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Gamma‑glutamyl transferase 
and calculus of kidney incidence: 
a Mendelian randomization study
Peizhe Li 1, Yuewen Pang 1, Shuang He 1, Junyao Duan 1, Huijie Gong 1, Yongji Yan 1* & 
Jing Shi 1*

Elevated Gamma‑glutamyl transferase (GGT) levels are often suggestive of cholelithiasis, and previous 
studies have indicated that GGT is highly expressed in the urinary system. Therefore, we hypothesized 
that there may be an association between GGT levels and calculus of kidney (CK) incidence. To 
investigate this potential causal relationship, we employed Mendelian randomization (MR) analysis. 
Additionally, we analyzed the levels of other liver enzymes, including alanine transaminase (ALT) 
and alkaline phosphatase (ALP). The relationship between GGT levels and CK incidence was analyzed 
using two‑sample Mendelian randomization. Summary Genome‑Wide Association Studies data 
were utilized for this analysis. 33 single nucleotide polymorphisms known to be associated with 
GGT levels were employed as instrumental variables. We employed several MR methods including 
IVW (inverse variance weighting), MR‑Egger, weighted median, weighted mode, and MR‑PRESSO 
(Mendelian Randomization Pleiotropy RESidual Sum and Outlier). Furthermore, we conducted tests 
for horizontal multivariate validity, heterogeneity, and performed leave‑one‑out analysis to ensure 
the stability of the results. Overall, several MR methods yielded statistically significant results with 
a p‑value < 0.05. The results from the IVW analysis yielded an odds ratio (OR) of 1.0062 with a 95% 
confidence interval (CI) of 1.0016–1.0109 (p = 0.0077). Additional MR methods provided supplementary 
results: MR‑Egger (OR 1.0167, 95% CI 1.0070–1.0266, p = 0.0040); weighted median (OR 1.0058, 95% 
CI 1.0002–1.0115, p = 0.0423); and weighted mode (OR 1.0083, 95% CI 1.0020–1.0146, p‑ = 0.0188). 
Sensitivity analyses did not reveal heterogeneity or outliers. Although potential horizontal pleiotropy 
emerged, we speculate that this could be attributed to inadequate test efficacy. However, subsequent 
use of MR‑PRESSO did not provide evidence of pleiotropy. Our analysis suggests a positive association 
between elevated GGT levels and CK incidence, indicating an increased risk of CK development. 
However, no causal relationship was observed between levels of ALP or ALT and CK incidence.
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CRF  Conditional random fields
NSRGRN  Network structure refinement method for gene regulatory networks
RCT   Randomized controlled trial

Urolithiasis is a common disease in urology. Individuals afflicted with urolithiasis frequently endure symptoms 
such as chronic pain, hematuria, urinary obstruction, and an increased risk of developing chronic conditions like 
renal insufficiency, all of which significantly affect their overall quality of life. The development of urolithiasis is 
influenced by a range of factors, encompassing age, gender, genetic predisposition, environmental influences, 
and dietary patterns. In addition to the mentioned factors, metabolic abnormalities, urinary tract obstruction, 
and drug use are common causes of stone  formation1. Furthermore, unidentified factors continue to play a role 
in stone development. The direct and indirect costs of calculus of kidney (CK) will continue to rise in the United 
States, and efforts should be directed toward ameliorating the burden of urinary stone  disease2. Consequently, it 
is imperative to understand the risk factors that contribute to CK formation. This knowledge is vital for preven-
tion and cost reduction in treatment.

Most kidney stones consist of approximately 85% calcium combined with oxalate or phosphate. Notably, idi-
opathic hypercalciuria emerges as the primary risk factor for the formation of  CK3. Gamma-glutamyl transferase 
(GGT) is involved in maintenance of physiological concentrations of glutathione (a primary antioxidant) in cells 
and reflects the oxidation-antioxidant balance in the  body4,5. Furthermore, GGT serves as a key indicator of liver 
function. It is our expectation that insights into the development of CK can be gleaned from commonly utilized 
screening indicators, obviating the need for additional tests. This, in turn, will empower clinicians to assess the 
risk of CK development more effectively and refine treatment strategies, thereby mitigating the economic impact 
of stone management.

GGT exhibits high expression within the kidney and is believed to undergo shedding, releasing itself into both 
serum and urine. Purified GGT protein has the capacity to induce osteoclast formation, a process implicated in 
the release of calcium in bone  pathology6, potentially contributing to idiopathic hypercalciuria. Vitro experi-
ments have suggested a potential regulatory link between GGT and serum calcium  levels7. Elevated levels of GGT 
typically indicate the onset of cholelithiasis. However, no reported association between GGT levels and other 
stone diseases, including kidney stones. Recent genetic analysis on individuals of European ancestry revealed the 
enrichment of GGT single nucleotide polymorphisms (SNPs) throughout various urogenital systems epithelial 
 cells8. This observation has led us to speculate about a plausible link between GGT levels and CK incidence. To 
the best of our knowledge, such an association has not been established before. Consequently, we have applied 
Mendelian randomization (MR) analysis, in conjunction with publicly available medical statistical databases, to 
explore the potential relationship between GGT levels and CK incidence.

MR relies on the natural, random assortment of genetic variants during meiosis yielding a random distribu-
tion of genetic variants in a  population9. This method aims to estimate causal effects by employing genetic vari-
ation as instrumental variables (IVs) to assess the causal relationship between exposures or risk factors and their 
subsequent outcomes. Typically, these IVs comprise one or more SNPs associated with the exposure of interest. 
These SNPs should demonstrate an association with the exposure while remaining unrelated to any confound-
ing factors that might affect the association between the exposure and the outcome. Additionally, they should 
not affect outcomes through pathways other than the  exposure9–11. MR analysis can be applied within the IV 
framework when these specific assumptions are  met12. Leveraging publicly available Genome-Wide Association 
Studies (GWAS) databases and R-language code, researchers can efficiently explore causal links between exposure 
factors and disease outcomes in a cost-effective manner. This approach serves as a valuable tool for identifying 
new risk factors and charting innovative research directions.

In this study, we employed the TwoSampleMR package for MR analysis. We used published SNPs associated 
with GGT levels and summary statistics from related GWAS focusing on CK. Our primary goal was to ascertain 
a potential causal relationship between these variables. Furthermore, we expanded our study by incorporating 
SNPs associated with alanine transaminase (ALT) or alkaline phosphatase (ALP) levels. This supplementary 
analysis aimed to probe the potential influence of liver enzymes on CK incidence.

Materials and methods
Genetic variants associated with GGT levels
SNPs associated with GGT levels were used as IVs for MR analysis. These SNPs must satisfy three critical 
 hypotheses9:

1. They are associated with GGT levels. (Association assumption)
2. They are not associated with confounding factors in GGT-CK relationship. (Independence assumption)
3. These SNPs exclusively influence stone pathogenesis through their impact on GGT levels. (Exclusive assump-

tion)

We assessed association assumption by examining the strength of the association between GGT levels and 
genetic variants (with a significance threshold set at p < 1 ×  10−9). Independence and exclusive assumptions 
(hypotheses 2 and 3) required validation through sensitivity analysis, as detailed in Section “Mendelian rand-
omization”. These SNPs for MR analysis were sourced from a recent genome-wide study conducted by Pazoki 
et al.8 This study, involving 437,194 individuals of European ancestry, identified a total of 371 genomic loci 
associated with GGT levels. The raw data, including complete values for GGT concentration, were obtained 
from the UK-Biobank. Pazoki et al. applied specific criteria for SNP screening, which included: 1. Ensuring a 
c greater than 5% with a stringent significance level of p < 1 ×  10−8 (compared to the usual GWAS threshold of 
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P < 5 ×  10−8, this stringent threshold was used to robustly define the lead SNPs for replication and functional 
assessment). 2. Pruning SNPs based on linkage disequilibrium, with a requirement that the  r2 value be less than 
0.1 within a 500-kilobase window. 3. Excluding specific categories of SNPs from the database, specifically: a. 
SNPs with multiple alleles. b. SNPs within the human leukocyte antigen (HLA) region, particularly those in 
the chromosomal range of chr6:25–34 MB. c. SNPs with a minor allele frequency (MAF) below 0.001. Then 
they amalgamated genetic loci previously identified by Chambers et al.13 and replicated the findings in three 
independent studies: the Rotterdam Study (NL, N = 6943), the Lifelines study (NL, N = 13,386), and the MVP 
(USA, N = 294,043). Ultimately, 200 SNPs associated with GGT levels were identified, comprising 167 previously 
undiscovered variants and 33 previously recognized. These SNPs satisfactorily meet the data requirements for 
MR analysis. For more extensive screening details, we encourage reference to the original article (https:// doi. 
org/ 10. 1038/ s41467- 021- 22338-2).

To mitigate the risk of sample overlap, we selected 33 SNPs that had been previously identified for our MR 
analysis. Pazoki et al. compiled and publicly released the data for these 33 SNPs. Further details are available in 
Supplementary Table 1 (S_Table. 1).

Genetic variants associated with ALP and ALT levels
Pazoki et al.8 also identified SNPs associated with levels of ALP and ALT, respectively. We applied the same filter-
ing conditions and, for our analysis, utilized established SNPs rather than novel ones. For comprehensive details 
regarding the SNPs linked to ALP levels (a total of 25) and ALT levels (a total of 6), please consult Supplementary 
Tables 2 (S_Table. 2) and 3 (S_Table. 3).

Summary data from GWAS on CK
The summary statistical data for CK were obtained from the UK-Biobank and are available on the IEU OPEN 
GWAS PROJECT (https:// gwas. mrcieu. ac. uk)14. These GWAS results were based on samples of European ances-
try, which included data from 2186 individuals diagnosed with CK and 460,824 control individuals, all of which 
are incorporated into the database.

Mendelian randomization
We employed the TwoSampleMR (version 0.4.25) and MR-PRESSO (Mendelian Randomization Pleiotropy 
RESidual Sum and Outlier) packages (versions 1.0) in the R language software for data analysis.

After performing a genome-wide association analysis, we employed various MR methods to investigate the 
causal impact of GGT levels on CK. Our MR approaches included inverse variance weighting (IVW), weighted 
median, MR-Egger, and weighted mode. Each method considers distinct underlying assumptions and levels of 
pleiotropy, which collectively enhance the robustness of our estimates. The primary outcome was determined 
through an inverse variance-weighted meta-analysis of the Wald ratio for a single SNP. This analysis ensures 
that the instrumental variable solely influences the outcome through the target exposure, excluding alternative 
pathways. Furthermore, we confirmed the absence of correlations between instrumental variables. Under these 
assumptions, the IVW estimate represents the slope of the best fitting line through the data points which also 
passes through the origin. This approach is particularly suited for situations with strong genetic  variation15. The 
MR-Egger analysis closely resembles IVW, but it takes the intercept term of the regression curve into account. 
The intercept in the MR-Egger analysis is assessed to account for pleiotropy within the analysis, making it a 
more suitable choice when the weaker assumption is  met16. Additionally, we employed the MR-Egger, weighted 
median, and weighted mode methods to complement the IVW estimates, thus enhancing the overall robustness 
of the  analysis11.

Sensitivity analysis plays a pivotal role in MR studies as it helps detect potential pleiotropy and heterogeneity, 
which can significantly affect MR estimates. These methods can be used to test hypotheses 2 and 3 as mentioned 
 above9. Heterogeneity was evaluated using the Cochran-Q test. A p-value of ≤ 0.05, signifying the presence of 
pleiotropy, led us to employ the random effects Inverse Variance Weighting MR  method17. Conversely, when 
the p-value exceeded 0.05 with no evidence of heterogeneity, we adopted the fixed effects IVW method as our 
primary  approach18. To investigate horizontal pleiotropy, a statistical test was performed, setting the MR-Egger 
intercept term to 0. A p-value less than 0.05 suggested the presence of horizontal pleiotropy, indicating that 
the exposure factor may have influenced the outcome through other unknown factors, making reliable causal 
inference  impossible16. Furthermore, we complemented the results of the horizontal pleiotropy test by utilizing 
MR-PRESSO analysis to identify any outliers in the  data19. We also conducted leave-one-out analysis to evaluate 
whether MR estimates were driven or biased (as shown in Fig. 1).

Through the application of these MR methods, we successfully identified a causal relationship between GGT 
levels and CK incidence. Additionally, we conducted MR analyses of the other two liver enzymes, ALP and 
ALT levels, with CK to investigate their association. However, no causal relationship was found between these 
variables.

Ethics approval and consent to participate
The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or 
integrity of any part of the work are appropriately investigated and resolved. The current analyses are based 
on publicly available summary data and therefore do not require ethical approval. Original studies have been 
approved by ethic committees and written informed consent was obtained from study participants or caregivers. 
The study was conducted in accordance with the Declaration of Helsinki (as revised in 2013).
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Results
Causal relationship between GGT levels and CK
Our analysis reveals significant statistical evidence of a causal relationship between elevated GGT levels and the 
incidence of CK. A random effects IVW MR analysis is appropriate, as indicated by the significant Cochran’s Q 
test (p < 0.05), which suggests the presence of potential heterogeneity. The IVW analysis yielded an odds ratio 
(OR) of 1.0062, with a 95% confidence interval (CI) from 1.0016 to 1.0109 and a p-value of 0.0077, indicating 
an association between elevated GGT levels and an increased risk of CK incidence. This finding was supported 
by additional MR methods: MR-Egger, weighted median and weighted mode method corroborated these find-
ings: MR-Egger: OR of 1.0167, 95% CI (1.0070–1.0266), and p-value of 0.0040. Weighted Median: OR of 1.0058, 
95% CI (1.0002–1.0115), and p-value of 0.0423. Weighted Mode: OR of 1.0083, 95% CI (1.0020–1.0146), with a 
p-value of 0.0188 (as shown in Fig. 2).

Notably, we observed an intercept (intercept = − 0.001, se = 0.00008, p = 0.0320), which cloud suggest the 
presence of horizontal pleiotropy. However, it’s essential to consider that this observation may be influenced by 
limitations in the MR-Egger method’s testing  efficacy16. To further investigate this situation, we conducted MR-
PRESSO analysis. The global test results revealed no significant evidence of horizontal pleiotropy (p = 0.3264). 

Figure 1.  Workflow of Mendelian randomization study revealing causality from GGT levels on CK. SNP: single 
nucleotide polymorphism; GGT: Gamma-glutamyl transferase; CK: Calculus of kidney GWAS: Genome-Wide 
Association Studies; IVW: inverse variance weighting. MR-PRESSO: Mendelian Randomization Pleiotropy 
RESidual Sum and Outlier.

Figure 2.  The association of GGT levels with CK outcomes by MR analysis through different methods: IVW 
(random effects), MR-Egger, Weighted median, Weighted mode. OR: odds ratio; CI: confidence interval.



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21821  | https://doi.org/10.1038/s41598-023-48610-7

www.nature.com/scientificreports/

Furthermore, the symmetry of the funnel plot provides additional support for these findings. Both the outlier test 
and the leave-one-out analysis failed to identify any potentially influential SNPs that could introduce bias into 
the causal associations. Consequently, these outcomes reinforce the robustness of our conclusions. Verification 
through both outlier tests and leave-one-out analysis confirmed that the SNPs under study did not exhibit any 
potential effects that could introduce bias into the causal associations. Therefore, these finding provide strong 
support for the stability and reliability of our conclusions (as shown in Fig. 3A–D).

Causal relationship between ALT or ALP and CK
We employed the same methods to investigate the relationship between ALT or ALP levels and CK incidence. 
Both ALT and ALP are conventional indicators of liver function. However, after excluding incompatible alleles 
and SNPs with homozygotes at intermediate allele frequencies. 25 SNPs associated with ALP levels were involved 

Figure 3.  Association between GGT levels and CK incidence. (A) multiple MR tests showed the SNP effects; 
(B) effect size of each SNPs; (C) funnel plot for GGT levels of CK incidence; (D) leave-one-out sensitivity 
analysis. CK: calculus of kidney; MR: Mendelian Randomization.
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in the MR analysis. The IVW analysis indicated a possible causal link between ALP levels and CK incidence 
(p < 0.05), but this result lacked sufficient test efficacy for sensitivity analysis. The same analysis was used for the 
relationship between ALT levels and CK onset. However, there was no evidence of a causal relationship between 
the two. In summary, among the three liver enzymes associated with liver function, only GGT levels were caus-
ally linked to CK onset.

Discussion
Urolithiasis is a prevalent disease in urology that can significantly impact a patient’s quality of life during an epi-
sode. Despite our general understanding of the causes and risk factors associated with urolithiasis, its prevention 
remains challenging. The diagnosis of CK relies on imaging and the patient’s report of painful  symptoms20. The 
formation of stones is a multifaceted process. While supersaturation, a key driver of calcium stone formation, 
plays a central role, it is influenced by stone type, comorbidities, and urine  chemistry3. There exists a positive cor-
relation between metabolic acidosis or endogenous acid production and increased urinary calcium  excretion21. 
Increased calcium release from bone is an important contributor to excessive calcium excretion in urine in idi-
opathic  hypercalciuria3. The buffering effect of protons promotes bone loss through physicochemical mineral 
lysis (acute) and cell-mediated bone resorption (chronic), both of which are achieved through the activation of 
osteoclasts and  osteoblasts22. During the buffering process, a significant amount of cations, primarily calcium, 
enters the circulation and is excreted by the  kidneys21. This reflects alterations in tubular calcium handling and 
is a critical factor contributing to the formation of calcium-containing kidney  stones3. GGT serves as a cytokine 
involved in osteoblast development and does not require enzymatic  activity6. It triggers expression of the receptor 
activator of nuclear factor-kappa B ligand (RANKL), leading to the differentiation of osteoblasts into  osteoclasts23. 
We hypothesize that the induction process on osteoclasts could be a potential mechanism linking elevated GGT 
levels to CK formation. Inflammation, oxidative-antioxidant imbalances, purine metabolism, and the urea cycle 
all play vital roles in the dynamics of urinary tract deposits. CaOX crystal deposition may cause mitochondrial 
damage through increased ceramide levels, a process whose results include glutathione depletion, which leads 
to activation of cysteinyl asparaginase, induces apoptosis, and accelerates the development of renal  stones24. The 
regulatory function of GGT on glutathione metabolism may elucidate the potential mechanism underlying the 
connection between GGT and CK pathogenesis. Recent studies have revealed relationships between inflamma-
tory vesicles, caspase-1, and  apoptosis25, which could further aid in understanding the underlying regulatory 
mechanisms.

Bioinformatics methods offer valuable insights for prediction and mechanism  exploration26. Combining Men-
delian randomization with machine learning can facilitate predictive research. The graph convolutional network 
with graph attention network (GCNAT) deep learning algorithm can facilitate predictive research. The GCNAT 
algorithm, for instance, predicts metabolite-disease  associations27, which can inform future studies on GGT 
levels and CK pathogenesis. Recent research has introduced novel models for the phase separation of messenger 
RNAs. The theoretical framework of intracellular phase separation, grounded in this specific physical property, 
holds promise in facilitating drug target discovery and advancing disease  prevention28. Non-coding RNAs also 
play roles in formation of CK. Rat gene sequencing revealed differential expression of Long non-coding RNA 
(lncRNA) and Circular RNA (circRNA) affecting kidney stone  occurrence29. Mathematical models, includ-
ing graph-based convolutional neural networks (GCN) and conditional random fields (CRF), predict human 
lncRNA-miRNA  interactions30. The MPCLCDA model effectively predicts circRNA–disease associations by using 
automatically selected meta-path and contrastive  learning31, while the network structure refinement method 
for gene regulatory networks (NSRGRN) model optimally elucidates gene regulatory  networks32. However, it’s 
important to acknowledge the limitations of this study:

1. Our GWAS data were derived solely from European populations, excluding other ethnic groups. Even within 
the same ethnic group, results may vary between different databases. Therefore, the generalizability of our 
results is limited to the specific databases and populations we analyzed.

2. The MR methods we employed, while powerful, may not eliminate potential biases completely. Our results 
explain the causal relationship between the two variables using statistical methods. Further research, includ-
ing mathematical modeling and randomized controlled trials (RCTs), is needed to validate and support these 
findings.

Conclusion
This is the first study to link GGT levels to the risk of kidney stones using MR analysis. Our analysis suggests a 
positive association between elevated GGT levels and CK incidence, indicating an increased risk of CK develop-
ment, while no causal relationship was observed between levels of ALP or ALT and CK incidence.

Data availability
Publicly available datasets were utilized for the analysis in this study. Specifically, the levels of GGT, ALT, and 
ALP were obtained from a recent genome-wide study conducted by Pazoki et al. (https:// doi. org/ 10. 1038/ s41467- 
021- 22338-2). The summary statistical data on CK can be accessed through the IEU OPEN GWAS PROJECT 
(https:// gwas. mrcieu. ac. uk), with the GWAS ID being ukb-b-18372.
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