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Forecasting local hospital bed 
demand for COVID‑19 using 
on‑request simulations
Raisa Kociurzynski 1, Angelo D’Ambrosio 1, Alexis Papathanassopoulos 1, Fabian Bürkin 1, 
Stephan Hertweck 1, Vanessa M. Eichel 2, Alexandra Heininger 3, Jan Liese 4, Nico T. Mutters 5, 
Silke Peter 4, Nina Wismath 3, Sophia Wolf 4, Hajo Grundmann 1 & Tjibbe Donker 1*

Accurate forecasting of hospital bed demand is crucial during infectious disease epidemics to avoid 
overwhelming healthcare facilities. To address this, we developed an intuitive online tool for individual 
hospitals to forecast COVID‑19 bed demand. The tool utilizes local data, including incidence, 
vaccination, and bed occupancy data, at customizable geographical resolutions. Users can specify 
their hospital’s catchment area and adjust the initial number of COVID‑19 occupied beds. We assessed 
the model’s performance by forecasting ICU bed occupancy for several university hospitals and 
regions in Germany. The model achieves optimal results when the selected catchment area aligns with 
the hospital’s local catchment. While expanding the catchment area reduces accuracy, it improves 
precision. However, forecasting performance diminishes during epidemic turning points. Incorporating 
variants of concern slightly decreases precision around turning points but does not significantly impact 
overall bed occupancy results. Our study highlights the significance of using local data for epidemic 
forecasts. Forecasts based on the hospital’s specific catchment area outperform those relying on 
national or state‑level data, striking a better balance between accuracy and precision. These hospital‑
specific bed demand forecasts offer valuable insights for hospital planning, such as adjusting elective 
surgeries to create additional bed capacity promptly.

The speed of community transmission of virulent pathogens during epidemics or pandemics has the potential to 
overwhelm healthcare  systems1. Hospital beds are usually in limited supply, because most hospitals run at near-
full capacity under normal circumstances. This sudden increase in admissions, in combination with a potential 
long length of stay of patients in hospital, can put sudden pressure on the limited number of beds  available2.

Forecasting of bed demand is therefore essential to hospitals in order to prevent them from becoming over-
whelmed by incoming patients. The capacity of hospitals to admit COVID-19 patients is not static, and available 
beds, as well as nursing staff, doctors, and personal protective equipment can, to a certain degree, be steered. 
For instance, cancellation of elective surgeries can free up resources needed to cater for an increasing number 
of admitted COVID-19 patients. However, this can’t be done overnight, and a preparation period needs to be 
considered. Forecasting models help bridge the gap between the current situation and the situation after the 
preparation period, thus forming a critical part of the decision process.

Several online dashboards which provide critical information such as the number of cases, hospitalizations, 
etc. have been established to facilitate access to COVID-19 related  data3,4. One prominent example is the Johns 
Hopkins University dashboard which mostly focuses on the visualisation of data at the country, region, or city 
 level5. Some online accessible dashboards additionally offer forecasts of the hospital bed  demand6,7. However, 
many forecasting models focus on large geographical areas, such as entire countries, states, or provinces, for 
their  predictions6. This creates a problem for the hospitals trying to interpret what these predictions entail for 
their own hospital planning, as the proportion of the nationally required beds that should be freed up locally 
is largely unknown. Furthermore, local epidemic dynamics may deviate substantially from the national  trend8, 
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causing the national level forecast to over- or underestimate the local epidemic growth, and consequently the 
local future bed demand.

Relying only on national-level models to produce forecasts of the total bed demand may result in an exces-
sive transfer of patients when local bed demand does not align with the local bed supply. This can happen when 
certain localities experience sudden increases in incidence that were absent elsewhere, for instance after super-
spreading events. Such patient transfers have happened on a regular basis during the COVID-19 pandemic, 
sometimes over large distances and across country  borders9,10. Some of these transfers could be avoided if the 
local bed supply is updated reacting to the local trends and forecasts.

However, local forecasting comes with a unique set of challenges. Because numbers are lower, actual bed 
occupancy in a single hospital is strongly influenced by stochastic events. The discharge of a couple of patients 
from an Intensive Care Unit (ICU) matters a lot for the bed supply of a single hospital. Uncertainty about future 
numbers of beds is therefore greater when looking at a single hospital compared to an entire country. To be widely 
applicable, the model needs to be able to produce bespoke forecasts for each hospital in a country for which basic 
levels of data are available. This capability requires a flexible forecasting system because of the vast number of 
potential combinations of parameter choices for all individual hospitals, in particular concerning the possible 
choices for catchment areas per hospital, the number of currently occupied beds, and patients’ lengths of stay on 
various wards. Such a variety of parameters enables the extreme forecast flexibility required to produce ad-hoc 
reports and forecasts for all situations of specific hospitals.

We made the use of this model accessible for non-technical users by creating an online interactive dashboard. 
To our knowledge, this is the first online accessible tool for predicting the bed demand on a regional level for 
Germany. Our platform allows individual users (i.e., hospital managers) to enter the data and parameters related 
to their specific context and requirements and produce ad-hoc bed occupancy estimates and predictions. End 
user-specific forecasting of bed demand is a unique concept, as on-request forecasting is often avoided because 
of the computational challenges of multiple concurrent user modelling platforms.

Here we show how some of these computational challenges can be solved. Careful streamlining of the model 
and its technical implementation can help produce epidemic forecasts in a reasonable time, allowing users to 
explore the potential future epidemic trajectory without being restricted to the developer’s viewpoint.

We will first discuss the forecast model itself, its data and parameter requirements, as well as the different 
modules it contains. Each module is designed to guide the user through the steps and assumptions needed to pro-
duce the forecast. Then we will discuss the technical implementation of the online dashboard and the technologies 
that ensure usability for multiple concurrent users. Finally, we investigate the forecasting performance of this tool 
for several hospitals during the COVID-19 pandemic in Germany. In particular, we focus on the influence of the 
choice to use local, regional, or national COVID-19 incidence data on the precision and accuracy of the forecast.

The code used to implement the dashboard, in the version used to prepare this manuscript, is available at: 
https:// github. com/ QUPI- IUK/ Bed- demand- forec ast/ relea ses/ tag/v. 0.5.6.

Methods
General model structure
The complete forecast model consists of 5 main pieces of code, referred to as modules: (1) Data loading and 
nowcasting, (2) Reproduction number estimates, (3) Vaccination coverage forecasting, (4) Incidence model, 
and (5) Care path model. The calculations done in modules 2 and 3 rely only on the loaded data and user input, 
while modules 4 and 5 also build further on the results of each previous module (see Fig. 1). This hierarchical 
structure implies that any change to parameters in a module updates the outputs in all dependent modules. 
However, by guiding the user through the modules in sequential order, the number of required computations 
can be drastically reduced.

Figure 1.  Model structure showing each of the modules, the data carried over between modules, and the 
possible user input in each module.

https://github.com/QUPI-IUK/Bed-demand-forecast/releases/tag/v.0.5.6
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Data structure and definitions
The model needs data on infection incidence, vaccine doses, bed occupancy in general wards and intensive care 
units, and a simulation window for which a forecast is required. Although we developed this model for hospitals 
in Germany, based on data provided by the Robert Koch  Institute11 and the Deutsche Interdisziplinäre Vereini-
gung für Intensiv- und Notfallmedizin (DIVI)12, the model can be applied to any country that has the following 
data available (preferably if in remote-accessible, machine-readable format): 

1. Incidence, Ig (t)
2. Administered vaccinations, Vd,g (t)
3. Bed occupancy on general wards (GW) BGW ,g (t) and ICU BICU ,g (t),

where t denotes the time in days since a reference date before the start of the pandemic, g denotes a geographical 
subdivision (in the case of Germany, this is a district, i.e., Landkreis or Stadtkreis), and d denotes the dose of 
vaccine administered (1st, 2nd, or 3rd/booster). Incidence and vaccination data are needed for each day of the 
period of reference, while merely the value at the start date of the forecast is needed for bed occupancy.

The user defines the catchment area of interest, selecting geographical areas from the available list ( Kall ), into 
the catchment set ( Ku ). After this, the input data is summed over the selected areas:

The start of the simulation is denoted as TS , for which the incidence, number of vaccinations, and bed occupancy 
are taken from the (last data-point of the) data, the first forecasted day is thus TS + 1 . The length of the forecast 
is defined as L; the last forecasted date is therefore given as TE = TS + L . The size of any class of individuals in 
the model is given in absolute numbers of individuals; thus S(0) = N , with N being the population size.

Because many of the parameters in the dashboard’s models are continuously distributed (as Exponential, 
Gamma, or Weibull), and the model uses discrete time steps, we need to discretise the parameter distributions. 
For each continuous distribution, with probability density function (PDF) fc(t) , the discretised PDF is defined 
as fd(t) =

∫ t+1
t fc(x)dx.

User input for all distributions is given in terms of the mean µ and standard deviation σ  , 
and distribution parameters are then determined by moment matching. For a gamma distri-
bution, this means that f (x,α,β) = f (x,α = µ2/σ 2,β = µ/σ 2) ,  for a Weibull  distribution, 
f (x, k, �) = f (x, k = ( σ

µ
)−1.086, � = µ/Ŵ(1+ 1/k)) , and for an exponential distribution f (x, �) = f (x, � = 1/µ). 

All model parameters are listed in the attached Table S1 in the Supplementary Information.
The model can take the effect of emerging Variants of Concern (VoCs) into account, based on user input on 

the VoC proportion and increased transmissibility. For a full description of the implementation of VoC in the 
model see Supplementary Text S1.

Vaccination model
The vaccination model consists of two parts. In the first, we forecast the number of people vaccinated over the 
length of the forecast for each of the doses (1st, 2nd, and 3rd/booster dose), while in the second part we convert 
these administered vaccinations into population-level protection against transmission.

The first doses ( V1(t) ) are assumed to be administered at the same rate as during the last observed week:

The second dose is assumed to be administered at a fixed time delay after the first dose. This time delay �TV 
is extracted from the data as the maximum time for which

holds. The second doses are then a direct reflection of the number of first doses �TV days ago,

The uptake of the second dose is thus assumed to be identical to the uptake of the first dose.

(1)I(t) =
∑

g∈Ku

Ig (t),

(2)Vd(t) =
∑

g∈Ku

Vd,g (t),

(3)BGW (t) =
∑

g∈Ku

BGW ,g (t),

(4)BICU (t) =
∑

g∈Ku

BICU ,g (t).

(5)V1(t > TS) =

TS
∑

i=TS−6

V1(i)/7.

(6)V1(TS −�TV ) ≥ V2(TS),

(7)V2(t) = V1(t −�TV ).
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The daily administered third/booster doses are assumed to be a continuation of the mean daily third doses 
over the previous week:

This is in line with the forecasting of the first doses, with the exception that the cumulative number of third 
doses is not allowed to exceed the cumulative number of second doses a certain delay ( �TB ) ago, such that

has to hold.

Population protection
Each dose is assumed to have a time-dependent additive effect on the population-wide protection against infec-
tion. At the individual level, Gd(τ ) denotes the proportion of individuals no longer susceptible to infection τ 
days after the administration of dose d. This function thus serves to simulate the delay between vaccine admin-
istration and maximum vaccine protection at the individual level. We assume no waning of immunity, such that 
Gd(∞) = Ed , with Ed the vaccine effectiveness against transmission elicited by doses d.

The additive effect on vaccine effectiveness of each additional dose is defined as Ed∗ = Ed − Ed−1 ; (Conse-
quently, E2∗ = E2 − E1 and E3∗ = E3 − E2 = E3 − (E∗2 + E1) ). Consequently, the additive increase in an indi-
vidual’s protection due to an extra dose can be written as:

Gd(τ ) is input as the cumulative distribution function (CDF) of a normal distribution with mean µ(G1) = 15 , 
µ(G2) = 15 , µ(G3) = 7 , and standard deviation σ(G1) = 3.8 , σ(G2) = 6.5 , σ(G3) = 3.8 as default values. The 
values were chosen to mimic a delay of slightly longer than 2 weeks for the first two doses, and 1 week for the 
booster (third dose), with more variation between individuals in the response against the second dose, as we 
lack precise estimates of these delays.

The population protection at time t is then given by,

which is used in both the R forecasting step and the incidence model.

Estimation and forecasting of R
In order to inform the transmission process part of the incidence model, we need to forecast the reproduction 
number of the pathogen over the model timeframe. This forecast is based on the observed time-varying effective 
reproduction number ( Re(t) ), and implemented either as the static continuation of the most recent observation, 
or forecasted using an ETS (Error, Trend, Seasonal)  model13 based on the last 100 days of observations, depending 
on the user’s preference. Furthermore, we provide the option to incorporate the effect of a Variant of Concern 
(VoC) on the development of the R0(t) . In all cases, we use estimated values of Re(t) from the available data up 
to the simulation start date TS , Re(t ≤ TS) , and forecasted values after the simulation start date ( Re(t > TS)).

We estimate the time-varying effective reproduction number Re(t) using the Cori et al. R estimation  method14 
as implemented in the EpiEstim R package (version 2.2-4), with a given non-parametric Serial Interval (SI). This 
SI distribution denotes the number of days between equal disease events (e.g., onset of symptoms) of directly 
connected cases. The default SI is assumed to be Gamma distributed with a mean of 5 days and a standard devia-
tion of 4.9. These values were chosen to reflect estimates of mean SI from multiple  studies15 with a relatively 
high standard deviation.

By keeping track of the cumulative number of infected individuals, as well as the previously calculated popula-
tion protection ( GP(t) ), we can calculate R0(t) from Re(t) , given that Re(t) is related to R0 through the number 
of susceptibles at time t, defined as S(t):

ETS model
To produce a dynamic forecast of R0(t) , we used an ETS model which underlies an exponential smoothing 
 method13. We use the ETS(A,A,N) model, which has additive errors (A), additive trend (A) and no seasonality 

(8)V3(t > TS) =

TS
∑

i=TS−6

V3(i)/7.

(9)
TS
∑

i=0

V3(i) ≤

TS−�TB
∑

i=0

V2(i),

(10)Gd
∗(τ ) = Gd(τ )

Ed
∗

Ed
.

(11)Gp(t) =

{1,2,3}
∑

d

t−1
∑

i=0

(

Gd
∗(t − i)

Vd(i)

N

)

.

(12)S(t) =N(1−

t
∑

i

I(i)

N
)(1− GP(t))

(13)Re(t) =R0(t)
S(t)

N
,⇒ R0(t) =

Re(t)N

S(t)
.



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21321  | https://doi.org/10.1038/s41598-023-48601-8

www.nature.com/scientificreports/

(N); We use a log(R0(t)) time series of 100 days, i.e. log(R0(TS − 99...TS)) , as input for the ETS model. The loga-
rithm serves to forecast the relative changes in R0 and avoids negative R0 forecasts. Per model iteration, we pick 
a random quantile for the prediction interval and use this as the trajectory for R0(t > TS) . A detailed description 
of the ETS model is given in the Supplementary Information Section S2.

Incidence model
The incidence forecast model is based on a stochastic implementation of a Susceptible-Infected-Recovered (SIR) 
model. The model describes the number of new cases as a function of the population still susceptible (S(t)) to 
infection and of infection pressure (P(t)) exerted by all those currently infectious, and the total population size 
(N). The size of the components is given as absolute numbers of individuals; thus S(0) = N . The infection pro-
cess is governed by the forecasted basic reproduction number R0(t ≥ TS) computed in the preceding modules 
of the framework.

If no VoC is defined, the model describes the dynamics of a single variant (the background variant). Con-
versely, the model converts into a two-strain model if a VoC is defined, keeping track of the infected individuals 
for either variant as well as the total number of individuals susceptible to either variant.

The size of the susceptible class is determined by both the cumulative number of infected individuals and the 
population level protection through vaccination, as defined before,

The infection pressure exerted on S(t) is then given as the weighted number of infected individuals in the pre-
ceding serial interval,

where H(i) is the serial interval distribution, defined as the probability that the proportion of cases causing new 
cases i days after they were reported themselves. These are thus all past cases that are able to cause new cases 
on the current day t, weighted by the serial interval distribution. Given the current R0(t) and P(t), the expected 
mean total number of newly infected individuals on day t+1 is I(t + 1) = R0(t)P(t).

The transmission rate per infected individual (The probability of infecting each of the other individuals in 
the population), is given as β(t) = R0(t)/N.

The infection pressure exerted on each individual within the population at time t is then calculated as

which for low numbers of infected individuals (and therefore low P(t)) can be simplified to PI (t) = βP(t). 
The newly infected individuals ( I(t + 1) ) are then randomly picked from a binomial distribution 
I(t + 1) = Binom(p = PI (t),N = S(t)).

Care path (Within‑hospital) model
To forecast bed occupancy in the hospital, the main endpoint of this work, we first simulate the path of each 
single patient admitted to the hospital through the general ward, ICU, and step-down units (care path model), 
as described in Donker et al.16. Then we join this model with the predicted incidence to forecast the hospital 
admission rate and the bed occupancy.

We use the following parameters to model the care path of individual patients through the hospital.

• Length of stay (LoS) distribution on general wards (GW),
• LoS distribution on intensive care units (ICU),
• LoS distribution on step-down units (SDU),
• Proportion of patients being transferred from GW to ICU,
• Proportion of patients being transferred from ICU to SDU.

It is possible to add the proportion of patients directly admitted to ICU ( HI ) to this list, but this is usually esti-
mated from the data (see below).

Once all admissions and discharges are determined, we track the total number of patients on each ward type 
on each day of the forecast, presenting the final result of the forecast. Note that, despite modelling the general 
ward and step-down unit separately, we combine both wards into a single number of beds occupied on the 
general ward in any other step, because the occupied beds in both cases are usually reported as part of the same 
type (i.e., occupied non-ICU beds).

Admission rate
To estimate the proportion of reported cases being admitted to hospital, we need to compare the incidence of 
reported cases to the total number of patients in hospital at a given moment (prevalence). This can be achieved 
by taking the length of stay of admitted patients into account. We create a complete Length of Stay distribution 
L(ta) , defined as the proportion of patients still in hospital ta days after admission by simulating the care paths 
of a large number of patients ( NP = 10000 ) with the same admission date using these parameters. For each day 

(14)S(t) = N(1− GP(t))

(

1−

t
∑

i=0

I(i)

N

)

(15)P(t) =

t
∑

i=0

H(i)I(t − i)

(16)PI (t) = 1− (1− β(t))P(t),
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after admission, we then track how many patients are still in hospital ( NH (ta) ), resulting in the Length of Stay 
distribution,

The admission rate can then be directly estimated using the current number of occupied beds in general wards 
BGW and in ICU BICU

which we assume to remain stable after the start of the simulation: α(t > TS) = α(TS)).
The same method delivers the distribution of admitted patients on the GW LGW (ta) and on the ICU 

LICU (ta) . Note that L(ta) = LGW (ta)+ LICU (ta) , and while L(0) = 1 , LGW (0) ≤ 1 and LICU (0) ≤ 1 . To be exact, 
LICU (0) = HI , reflecting the directly to ICU admitted patients, and LGW (0) = 1−HI,

The admission rate can also be calculated for the separate wards,

We can calculate the expected number of ICU beds under the assumption that no patients enter the ICU directly.

The surplus of ICU patients ( BICU (t)− B∗ICU (t) ) is then caused by the direct admission of patients to ICU, and 
calculated as the ICU surplus over the total number of occupied beds.

Similar to α(t) , we assume that αGW (t) , αICU (t) , and HI(t) remain stable after TS.
This admission rate then determines the number of individuals admitted to the hospital, entering the care 

path model, pulled from the binomial distribution

The care path model then depends on determining lengths of stays on each ward and movements between ward 
types for each individual admitted patient sampled from their respective distributions.

However, the care path model needs to determine the lengths of stays for the patients already in hospital at 
TS , that is BGW (TS) and BICU (TS) . To simulate their future discharge and transfer events, we create an admission 
record using a uniform number of patients per day for the 100 days preceding TS and simulate their care paths.

We then select all patients present in the GW or ICU at TS , creating the “Current” patient population in the 
hospital. From the current population, we randomly select NGW = BGW (TS) and NICU = BICU (TS) patients to 
recreate the discharges for the current population.

Dashboard server implementation
The main backbone of the model is written in R (version 4.1.217) as an R-Shiny18 (version 1.6) app running using 
shiny-server on an 8-core, 16GB ram, Ubuntu (version 20.04.3) VM server. An IP-hashed load balancer divides 
traffic over eight separate instances of shiny-server, reducing the number of concurrent users per shiny-server. 
We measure the performance of the model based on this infrastructure.

The most computationally demanding part of the care path model was written in the Julia programming 
 language19 to improve performance. Julia is rapidly gaining momentum as a tool for scientific computing due to 
higher performance compared to languages like R or Python without compromising ease of use. The care path 
model written in Julia takes approximately 1 hundredth of the processing time of the R equivalent. We use Julia-
ConnectoR (v.1.0.0.9009)20 to allow communication between the Julia and R code bases. One of the drawbacks 
of Julia is that the functions require just-in-time compilation the first time they are used; the overhead related to 
compilation time exceeds the running time of the entire care path model. To address this issue, we generated a 
fully compiled version of the model  code21, virtually eliminating loading time. Once the main server is started, 
a concurrent Julia session is created and is shared between all shiny-server sessions. For a detailed dashboard 
performance benchmarking, see Supplementary Information Section S3.

User interface
The user interface of the dashboard is shown in Fig. 2. It is divided into sections (tabs) following the main mod-
ules of the model, in combination with a side panel showing the basic controls: the catchment area selection, the 
forecast start date, the number of simulation runs, and the simulation length in days. On each tab, parameter 

(17)L(ta) =
NH (ta)

NP

(18)α(t) =
BGW (t)+ BICU (t)
∑t

i=0 I(i)L(t − i)
,

(19)αGW (t) =
BGW (t)

∑t
i=0 I(i)LGW (t − i)

,

(20)αICU (t) =
BICU (t)

∑t
i=0 I(i)LICU (t − i)

.

(21)B∗ICU (t) = (BGW (t)+ BICU (t))

∑t
i=0 I(i)LICU (t − i)
∑t

i=0 I(i)L(t − i)
.

(22)HI (t) =
BICU (t)− B∗ICU (t)

BGW (t)+ BICU (t)

(23)Binom(p = α∗(t),N = I(t)).
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choices can be made that affect the current and further tabs, but not any previous tabs. In this way, we prevent 
unnecessary re-running of the simulations.

Figure 2.  The user interface of the on-request COVID-19 bed demand forecasting model. (A) Side panel with 
basic controls, (B) Reported incidence, (C) Effective R forecast, (D) Vaccination forecast, (E) Incidence forecast, 
and (F) Bed occupancy forecast.



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:21321  | https://doi.org/10.1038/s41598-023-48601-8

www.nature.com/scientificreports/

Tabs are ordered as follows: (1) Incidence, showing the daily reported number of cases with and without the 
nowcast. (2) Vaccination, showing the cumulative number of vaccine doses administered, as well as the forecast 
of vaccinations. It also includes the option to change the assumptions on the future vaccinations (number of first 
doses and booster doses per day, and the minimum delay between 2nd dose and booster). (3) Effective R, show-
ing the time-varying R estimation based on the EpiEstim package. This tab also includes the option to use the 
ETS model and the option to include a variant of concern (VoC), together with the needed VoC parameters. (4) 
Incidence forecast, showing the results of the incidence model, with the option to include the reporting pattern 
related to the weekdays. (5) Bed forecast, reporting the results of the within-hospital care path model. The model 
is run using data on the current number of occupied beds in the hospital of interest, inputted either manually 
or by uploading a specifically structured file. (6) Parameter choices. This tab includes all parameters included 
as default values in the other tabs, which should only be changed by users with more advanced knowledge of 
the underlying model.

Forecast validation
Figure 3 shows example forecasts of Re(t) , incidence, and bed occupancy. The performance of the model was 
assessed based on the accuracy and precision of the forecasts from 470 different starting days. The accuracy is 
defined by determining the number of observed values at day d (with d = 1 being the start of the simulation) that 
fall within the interquartile range (IQR) or within the 95% range of the forecast simulation distribution divided 
by Nd . Nd is defined as the total number of observed values at day d in all 470 forecasts, or in other words, the 
number of starting dates for which we have data d days into the future:

where obsw = 1 if the observed value at day d lies within the range (if not, obsw = 0 ). The IQR and 95% range of 
each forecast are defined by their 100 independent model runs. The day d goes from 1...30 with d = 1 being the 
first forecasted day. Similarly, the precision was defined as the size of the IQR divided by the maximum forecast 
value at day d averaged over all 470 forecasts with max being the maximum forecasted value from all simulation 
runs for forecast i at a given day d:

To evaluate the time dependency of the performance of the forecasts we analysed the mean absolute scaled error 
(MASE)22 (see Supplementary Material section S6). Further, we calculated the bias of the forecast to determine 
if our method results in a systematic over- or underestimation (see Supplementary Material Section S6).

Hospital‑specific forecasts
We forecasted the bed demand for four university hospitals in Baden-Württemberg, Germany, located in 
Freiburg, Mannheim, Heidelberg, and Tübingen. Participants from each hospital provided a list of counties 
they perceived as their main catchment area, as well as a list of the number of occupied beds in both ICUs and 
General wards between 14 October 2020 and 27 January 2022. Supplementary Table S3 lists the counties in the 
specified local catchment areas and their total population. In addition to those hospital-specific catchments, we 
produced forecasts based on every German state as an individual catchment, plus the whole of Germany (all 
states combined). We created bed demand forecasts for each hospital starting at every day between 14-10-2020 

(24)accuracy(d) =

∑N=470
i obswid

Nd

(25)precision(d) =

∑N=470
i (IQR/max)i,d

Nd

Figure 3.  Example forecasts of Rt , Incidence, and occupied ICU beds. The forecasts start on the 07-02-
2021. Filled red dots represent the 30 previous days and empty red circles represent 30 forecasted days. The 
performance of the forecasts was validated by calculating its accuracy and precision. Accuracy is defined as the 
number of observations (dots) falling into the interquartile range (IQR, light grey) and the 95% interval range 
(dark grey). In this example, the accuracy of the Rt forecast is 0.43 and 0.2, respectively.
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and 27-01-2022, resulting in a total of 470 forecasts. For each of the 470 forecasts we performed 100 independent 
model runs, with a forecasting length of 30 days. The generated forecasts were compared to the actual observed 
bed occupancy data. We tested the effect of forecasting Re(t) on the bed forecast using either the exponential 
smoothing (ETS) or the naive Re(t) forecast, as well as including or excluding the added fitness advantage of a 
given VoC to the prediction. Additionally, a scenario was tested where the selected catchment and the area cor-
responding to the observed hospital have a similar population size but do not overlap in their possible admitted 
patients (e.g. a city which is geographically far away from the hospital of interest). To accomplish this, we chose 
representative catchments around the city of Rostock, Germany and matched their bed occupancy to the catch-
ments of the four investigated hospitals.

Results
In order to assess the performance of the model, we measured its accuracy and precision in term of distribution 
of forecasted values d days into the forecast from the starting day, over all starting days (See Fig. 3). Precision is 
then defined as the mean of the normalised inter-quartile range sizes, while accuracy is defined as the propor-
tion of forecasts where the observed value falls within a defined range. Note that by definition, if the forecasted 
distribution is consistent with the real distribution, 50% of the forecasted observations are expected to lie within 
the interquartile range, while 95% of observed values should lie within the 95% range. Obtaining a resulting 
accuracy as close to the defined range as possible, with the lowest possible forecast distribution range size is 
therefore the set goal.

Forecast of the R
e
(t)‑value

The forecasts of the Re(t) value for the Freiburg-specific catchment areas (see Supplementary Fig. S3 , performed 
poorly when using the naive model, with the accuracy dropping to a value of  12.5% on day 10. Using the ETS 
model greatly improved the forecasts, with very high accuracy at the first days of the forecast which declined 
to 50% at day 5, and slightly increased again from day 15 onwards. Analogically, around 90% of Re(t)-values lie 
within the 95% range of Re(t) forecasts using the ETS model. Including the Variant of Concern in the calculation 
does not significantly affect the forecast’s accuracy (see Supplementary Fig. S3). Long-term accuracy (day 30) 
was generally highest for smaller catchment sizes, with the local catchment outperforming the other catchments. 
At the same time, the precision of the forecast remains constant when using the naive method, by definition, 
because the forecasted Re(t) value does not change over time (see Supplementary Fig. S4). The ETS model shows 
a clear reduction in precision over time, with smaller catchment areas resulting in the lowest 30-day precision. 
Inclusion of the VoC has no effect on the forecast’s precision.

Incidence
The accuracy of the incidence forecast for the local Freiburg catchment increases with the days since the start of 
the forecast when using the ETS model. The IQR based accuracy lies below 50% for the first 15 days of the forecast 
and remains at 50% for the rest of the forecast (Fig. 4). However, the accuracy based on the naive method for the 
IQR does not surpass 25%. Similar to Re(t) , increasing the population size of the catchment leads to a reduction 
of accuracy and an increase in precision of the incidence forecast for both the IQR and 95% confidence range 
(Figs. 4 and 5). For all catchments the accuracy of the forecast improves over time, this is however at the cost of 
the precision as the interquartile range widens.

Bed forecast based on bed occupancy of the university hospital of Freiburg
For the bed forecast for the university hospital of Freiburg, we observe a steady decline in accuracy for about 10 
days, with a slight increase in accuracy after day 14 (Fig. 6A,B) when using the ETS model regardless if a VoC 
is included or not. In contrast, applying the naive model only leads to a steady decline in accuracy (see Sup-
plementary Fig. S6). For the four main choices of catchment areas, the local catchments are more accurate than 
the larger catchment areas: Highest accuracy is obtained using only the three local Landkreise, followed by the 
FR cluster, Baden-Württemberg, and ending with Germany as a whole. For precision (Fig. 6C,D) we observe a 
similar effect as for accuracy; precision is high at first, and declines until day 7. After that, the precision starts to 
depend increasingly on the size of the catchment population. This dependency is more pronounced for forecasts 
including exponential smoothing. The precision is lowest for the local Freiburg catchment and increases for the 
Freiburg cluster and Baden-Württemberg with being highest for Germany as a whole. While most forecasts 
steadily decrease in precision, for certain catchments the precision of forecasts including the VoC fluctuates 
towards later forecast dates, first decreasing then increasing again.

Different catchments
When comparing different catchment areas (Fig. 6A,B), the smaller hospital-specific catchments produce the 
most accurate, but least precise, results. However, at the level of states (Bundesländer), Baden-Württemberg 
only seems to produce forecasts that are not more accurate than those based on other (incorrect) states. At the 
same time, the forecasts based on Baden-Württemberg are more precise (Fig. 6C,D) than most of the forecasts 
based on the other states. The forecast for the Freiburg hospital based on a small, but mismatched, catchment 
area (the Rostock catchment) shows a higher accuracy than the one based on Freiburg-specific local catchment 
(Fig. 6A,B). This high accuracy, however, comes at the cost of precision. After 10 days the accuracy for the local 
Rostock area bed forecast with ETS is the highest in comparison to all other catchments, while the precision for 
this area is the lowest, approaching 0 after 20 days (Fig. 6C,D). A high accuracy (> 60% for IQR) and low preci-
sion for the Rostock catchment was also observed for the Re(t)-value forecast (see Supplementary Fig. S16) and 
the incidence forecast (see Supplementary Fig. S17). When plotting accuracy against precision for ICU beds 
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(Fig. 6E,F) at days 7, 14, and 30, we observe that predictions made with larger catchment areas deliver higher 
precision with lower accuracy, and smaller catchments vice-versa. In general, the Freiburg-specific catchments 
are present in the top-right of the clouds of results based on mismatched catchment areas: they deliver a good 
match between precision and accuracy. The inclusion of VoC to the exponential smoothing has only a marginal 
effect on precision and accuracy.

Bed forecast based on bed occupancy of university hospitals of Freiburg, Mannheim, Heidel‑
berg, and Tübingen
Interestingly, the forecast based on bed occupancy of the university hospital in Mannheim has a better accuracy 
but slightly lower precision at day 7 for all catchments as compared to forecasts based on Freiburg and Heidel-
berg (Fig. 7A,B). The forecasts for Mannheim on day 14 and 30 perform better as compared to Freiburg as both 
accuracy and precision increase. Overall, the forecasts for Freiburg, Mannheim, and Heidelberg follow the same 
observed trend where at day 30 larger catchments lead to increased precision but lower accuracy regardless if 
a VoC is included into the calculation (Fig. 7A–C, Figs. S7–S9). Similar to forecasts for local FR catchments, 
forecasts based on Mannheim and Heidelberg bed occupancy for the matching local catchments and for Baden-
Württemberg based on 7 and 14 days lie at the top right end of the cloud representing all other states, indicating 
that best forecast performance is obtained when the bed occupancy data matches the catchment (Fig. 7). Forecasts 
which are based on bed occupancy from the university hospital in Heidelberg perform similarly to forecasts 
based on occupancy data from Freiburg at day 7 and 14, while the accuracy at day 30 is higher with a similar 
precision. Forecasts for Mannheim have a higher accuracy but slightly lower precision than Freiburg and Heidel-
berg. Interestingly, forecasts for Tübingen are less precise than the ones for FR, MA, and HD but more accurate 
than for FR and HD (Fig. 7 and Supplementary Figs. S7–S9). This low precision might be explained by low bed 
occupancy over time which is observed for Tübingen (see Supplementary Fig. S5) Forecasts which are based on 
incidence of Rostock, representing a mismatched catchment with a similar population size as the hospital-specific 
catchments, leads to a significant decrease in precision especially later in the forecast for all chosen hospitals 

Figure 4.  Accuracy of the Incidence forecast. Accuracy is shown for the (A) local Freiburg catchment, (B) the 
Freiburg cluster, (C) Baden-Württemberg, (D) and whole Germany over 30 days. Solid lines represent accuracy 
based on the interquartile range (IQR) while dashed lines represent accuracy based on the 95% range. The Rt
-value was predicted using the naive forecast (black lines), naive forecast including VoC (red lines), exponential 
smoothing (ETS) (dark blue lines), and exponential smoothing including VoC (turquoise lines).
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while increasing the accuracy for all hospitals except the one in Tübingen (Fig. 7). Forecast for general wards are 
overall more precise but less accurate than forecasts for intensive care units (see Supplementary Figs. S10–S13).

Time dependency of the forecasts
To evaluate not only the mean performance of all forecasts but also the time-dependent forecast performance 
we computed the mean absolute scaled error (MASE) of the median of each set of forecast simulations cor-
responding to its start date for the given time period for the university hospital of Freiburg. MASE of the Re(t) 
forecasts peaks at days where there are turning points in the observed Re(t) , indicating poor performance at 
those days (see Supplementary Fig. S14). This is expected behaviour for many forecasting models, and especially 
exponential smoothing can not predict the reversal of trends unless the tipping points follow a seasonality. When 
including the VoC a high peak can be observed at 12.01.2021 which corresponds to a steep decline of Re(t) . A 
possible explanation is that at the start of the emergence of the Alpha variant its relative fitness advantage is highly 
overestimated (see Supplementary Fig. S1) leading to overestimation of the Re(t) forecast. The performance of 
bed forecasts is less dependent on turning points in the observed bed occupancy than the performance of the 
Re(t) forecasts and is improving with increasing catchment size (see Supplementary Fig. S15). MASE shows a 
number of peaks which are only present when VoC is included into the calculation. The peaks in MASE corre-
spond to peaks observed in the bed occupancy forecast and disappear when the catchment size is increased (see 
Supplementary Fig. S15). To evaluate if there is any over- or underestimation in the local Freiburg catchment 
forecast we computed the Bias of the bed occupancy forecast over time. By definition, positive Bias represents 
an overestimation of values in the forecast. The highest peaks in the Bias are usually positive, meaning that in 
cases where the bed occupancy is overestimated this overestimation is usually high (see Supplementary Fig. S14). 
Nevertheless, the median of the Bias is small but negative (-2.1 beds) indicating a slight tendency for underes-
timating bed occupancy.

Figure 5.  Precision of the Incidence forecast. Precision is shown for (A) local Freiburg catchment, (B) the 
Freiburg cluster, (C) Baden-Württemberg, (D) and whole Germany over 30 days. The Rt-value was predicted 
using the naive forecast (black line), naive forecast including VoC (red line), exponential smoothing (ETS) (blue 
line), and exponential smoothing including VoC (turquoise line).
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Figure 6.  ICU bed forecast based on the bed occupancy of the University Hospital in Freiburg. Forecasts 
are based on different methods for predicting the Rt-value: exponential smoothing (ETS, left vertical panel) 
and exponential smoothing including VoC (right vertical panel). The first horizontal panel (A,B) shows the 
accuracy. Colours represent different catchment areas (red: Freiburg local, blue: Freiburg cluster, yellow: Baden-
Württemberg (BW), turquoise: Rostock, black: whole Germany, grey: all states separately except BW). The lower 
bundle of lines represent accuracy based on the interquartile range (IQR) while the upper bundle represent 
accuracy based on the 95% confidence range. Second vertical panel (C,D) depicts relative precision. Third 
horizontal panel (E,F) shows precision on a log transformed scale versus accuracy. Diamond shapes represent 
the 7th day, square shapes the 14th day, and circles the 30th day of the forecasts.
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Conclusion
We show the importance of employing local data rather than national data when producing epidemic forecasts. 
Forecasts of bed demand produced based on the incidence in the specific catchment area of the hospital of 
interest, better predicted the local future bed demand than those based on the incidence of the entire country 
or state. Such hospital-specific bed demand forecasts can help inform hospital planning, e.g. by cancellation of 
elective surgeries. This has the potential to reduce the need to transfer critically ill patients between hospitals, 
because the local bed capacity can be better adjusted to the local bed demand. Ideally, the forecast horizon is far 
enough for the adjustments to take effect but near enough to still be accurate and precise enough to be informa-
tive. We observe a clear trade-off between the accuracy and precision of the forecast, governed by the size of the 
selected catchment area: larger catchment sizes generally produce more precise results at the expense of their 
accuracy, while smaller catchments result in more accurate but less precise forecasts. This is probably caused by 
a reduction of the stochastic variation in the underlying data. Basing the time-varying reproduction number 
( Re(t) ) value estimation on a larger catchment area (i.e. larger population size) reduces the fluctuations in the 
Re(t)-time series which leads to a narrowing of the interquartile range of the forecasted distribution, increasing 
precision. However, at the same time, a larger proportion of the actual future bed demand then falls outside the 
forecast ranges, because the increased precision poorly reflects the uncertainty of the forecast. Correctly matched 
catchment areas seem to give the best trade-off between precision and accuracy. Surprisingly, some forecasts 
based on states far away from the hospital of interest produced more accurate results than the “correct” state, 
Baden-Württemberg in this case, but only because their precision is very low. In case of a smaller mismatched 
catchment area, in this case the Rostock catchment area, high fluctuations in the Re(t)-value lead to a wide IQR 

Figure 7.  Precision versus Accuracy of ICU bed forecasts. Results are based on the bed occupancy of the 
University Hospitals in (A) Freiburg (FR), (B) Mannheim (MA), (C) Heidelberg (HD), (D) Tübingen (TUE). 
Forecasts are based on the Rt-value predicted by exponential smoothing including VoC (ETS with VoC). 
Colours represent different catchment areas (red: local, blue: Freiburg cluster (only in FR plot), yellow: Baden-
Württemberg (BW), turquoise: Rostock, black: whole Germany, grey: all states separately except BW). Diamond 
shapes represent the 7th day, square shapes the 14th day, and circles the 30th day of the forecasts.
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resulting in high accuracy but at the cost of precision. This shows that the number of hospital admissions roughly 
follows the incidence in the catchment population specific to the hospital in the short term. The ideal catchment 
to base forecasts on should thus reflect the true area from which the hospital usually admits patients, but should 
not be chosen too small to avoid loss of precision. Prior to predicting the hospital bed demand a number of 
steps have to be undertaken, including estimating and forecasting the Re(t)-value and the incidence. Previous 
studies suggest that while the SIR model is relatively successful at predicting the number of COVID-19 cases at 
short time periods (< 3 months) it fails to do so for longer time  periods23. One possible explanation is the use of 
a static Re(t)-value. Our results show that using a dynamic Re(t)-value greatly improves the incidence forecast 
as compared to using a single Re(t)-value regardless of the catchment population size.

As the epidemic trajectory greatly depends on the transmission rate of the current variant we included VoCs 
in our model for periods when a new variant is taking over a previously predominant one. During the analysed 
period one of the three strains Alpha, Delta, or Omicron have been taken over the previous one in a total of 33% 
of the time. During this time a considerable change in the spreading dynamic could occur. In our analysis the 
inclusion of VoCs does not show any significant effect on Re(t) , incidence, or bed forecast. A possible reason 
might be that the amount of days where a variant takes over another variant is relatively small compared to 
the total analysed period which would neglect the effect of a variant of concern, especially if the effect is small. 
Another reason is that the change in trajectory caused by a VoC is already implicitly taken into account from 
the preceding values when predicting Re(t) . When considering forecasts of Re(t) on early days where a VoC 
is emerging, a yet not well established relative fitness advantage of the VoC can lead to Re(t) forecasts that are 
strongly off. For a small number of days those fluctuations also result in very high peaks in the MASE of the bed 
occupancy forecast. Those few high peaks are usually an overestimation of the bed occupancy.

Our analysis reiterates the importance of producing forecasts based on local data and knowledge. We show 
that the challenges surrounding such hospital-specific forecasting can be overcome by using a centrally devel-
oped model, producing forecasts on-request. This way, each hospital was able to produce bed demand forecasts 
based on their own local data and knowledge, while using the same underlying mathematical model. Such an 
implementation requires careful IT-planning and programming, to make sure the app is scalable and remains 
responsive at higher demands.

Forecasting models have, of course, their limits and limitations. First and foremost, they use the current 
situation to project the incidence and bed occupancy forward under the assumption that the epidemic situation 
remains the same. This means that a strongly growing epidemic will be expected to grow further unabated. In 
reality, the epidemic growth is strongly influenced by changes in contact patterns within the population, such as 
caused by non-pharmaceutical interventions (NPIs) and general risk perception in the community. Likely, a high 
incidence situation will trigger behavioural changes that reduce the peak size of the epidemic, or conversely, low 
incidence may trigger relaxation of NPIs. Because the model doesn’t take these changes into account, it is often 
inaccurate around the inflection points of the epidemic curve. Furthermore, local forecasts are by design less 
precise than those based on national-level data, because the predictions are based on both lower case numbers 
and smaller base population sizes. This means that estimates of reproduction numbers have wider confidence 
bounds, and incidence, admission rates, and lengths of stays are stronger influenced by stochastic variation in 
the model. This sometimes results in forecasts that predict anything between an empty and fully overwhelmed 
hospital. Although these predictions may seem useless, they avoid a false sense of security and echo the true 
uncertainty of the situation (i.e. anything can happen). However, for most of the time, the forecasts show a clear 
trend that can form the basis for further strategic planning, such as cancellation of elective surgeries or opening 
of designated COVID-19 wards.

The dashboard was successfully used by local healthcare providers, hospitals, and healthcare policymakers 
to evaluate incidence and hospital bed occupancy in Germany during the 2020-2022 COVID-19 pandemic. We 
argue that on-request forecasts are much more helpful in informing stakeholders at a local level where health 
management decisions, such as cancelling elective surgeries, directly affect the bed capacity. This way, the pan-
demic or epidemic response can be driven in near real-time on the level where it matters most.

Data availability
The code used to implement the dashboard, in the version used to prepare this manuscript, is available at: https:// 
github. com/ QUPI- IUK/ Bed- demand- forec ast/ relea ses/ tag/v. 0.5.6. Data for Germany will be downloaded by 
the dashboard itself.
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