution of sea levels. The first three modes of Empirical Orthogonal Function (EOF) variability 
explained substantial proportions of variance, with the first mode reflecting teleconnections between equatorial 
and coastal Kelvin waves driven by atmospheric circulations. However, the role of Kelvin waves in modulating 
the interannual sea level variability near the coast is well-documented27,28.

The second mode revealed the spatial variability of the current circulation system and its thermal charac-
teristics, largely governed by the wind system. For instance, in the northern basin, the relatively cooled Canary 
Current (CC) flows southward along the African coasts between 30° and 10°N29. Meanwhile, the warm North 
Equatorial Counter Current (NECC) flows between 3° and 10°N, acting as the northern limit for the South Equa-
torial Current (SEC), and the Guinea Current (GC) is a relatively warm eastern flowing current between 3°-5°N 
along the coasts of West  Africa30. In the southern basin, the SEC flows westward between 2°N and 4°S and is fed 
with relatively cool Benguela water, while the South Equatorial Counter Current (SECC) is a relatively warm 
eastward flowing current that moves below the  SEC31. This confirms the temperature distribution of the surface 
circulation as the second leading mode of interannual variability of MSLA in the GoG. The highest variability 
was observed in 1994 and has consistently decreased during the 2017–2020 period.

The third mode captured the AMOC, a vital oceanic process controlled by density-driven currents. While 
there have been reports indicating a slowdown of AMOC in recent  decades32, more recent research suggests 
that AMOC may already be  recovering33,34. For instance, the results of the analysis of the interannual variability 
of AMOC conducted between 2004 and 2018  by33 along 26°N, which is slightly above our study area, show a 
significant decline between the period 2009–2010 and two peaks between the periods 2013–2014 and 2018. This 
result is consistent with the interannual variability of MSLA in the GoG, as observed in PC3. While the vari-
ability in the AMOC has been linked to the sea level variability in the  GoG35, to the best of our knowledge, no 
research has reported the interannual variability of AMOC in the GoG. Therefore, the work of Moat et al. could 
offer valuable comparative insights, as most of the variability in AMOC originates from the tropical Atlantic.

Figure 6.  Seasonal trend and variability of MSLA and its forcings obtained by calculating the mean value of the 
basin average of undetrended MSLA and its forcings for each month. The forcings are partitioned according to 
their potential source components: (a) steric component, (b) oceanic component, (c) hydrological component, 
and (d) atmospheric component.
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Furthermore, seasonal variability in sea level trends emerged due to seasonal changes in forcing factors. The 
opposing impact of current and WSC and the positive effect of NHF led MSLA by a month, just as other variables 
experience seasonal fluctuations with MSLA.

Despite the challenges inherent in sea level modeling and prediction, the integration of advanced artificial 
neural networks and machine learning techniques presents a promising solution. By harnessing extensive datasets 
encompassing ocean currents, WSC, freshwater runoff, TSLA, HSLA, NHF, and atmospheric pressure, these 

Figure 7.  Correlations (values at the top of each subplot) and regression fits (red solid lines) among the 
detrended and filtered mean sea level (MSLA) and its forcings, including steric sea level anomaly (SSLA), 
thermosteric sea level anomaly (TSLA), halosteric sea level anomaly (HSLA), ocean heat content (OHC), wind 
stress curl (WSC), air temperature, net heat flux (NHF), precipitation, evaporation, freshwater runoff, and 
atmospheric pressure for the period 1993 to 2002 in the Gulf of Guinea.
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innovative approaches can unveil hidden relationships and underlying mechanisms shaping oceanic processes 
and sea levels. Such integration empowers the development of more realistic models, expanding projection 
capabilities over extended temporal ranges. Notably, our analysis highlighted the efficacy of RFR and GBM 
models, with accuracy rates of 97% and 96%, respectively, in reproducing interannual sea level patterns in 
the Gulf of Guinea. The implications of the findings of this work may be extended to other regions in terms of 

Figure 8.  Comparison of the predicted and actual values of MSLA predicted by each of the models (i.e. MLPR, 
MLR, RFR, GBF, and LSTM) over the period 1993–2020, along with their feature importance on the right in the 
Gulf of Guinea.
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methodological transferability for regional sea level modeling, understanding the historical trend and their driv-
ers, enabling proper environmental monitoring, climate adaptation, resilience, and data-driven decision-making.

Methodology
Study area
The Gulf of Guinea, situated along the western coast of Africa, stretches from Cape López near the equator to 
Cape Palmas, spanning longitudes 17oW  to 11oE , and latitude 15oN  to 10oS (Fig. 9). Known for its predomi-
nantly low-lying coasts, the Gulf features warm tropical waters with relatively low salinity due to the influx of 
major rivers, including the Volta, Niger, Congo, Forcadoes, Ouémé, Delta, Sassandra, Tano, Nun, and Komoé, 
among others. Spanning approximately 6000 km, the Gulf boasts a diverse coastline, characterized by a nearly 
uniformly narrow continental shelf measuring about 100 nautical miles. The region is impacted by five principal 
ocean currents: the Benguela Current, Canary Current, South Equatorial Current, Counter Equatorial Current, 
and Guinea  Current36. The prevailing climate follows a monsoon pattern, particularly the West Africa monsoon 

Table 2.  Summary of the result of model evaluations, including MLPR, MLR, FRF, GBR, and LSTM.

Model

Evaluation 
metrics

R
2 RMSE

MLPR 0.50 5.41

MLR 0.72 4.48

RFR 0.97 1.14

GBR 0.96 1.36

LSTM 0.75 4.46

Figure 9.  The study area map, featuring countries, principal currents, and bathymetry in the Gulf of Guinea. 
The bathymetry data is based on a global 15-arc-second interval grid obtained from GEBCO (https:// www. 
gebco. net) with a minimum depth of 10 m. The map was generated using a Python (3.10.9) software. The 
Python script incorporated geographical data and employed libraries such as Matplotlib and Geopandas to 
create the map.

https://www.gebco.net
https://www.gebco.net
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(WAM), with two primary air masses: the Southwest and Northeast  winds37. The region experiences minimal dry 
season during the summer, leading to two distinct wet seasons  annually38, marked by the onset and conclusion 
of the rainy period. The initiation of the rainy season is often accompanied by low rainfall amounts, referred to 
as pre-rain  onset39. This study classifies seasons based on West Africa’s continental rainfall quantity and timing. 
The winter season (DJF) is identified as the dry-monsoon (DMON), spring (MAM) as pre-rain onset (PRONS), 
summer (JJA) as rain onset (RONS), and autumn (SON) as the rain-offset season (ROFFS).

Data source
The temperature and salinity data utilized in this research are drawn from the high-resolution 3-D GLORYS12V1 
products, with a spatial resolution of 1/12 degrees (~ 9 km), spanning the period from 1993 to 2020. These 
products originate from the Nucleus for European Modeling of the Ocean (NEMO) general circulation  model40, 
incorporating surface boundary conditions from the European Centre for Medium-Range Weather Forecasts 
(ECMWF) atmospheric reanalysis and forecasts. Through the assimilation of near-real-time observations, the 
NEMO model offers accurate estimates of the oceanic state in the GoG. This dataset has undergone rigorous 
validation against in situ observations and other sea surface temperature (SST) and salinity products, demon-
strating robust consistency with independent data sources (e.g.,41–43). Its applicability spans oceanographic and 
climate research domains (e.g.,44–47). Accessible from the Copernicus Marine Environment Monitoring Services 
CMEMS data archive, the dataset covers the temporal span from 1993 to the present.

For sea level data, the monthly gridded sea surface height, hereafter referred to as MSLA, was acquired for 
the GoG from CMEMS. This dataset amalgamates observations from diverse altimetry missions, resulting in a 
consistent and unbiased dataset characterized by a 1/4° horizontal and vertical spatial  resolution48. Necessary 
geophysical corrections, including tidal corrections using the Finite Element Solution 2014 (FES2014) ocean tide 
 model49, were performed by the Data Unification and Altimeter Combination System (DUACS) to produce the 
dataset. Additionally, the dataset underwent further refinement for glacial isostatic adjustment (GIA) using the 
ICE5G-VM2 GIA  model50 to isolate oceanographic phenomena. Widely employed by researchers in investigating 
sea level variability, ocean dynamics, and coastal processes (e.g.,24,51,52), the data was accessed from the CMEMS 
archive at http:// marine. coper nicus. eu/. Furthermore, supplementary datasets encompassing air temperature, 
u wind (10 m), v wind (10 m), total precipitation, evaporation, Atmospheric pressure, net shortwave radiation, 
net longwave radiation, surface latent heat flux, and sensible heat flux at a single pressure level were sourced 
from the European Centre for Medium-range Weather  Forecasts53 reanalysis era5 data, accessible at http:// cds. 
clima te. coper nicus. eu/.

Parameterization
TSLA and HSLA were computed using the Thermodynamic Equation Of Seawater 2010 (TEOS-10), which 
comprises a set of standardized equations for determining the thermodynamic properties of seawater. TSLA and 
HSLA account for the individual impact of temperature and salinity, respectively, which can cause expansion 
or contraction of sea level depending on their respective values at a specific location and time. Their combined 
impact forms the steric sea level anomaly (SSLA), which measures how changes in water density affect the sea 
level. The steric sea level from the surface up to 1000 m is computed  following54,55):

where h is the total steric sea level height, hT and hS are the thermohaline and halosteric components, respec-
tively. T and S represent the temperature and salinity at each grid point, while To and So  denote the reference 
temperature and salinity. α and β are the thermal expansion and haline contraction coefficients, respectively, 
calculated from the temperature and salinity using the (TEOS-10) equation.

Similarly, wind speed and wind stress were calculated from ERA5 zonal (u) and meridional (v) wind com-
ponents data using the following equations:

here u and v represent the u and v components of wind, G is the wind speed, K is the wind stress, and τx and τy 
are defined as ρaircd × G × u and ρaircd × G × v , respectively, which are the wind stress of the u and v compo-
nents. ρair represents air density, and cd is the drag coefficient. The curl of the wind stress is computed as follows:

where τx is the zonal wind stress component, τy is the meridional wind stress component, and x and y represent 
eastward and northward coordinates, respectively. Also, the ocean heat content (OHC) within 1000 m along the 
GoG is calculated  following56:

(1)h = hT + hS =

∫ 0

−1000

α(T − To)dz +

∫ 0

−1000

β(S − So)dz

(2)G = (u2 + v2)
0.5

(3)K = (τx + τy)
0.5

(4)curlzK =
∂τ y

∂x
−

∂τ x

∂y

(5)OHC = ρCp

∫ 0

−1000

[T(z)]dz

http://marine.copernicus.eu/
http://cds.climate.copernicus.eu/
http://cds.climate.copernicus.eu/
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where ρ is the seawater density calculated from temperature and salinity at each grid point  following57, Cp is the 
specific heat capacity of seawater (4178 J  kg−1 °C−1), and T(z) is the temperature (℃) at each grid point. Finally, 
the surface net heat flux (NHF) is estimated  following58:

where the respective components of Eq. 6 are defined as follows: net shortwave radiation (SWR), net long-wave 
radiation (LWR), surface latent heat flux (LHF), and sensible heat flux (SHF).

Procedure
The spatial decadal linear trends of MSLA are calculated at each grid point by taking a ten-year average of the 
annual trends in the study domain using regression coefficients estimated by the ordinary least squares method. 
The significance of these trends is tested using a non-parametric Mann–Kendall (MK) trend test with a 99% 
confidence  level59,60. Thereafter, a non-parametric Theil-Sen’s slope  estimator61,62 was employed to estimate the 
magnitude and direction of trends in the time-series data. To isolate the interannual variability from the datasets, 
monthly mean values were extracted across the entire longitude and latitude. The climatological mean was then 
removed from the extracted time series data before they were detrended and filtered using a low-pass filter with 
a 13-month running mean. This approach considers that detrending isolates interannual variation in climate 
 variables63. A similar approach was employed to isolate the interannual spatial variability from the MSLA at 
each grid point. Subsequently, Empirical Orthogonal Function (EOF) analysis was performed. EOF analyses are 
often used for dimensionality reduction and the extraction of dominant spatial patterns of climate variability 
and how they change with  time64. This mathematical technique decomposes datasets into a set of orthogonal 
patterns (EOFs) and their corresponding time series Principal Components (PCs). Each EOF represents a spatial 
pattern of variability, and the PCs indicate how these patterns vary over time. In our study, EOF analysis was 
employed to gain insights into the spatial patterns and temporal variations of interannual MSLA and its connec-
tion with large climate and oceanic phenomena. Meanwhile, the spatial seasonal signal was extracted from the 
undetrended MSLA by calculating the mean value of sea level for each month at each grid point. Additionally, 
the linear seasonal signal was extracted from the undetrended MSLA and its forcings by calculating the mean 
value of the basin-average sea level for each month. Five different ANN and MLT models, namely MLPR, MLR, 
RFR, GBR, and LSTM, were developed to determine the best-performing model for sea level predictions in the 
GoG. The description of each model is provided below.

Model description
Multi‑layer perceptron regression (MLPR)
MLPR is an ANN model specifically designed for regression tasks, It utilizes an FNN network model to predict 
continuous numerical values rather than discrete categories. The network comprises multiple hidden layers of 
neurons that apply nonlinear transformations to the input data, enabling the model to learn intricate patterns 
and relationships between input features and the target output. Its effectiveness in sea level prediction has been 
well-documented in previous  studies21,65. The MLPRegressor model architecture, depicted in Fig. 10, illustrates 

(6)NHF = SWR+ LWR+ LHF+ SHF

Figure 10.  Architecture of a Multi-Layer Perceptron (MLP) with Two Hidden Layers. The input layer consists 
of three nodes, representing the three input features. The network contains two hidden layers with 4 and 2 
neurons, respectively. Each neuron in the hidden layers applies an activation function to the weighted sum 
of its inputs to introduce non-linearity and enable learning complex patterns. Finally, the output layer has a 
single node, which generates the predicted continuous value for regression tasks. The architecture of this MLP 
allows for the processing and transformation of input data through the feedforward process, leading to accurate 
predictions based on the provided inputs.
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the key components, including the input layer, hidden layers, and output layer. Neurons are the fundamental 
building blocks of ANN that process information and facilitate the network’s ability to learn complex patterns 
and make predictions based on input data. Each neuron applies an activation function, such as the rectified 
linear unit (ReLU), to the weighted sum of its inputs. This helps address the vanishing and exploding gradient 
 problem66 and is defined by the function in Eq. (7)

where x represents the weighted sum of inputs to the neuron. The weighted sum of inputs to a neuron (Z), which 
captures relevant features and introduces non-linearity, is calculated by multiplying the input values with their 
corresponding weights and summing them up, along with the bias term, as represented by Eq. (8).

where Wi represents the weights, Xi represents the input values, and ’b’ is the bias term. Feedforward is a fun-
damental concept in neural networks that defines the process of propagating input data to the output through 
the network’s layers without any feedback connections. This sequential flow of information in a single direction 
allows the network to make predictions based solely on the provided input data. The feedforward process is aided 
by a series of layers of neurons, with the activation of each neuron determined by Eq. (9):

where Ai represents the activation of neuron i, and Zi represents the weighted sum of inputs to neuron i. The 
output of the model is calculated based on the activations of the neurons in the output layer i.e. the weighted 
sum of activations without applying any additional activation function and it expresses as:

where Y represents the predicted output, Wi represents the weights connecting the neurons, and Ai represents 
the activations of the neurons in the output layer.

Multiple linear regression (MLR)
MLR is a statistical technique that uses a linear equation to establish the relationship between multiple inde-
pendent variables (predictors) and a dependent variable (response). It determines the best-fitting line between 
the dependent variable and the independent variables by employing a least squares technique to estimate the 
independent variables for predicting the dependent variable, assuming a linear relationship between the vari-
ables. The application of MLR in modeling and prediction tasks in the fields of oceanography and climate science 
has been extensively  documented67,68. However, MLR has some limitations, such as the linearity assumption, 
independence assumption, multicollinearity, sensitivity to outliers, and limited handling of non-normality69–71. 
The MLR model equation can be represented as follows:

where Y represents the dependent variable (response variable), C represents the intercept (constant term), β1 , 
β2 , …, βn represent the regression coefficients associated with the independent variables x1 , x2 , …, xn and ɛ 
represents the error term, accounting for unexplained variation.

Random forrest regression (RFR)
RFR is an ensemble machine learning technique that addresses the limitations of individual decision trees by 
combining them through bagging. This results in a robust and accurate regression model. Figure 11 illustrates 
the architecture of RFR with multiple decision trees. The structural arrangement of the trees provides insights 
into the internal workings of the RFR model, enabling a better understanding and interpretation of its predic-
tions. Unlike other machine learning models, each RFR decision tree in the ensemble operates independently 
and does not have explicit equations associated with its components. However, the RFR architecture involves 
three key steps: bootstrap sampling, feature subset selection, and the final prediction. Bootstrap sampling is used 
to create subsets of training data. Then, feature subset selection is performed to reduce the correlation between 
the trees, and the final prediction is obtained by aggregating the individual predictions of the decision trees, 
usually by taking the mean or median. This approach introduces randomness through bootstrapping and feature 
subset selection, effectively reducing overfitting and improving robustness. RFR is highly effective in handling 
noise, capturing complex relationships, and generating accurate predictions by leveraging the collective power of 
multiple  trees72. Furthermore, the application of RFR for sea level prediction has been extensively documented 
in the  literature73–75.

Gradient boosting machine (GBM)
GBM, a machine learning algorithm leveraging an ensemble method called boosting, has gained significant 
popularity for its effectiveness in regression tasks, handling complex non-linear relationships and interactions 
between variables. Introduced  by76 and further elaborated in 2001, GBM generates a robust predictive model by 
combining multiple weaker models. The fundamental principle involves iteratively training a sequence of models, 
typically decision trees, to refine overall prediction accuracy by rectifying errors made by previous models. This 
iterative process ensures subsequent models focus on areas where previous ones underperformed, resulting in 
a powerful and accurate predictive model. GBM demonstrates robustness in handling noisy data, outliers, and 

(7)ReLU = max(0, x)

(8)Z = (Wi .Xi)+ b

(9)Ai = ReLU(Zi)

(10)Y =
∑

(Wi .Ai)

(11)Y = C + β1x1 + β2x2 + β3x3 + . . . βnxn + ε
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missing values. Figure 12 illustrates the GBM model architecture, showcasing core concepts of gradient boosting 
and its sequential nature. It integrates multiple base learners to form a strong ensemble prediction, depicting the 
underlying mechanism. The GBM architecture consists of input data, multiple base learners capturing different 
patterns and relationships, additive outputs from each base learner, and the final prediction from the combined 
additive outputs. Weighted edges (w1, w2, and w3) connect nodes, determining each base learner’s contribution 
to the additive outputs and the ultimate prediction. The base learner represented as a function Fi(x) , is denoted 
by index i and input data x. Thus, the base learner equation is expressed as:

Here, fi(x) represents the prediction of the i-th base learner. The equation for the additive output of the i-th 
base learner ( Hi(x) ) can be represented as:

where Hi−1(x) represents the cumulative additive output of the previous base learners, η is the learning rate 
controlling the contribution of each base learner, and Fi(x) is the prediction of the i-th base learner. The final 
prediction ( Y(x) ) is obtained by summing the additive outputs of all the base learners:

This architecture demonstrates the iterative nature of gradient boosting, where each base learner improves 
upon its predecessors by focusing on residual errors, allowing gradual learning and adaptation to the data. 
GBM’s flexibility through customizable hyperparameters, like the number of trees, learning rate, and tree depth, 
enables model performance optimization and addresses specific data-driven  tasks77. GBM has proven effective 
in predicting and modeling sea  states78,79.

Long short‑term memory (LSTM)
RNNs are neural networks specifically designed to handle sequential data through recurrent connections. How-
ever, they are limited in capturing long-term dependencies due to the vanishing gradient problem, which can 

(12)Fi(x) = fi(x)

(13)Hi(x) = Hi−1(x)+ η.Fi(x)

(14)Y(x) =
∑

Hi(x)

Figure 11.  The architecture of the Random Forest Regression (RFR) Model. The architecture has three decision 
trees as estimators in the random forest ensemble. Each decision tree operates independently, with the depth 
varying based on the data and problem complexity. The input data contains three features, which are used 
to train and construct the three decision trees. The RFR model effectively aggregates the predictions of these 
decision trees to make robust and accurate regression predictions.
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result in the loss of information over time. LSTM was introduced  by80 as an improvement over traditional RNNs. 
It addresses the limitation of capturing long-term dependencies in sequential data by introducing specialized 
memory cells that allow information to persist over time. LSTM networks, depicted in Fig. 13, consist of multiple 
LSTM cells denoted as LSTM 0 and LSTM 1. These cells serve as the memory units of the network, capturing and 
storing relevant information from the input data. Each LSTM cell has three gates: the input gate, the forget gate, 
and the output gate. These gates regulate the flow of information within the cell, controlling the input, forgetting, 
and output of information, respectively. The input gate determines the incorporation of new information into 
the current cell state, the forget gate decides which information from the previous cell state should be discarded, 
and the output gate determines the amount of information passed to the next cell or the output layer. The con-
nections between the components indicate the flow of information. The input is fed into LSTM 0, which then 
passes information to the input, forget, and output gates of LSTM. Finally, the output is generated from LSTM 1 
and sent to the output layer. Equations (15–20) provide further details of each of the LSTM components

(15)it = σ(Wi .[ht−1, xt]+ bi)

(16)ft = σ
(

Wf .[ht−1, xt]+ bf
)

Figure 12.  The architecture of the Gradient Boosting model. It consists of multiple Base Learners (F1, F2, F3) 
and Additive Outputs (H1, H2, H3), which collectively contribute to the final prediction (Y). The input data 
(X) represents the input features, and the number of features can be determined by the dimensionality of the 
input data. The number of Base Learners is determined by the number of estimators specified when creating the 
model. The ’w1’, ’w2’, and ’w3’, represent the contribution weights of each Base Learner to the final prediction. 
The final prediction (Y) is the output of the Gradient Boosting model, which is a combination of the additive 
outputs from all Base Learners.

Figure 13.  The architecture of the LSTM network shows the input, two LSTM cells (LSTM 0 and LSTM 1), and 
the output. Each LSTM cell includes three gates: the input gate, the forget gate, and the output gate, responsible 
for controlling the input, forgetting, and output of information within the cell, respectively. The LSTM network 
is designed to handle sequential data with the ability to capture long-term dependencies effectively.
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where it, ft ot , C̃t , Ct , and ht represent the input gate, forget gate, output gate, candidate cell state, cell state, and 
hidden state, respectively. Similarly,([ht−1, xt]) represents the concatenation of the previous hidden state and 
current input, Ct−1 represents the previous cell state, ( Wi ,Wf ,Wo,Wc ), represents the weight matrices associ-
ated with the input gate, forget gate, output gate, and candidate cell state, respectively, ( bi , bf , bo, bc ) represents 
the bias terms associated with the input gate, forget gate, output gate, and candidate cell state, respectively, and 
( σ , tanh ) represents the sigmoid and hyperbolic tangent activation functions, respectively. The interconnected-
ness of these equations enables the LSTM to capture and store relevant information over time, addressing the 
vanishing gradient problem in traditional RNNs. LSTM networks have proven successful in time series data 
applications, such as sea state and sea level modeling and  prediction81,82.

Model training
In the present study, the models were trained using the filtered and detrended 13-month running mean of marine 
meteorological and hydrological data. These datasets comprised variables such as TSLA, HSLA, OHC, WSC, 
NHF, precipitation, evaporation, freshwater runoff, and atmospheric pressure. Two methods were employed: (1) 
the data was split into an 80:20 ratio, with 80% and 20% used for training and testing, respectively—considered 
a best practice in machine learning; (2) the entire dataset was used for both training and testing. The former 
follows best practices in machine learning models, while the latter, prone to overfitting, was performed solely to 
depict the temporal extent of the dataset. Grid Search hyperparameter optimization, a technique for optimizing 
model performance and reducing the risk of overfitting by systematically exploring different hyperparameter 
combinations, was employed to find the optimal combination of hyperparameters for the models. The models 
were then instantiated, and the training data was fed into them to capture the underlying patterns and relation-
ships between the variables.

Model performance evaluation
Moving forward, we present the model prediction performance evaluation metrics used in the present work 
to assess the reliability and accuracy of the models in predicting the MSLA in the GoG. The coefficient of 
determination ( R2 ), a metric that assesses the proportion of the total variance in the observed data that can be 
explained by the model predictions, and the root mean square error (RMSE), a metric for assessing the model’s 
predictive skill, were employed. As a standard model evaluation approach, the  R2 value ranges between 0 and 1. 
A value of 0 indicates that the model does not explain any variability in the data, indicating poor performance. 
Conversely, a value of 1 signifies that the model perfectly explains all the variability in the data, indicating bet-
ter performance. However, a lower RMSE value corresponds to higher prediction accuracy and better model 
performance. Conversely, a higher RMSE value suggests lower accuracy and poorer model performance. The 
two evaluation metrics are expressed as follows:

where N is the number of data points in the sample, Yi represents the observed values of the dependent variable, 
Xi represents the predicted values of the dependent variable based on the regression model, and Ỹ represents 
the mean of the observed values of the dependent variable.

Data availability
The datasets analyzed during the current study are: sea surface height (SSH) hereafter referred to as mean sea 
level anomaly (MSLA), sea surface temperature (SST), sea surface salinity (SSS) data provided by the Coper-
nicus Marine Environment Management Services (CMEMS), available at http:// marine. coper nicus. eu/ produ 
ct. Additionally, air temperature, u wind (10 m), v wind (10 m), Total precipitation, Evaporation, Atmospheric 
pressure, Net Shortwave Radiation , Net Longwave Radiation, Surface Latent Heat Flux, and Sensible Heat Flux 
at a single pressure level provided by the European Centre for Medium-range Weather Forecasts (ECMWF, 2011) 
reanalysis era5 data, available at http:// cds. clima te. coper nicus. eu/.
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(17)ot = σ(Wo.[ht−1, xt]+ bo)

(18)C̃t = tanh (Wc .[ht−1, xt]+ bc)

(19)Ct = ft ∗ Ct−1 + it .C̃t

(20)ht = ot ∗ tanh(Ct)
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