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Improving long COVID‑related text 
classification: a novel end‑to‑end 
domain‑adaptive paraphrasing 
framework
Sai Ashish Somayajula 1, Onkar Litake 1, Youwei Liang 1, Ramtin Hosseini 1, Shamim Nemati 2, 
David O. Wilson 3, Robert N. Weinreb 4, Atul Malhotra 5 & Pengtao Xie 1*

The emergence of long COVID during the ongoing COVID‑19 pandemic has presented considerable 
challenges for healthcare professionals and researchers. The task of identifying relevant literature 
is particularly daunting due to the rapidly evolving scientific landscape, inconsistent definitions, 
and a lack of standardized nomenclature. This paper proposes a novel solution to this challenge by 
employing machine learning techniques to classify long COVID literature. However, the scarcity of 
annotated data for machine learning poses a significant obstacle. To overcome this, we introduce a 
strategy called medical paraphrasing, which diversifies the training data while maintaining the original 
content. Additionally, we propose a Data‑Reweighting‑Based Multi‑Level Optimization Framework 
for Domain Adaptive Paraphrasing, supported by a Meta‑Weight‑Network (MWN). This innovative 
approach incorporates feedback from the downstream text classification model to influence the 
training of the paraphrasing model. During the training process, the framework assigns higher weights 
to the training examples that contribute more effectively to the downstream task of long COVID text 
classification. Our findings demonstrate that this method substantially improves the accuracy and 
efficiency of long COVID literature classification, offering a valuable tool for physicians and researchers 
navigating this complex and ever‑evolving field.

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has left an indelible mark on global health, 
infecting over 763 million people and resulting in more than 6.9 million  deaths1–3. Through the relentless 
efforts of healthcare professionals and researchers worldwide, the severity of the pandemic has been mitigated. 
However, a notable proportion of COVID-19 patients persistently report residual symptoms and health 
complications following the resolution of the acute phase of the  disease4,5. This persistent manifestation has 
led to the identification of a complex and puzzling condition known as “Post-Acute Sequelae of SARS-CoV-2 
infection” (PASC) or long  COVID6. Current research and epidemiological surveys indicate that between 10% 
and 30% of COVID-19 survivors may experience these protracted  symptoms7–9. Characterized by multisystemic 
manifestations such as respiratory complications, cardiovascular disorders, cognitive impairments, and severe 
 fatigue10–13, long COVID often persists for numerous months post-infection. As such, a thorough understanding 
of the pathophysiology and long-term  consequences14–16 of long COVID is of paramount importance to inform 
strategies for its management and prevention.

To remain abreast of the evolving nature of long COVID, physicians and researchers frequently resort 
to the extensive array of research articles and related works. However, a significant hurdle in advancing the 
understanding of long COVID and in developing efficacious management strategies is the daunting task of 
identifying pertinent articles within the broad existing literature. The scientific landscape of this novel condition 
is characterized by a substantial variation in the employed definitions of long  COVID17–19 across diverse studies, 
creating a formidable challenge for physicians in their pursuit of finding relevant resources. This inconsistency 
not only complicates the task of extracting relevant long COVID articles but also engenders a dilemma in 
the query process. Precise searches using terms such as “post-acute sequelae of SARS-CoV-2 infection” often 
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yield limited results, owing to the specificity of the terminology. In contrast, broader search terms like “post-
COVID symptoms” can generate a plethora of results, having false positives due to the generic nature of the 
 terminology20. Compounding these challenges, while consensus-based case definitions are gradually solidifying, 
the majority of publications tend to describe the condition without explicitly designating it as long COVID, 
creating inconsistencies in the  literature21. This lack of standardized nomenclature can be attributed to the 
novelty of long COVID as a distinct clinical entity and the ongoing evolution of our understanding of its diverse 
manifestations.

In tackling this issue, we advocate for the application of machine learning specifically, text classification, 
to classify medical articles. Text classification, a key task in machine learning, is a technique that categorizes 
input sentences based on their content and has found particular utility in the medical domain. In this context, 
text classification has been instrumental in simplifying the categorization of complex medical literature, such 
as articles on Cancer Susceptibility Genes and reports in the US Vaccine Adverse Event Reporting System 
(VAERS)22,23. Text Classifiers, once trained, evaluate and categorize documents according to their inherent 
content. This application has effectively reduced the workload of human experts, and enabled a more efficient 
and organized approach to literature review. These successful implementations substantiate our motivation to 
employ text classification for the classification of long COVID articles, an application that could provide valuable 
assistance to doctors.

A significant challenge in developing high-performance machine learning models lies in the availability of 
ample annotated data, which is often required in the thousands. This challenge is particularly pronounced in 
the case of long COVID articles, where obtaining such data necessitates skilled human intervention, making 
it a laborious task. Several methods in the Natural Language Processing (NLP) literature have been proposed 
to address this data scarcity and train efficient machine learning models. Among these methods are Back 
 Translation24, Synonym  Replacement25, and  EDA26. These techniques attempt to mitigate data scarcity by 
employing simple heuristic-based operations (random insertion, deletion, swapping, and synonym replacement) 
or leveraging another language model. However, they exhibit certain limitations. For instance, they often produce 
limited and simple text variations through random insertion, deletion, and so on. Additionally, some of these 
methods, particularly those based on language models, risk generating ‘hallucinations’-alterations that can distort 
the original text’s meaning or context. Techniques that diverge significantly from the target domain or context 
might generate less relevant training data. This could potentially undermine the classifier’s ability to generalize 
for specific tasks, thus affecting the overall performance of the machine learning model. Therefore, addressing 
these limitations is of paramount importance.

To address the challenge of data scarcity, we introduce the concept of medical paraphrasing. This technique 
generates alternative versions of training texts, maintaining the original medical context and semantics. These 
paraphrased texts, preserving the core intent of the original sentences, serve as an expanded dataset to alleviate 
data scarcity. The intuition is further explained pictorially in Fig 1. Importantly, the class label assigned to these 
generated paraphrases aligns with the class label of their corresponding original sentence. This approach facilitates 
a diverse representation of training data, enhancing the machine learning model’s capacity for generalization. 
We propose the use of a paraphrasing  model27 for this task, that takes an input text and generates a paraphrased 
version. A key challenge is the lack of a specific paraphrasing dataset for long COVID, ideally containing long 
COVID-related sentences and their rephrased counterparts as training data. To circumvent this, we intend 
to train the paraphrasing model on a generic paraphrasing dataset, which is readily available. However, this 
approach has its challenges. Training a paraphrasing model on a generic dataset may yield rephrased versions 
that deviate from the long COVID domain or generate hallucinations, as previously discussed.

Figure 1.  An illustration of our approach. Leveraging medical paraphrasing to overcome annotated data 
scarcity in training an efficient long COVID article classification model.
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In order to address the challenges outlined, we introduce a data-reweighting-based multi-level optimization 
framework for domain adaptive paraphrasing. This framework is reinforced by a Meta-Weight-Network (MWN) 
and is designed to leverage the feedback from the long COVID text classification model to influence the training 
of the paraphrasing model. Our proposed Multi-Level Optimization (MLO) framework unfolds over three stages. 
A multi-level optimization problem is an extension of a Bi-Level Optimization  problem28 (BLO). In the initial 
stage, the paraphrasing model is trained on a general domain paraphrasing dataset, using a data reweighting 
strategy. Every paraphrasing training example is assigned a weight, denoted by ai , within the range of [0,1]. To 
predict these data weights, we employ a Multi-Layer-Perceptron (MLP) layer, referred to as a Meta-Weight-
Network (MWN). This network operates by taking the loss associated with each pair of original and paraphrased 
sentences, {ti , si} , as input and subsequently outputs a scalar weight, ai , for the i-th training example pair. The 
MWN is designed to account for the domain difference between the paraphrasing data example and the long 
COVID text classification dataset. A larger ai implies higher importance of the paraphrasing training example for 
the long COVID text classification task, and vice versa. The second stage involves feeding the text classification 
training examples into the paraphrasing model to generate auxiliary data for the text classification model. In the 
final stage, the MWN weights are fine-tuned by minimizing the validation loss of the text classification model. 
This step serves as a feedback mechanism, guiding the paraphrasing model to improve its generations. Through 
this process, we ensure that the domain of the generations from the paraphrasing model aligns with the domain 
of the long COVID-related articles, optimizing the overall performance.

Related work
Text classification for long COVID
 A recent  study29 endeavored to develop a classification system for long COVID to assist clinicians in providing 
individualized care. Using Hierarchical Ascendant Classification (HAC), the research identified three distinct 
symptom patterns of long COVID, suggesting a gradient in disease severity. This classification implies the poten-
tial to subdivide long COVID into three severity-based subcategories, a significant step towards personalized 
patient care. Parallel  efforts30 have been made to comprehend the societal sentiment surrounding long COVID, 
through the classification of Twitter users’ sentiments. By analyzing social media data, researchers aimed to cap-
ture the overall emotional tone related to long COVID, thereby contributing to our understanding of the public 
response to this condition. The identification of individuals suffering from long COVID is crucial for delivering 
adequate support. To this end, an XGBoost machine learning  approach31 was devised using the National COVID 
Cohort Collaborative’s (N3C) electronic health record repository. This approach aimed to pinpoint patients likely 
to be affected by long COVID. However, the nascent nature of long COVID and the scarcity of related data pose 
significant challenges. The lack of standardized or consensus terminology for long  COVID32 complicates the 
identification of relevant scientific articles, thereby obstructing the construction of accurate machine-learning 
models that could assist medical professionals. In fact, some articles discussing long COVID do not explicitly 
label the condition, further complicating the task of creating effective data-driven tools for healthcare providers. 
Our work aims to address this issue.

Methods to address data scarcity
 To build such applications, the problem of data scarcity must be overcome. Studies have been carried out to 
tackle data scarcity in  NLP33,34. A heuristic-based  technique26 was proposed to boost the performance of text 
classification tasks by randomly inserting, deleting, swapping, and replacing words in the text. Another approach 
was to replace a given word with a word predicted by a bi-directional language  model35. Studies have shown that 
keyword replacement with hypernyms and character-level synthetic noise are effective techniques for addressing 
data  deficiency36. Reinforcement learning guided conditional generation was proposed to tackle the data defi-
ciency  problem37. Back-translation techniques, where sentences are translated into another language and then 
back into the original language, have been used as auxiliary data for Machine  Translation24. After the success of 
ChatGPT, a novel technique named  AugGPT38 was proposed, breaking down each sentence in training samples 
into multiple conceptually related but semantically distinct samples. AugGPT shows superior performance in 
terms of the distribution of augmented samples and accuracy over few-shot learning text classification tasks. 
However, these methods may generate noisy data which might not be optimal for the medical domain because 
there is no feedback mechanism to ensure the generations are suitable for the downstream long COVID article 
classification model. Our method addresses this issue by incorporating a feedback mechanism to ensure the 
generations are in the medical domain and further aids the downstream long COVID article classification model.

Bi‑level optimization
 Bi-Level  Optimization28 (BLO) is a class of optimization problems that involves solving two optimization 
problems, namely lower and upper optimization problems, simultaneously, with one problem nested within 
the other. The optimal solution to the lower optimization problem constraints the objective function of the 
upper optimization problem. However, the optimal parameters of the lower problem are reliant on the optimal 
solution of the upper problem, creating a interdependency between the two stages. A multi-level optimization 
problem is an extension of bi-Level optimization problem with more than problems in the lower stage. The use 
of bi-level optimization methods has been successfully demonstrated in various machine learning tasks. For 
instance,  BLO39 has been applied to the problem of neural architecture search, configuring the neural architecture 
and model weights as the upper and lower parameters, respectively. Similarly, data selection  problems40–42 have 
been represented as bi-level optimization problems, with the upper and lower variables being the data weights 
and the model weights, respectively. Further applications of bi-level optimization frameworks have been seen in 
hyperparameter  optimization43, label  correction44, training data  generation45, data  augmentation46, and learning 
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rate  adaptation47. In each of these applications, the model weights, which are the lower parameters, are optimized 
by minimizing the training loss, while the upper parameters such as neural architecture, hyperparameters, data 
weights, and so on. are learned by minimizing the validation loss.

Method
Overview
In this section, we present our proposed solution for addressing data scarcity in long COVID-related article 
classification. Our approach utilizes a paraphrasing model that incorporates feedback from the text classification 
model. The paraphrasing model rephrases the input training texts to generate an additional training dataset. This, 
in conjunction with the original training dataset, is utilized to train the long COVID article classification model. 
The performance of the paraphrasing model is evaluated and improved based on the validation performance of 
the long COVID article classification model, thereby serving as a feedback mechanism. Additionally, we describe 
our Meta-Weight-Network, which facilitates data reweighting in the paraphrasing model, thereby tailoring the 
domain to the text classification model and leveraging it as feedback.

We summarize our notations in Table 1. The paraphrasing model is trained on a paraphrasing dataset D S , 
where the model takes an article as input and learns to output its paraphrased version. A long COVID text 
classification model is trained on a training dataset, D tr and validated on a validation dataset, D val , where we 
have labels indicating whether an article is long COVID related. To facilitate the training of our MLO frame-
work, we randomly split D tr into two sets, an 80% portion for MLO-train ( D MLO-tr ) and a 20% portion for 
MLO-validation ( D MLO-val ). These sets are used for multi-level optimization, which will be discussed further 
in subsequent sections.

Since the long COVID-related training dataset D tr is limited in size, we generate an additional dataset for 
training the long COVID text classification model. Specifically, we paraphrase the training examples, by pass-
ing a training text example xMLO-tr

i  into the paraphrasing model, which outputs x̂MLO-tr
i  . The original labels are 

associated with these generated texts since we assume that the paraphrasing operation does not alter the label 
category. Therefore, ( ̂xMLO-tr

i , yMLO-tr
i  ) is the generated pair of the original pair ( xMLO-tr

i , yMLO-tr
i ).

Our end-to-end framework is composed of three stages. The first stage involves training a paraphrasing model 
on D S , with each training example being weighted by a data weight output from the meta-weight network to 
account for the domain difference between the paraphrasing and text classification datasets. In the second stage, 
the text classification model is trained on D MLO-tr along with the generations from the paraphrasing model 
trained in the first stage. In the third stage, we learn the meta-weight-network parameters by minimizing the 
MLO validation loss of the text classification dataset. The text classification model is evaluated on the MLO-
validation dataset, D MLO-val , and the meta-weight-network parameters are learned by minimizing this MLO-
validation loss. This approach enforces a mutual dependency between the data generation process and the text 
classification dataset, allowing them to interact and benefit from each other in an end-to-end fashion. We provide 
a detailed explanation of each section in the following sections. Fig. 2 illustrates the overall framework pictorially.

Stage I
In this stage, we train a BART 48 based paraphrasing model denoted by S. It is an encoder-decoder-based pre-
trained transformer model. It is trained on D S , which contains pairs of sentences or phrases that have the same 
meaning but are phrased differently. Creating a paraphrasing dataset in the medical domain is challenging due 
to limited resources, privacy concerns, and the need for expert involvement. Therefore, a publicly available 
non-medical text paraphrasing dataset is used to ensure the method is generic and does not require additional 
dataset creation. However, to ensure the generations are in the medical domain, data reweighting is proposed 
to account for the domain discrepancy. Each training example of the paraphrasing model is associated with a 
data weight ai ∈ [0, 1] to account for the domain discrepancy with the downstream text classification dataset. 
If a paraphrasing training example deviates hugely from the domain of the text classification dataset, then the 
associated data weight ai ≈ 0 and vice-versa.

We introduce the Meta-Weight-Network (MWN) as a means of predicting the data weights. The MWN, 
denoted by W, is a multi-layer perceptron network used to approximately estimate the data weights  distribution49. 

Table 1.  Notations used to define our framework.

Notation Meaning

W Meta-Weight-Network (MWN) parameters

C Long COVID article classification model parameters

S Paraphrasing model parameters

D
S = {(ti , si)}

M
i=1

Paraphrasing dataset

D
tr = {(xtri , y

tr
i )}

N
i=1

Long COVID Training dataset

D
val = {(xvali , yvali )}Ni=1

Long COVID Validation dataset

D
MLO-tr MLO Training dataset, 80% split of D tr

D
MLO-val MLO Validation dataset, remaining 20% split of D tr

G (·, S) Additional training dataset generated by the paraphrasing model S.
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For each training example {(ti , si)} , we input the associated loss into the MWN, which outputs a scalar value ai 
representing the corresponding data weight. The following optimization problem is solved in this stage:

where W is MWN and l(·) is the teacher-forcing loss. The loss of each training example (ti , si) is weighted by its 
corresponding data weight ai . The data weight ai is associated with each (ti , si) pair, and if a pair deviates signifi-
cantly from the text classification dataset, its associated ai must be close to 0. The optimal paraphrasing model 
weights S∗ depend on W, as the loss function in Eq. (1) is dependent on W. The parameters of W are not learned 
in this stage; otherwise, W weights will be learned such that all the ai become 0, which is a degenerate solution. 
Instead, W weights are updated in a later stage.

Stage II
In the second stage, we generate the auxiliary dataset using the paraphrasing model trained above S∗(W) and 
further use it to train the text classification model, denoted by C. The MLO-train dataset D MLO-tr is used to 
train the text classification dataset. Given a training example pair (xMLO-tr

i , yMLO-tr
i ) , the input text xMLO-tr

i  is 
passed through S∗(W) to generate its corresponding text x̂MLO-tr

i  . As explained above, the label is preserved as 
the original label. Thus, (x̂MLO-tr

i , yMLO-tr
i ) is treated as the augmentation of (xMLO-tr

i , yMLO-tr
i ) . This process is 

repeated for all the training examples in D MLO-tr to generate additional dataset G (D MLO-tr, S∗(W)) . Given 
this generated dataset, C is trained on D MLO-tr and G (D MLO-tr, S∗(W)) . The following optimization problem 
is solved in the second stage:

where γ is a tradeoff parameter and L(·) denotes a cross-entropy classification loss. L(C,D MLO-tr) denotes the 
loss defined on the MLO-train dataset and L(C,G (D MLO-tr, S∗(W))) is the loss defined on the generated data-
set. The trade-off parameter γ controls the contribution of the loss associated with the generated dataset. The 
optimal classification model weights depend on S∗(W) from the second term in Eq. (2), the loss associated with 
the generated dataset. This term depends on S∗(W) , which generates the auxiliary dataset.

Stage III
In this stage, the W parameters are learned by minimizing the MLO-validation loss of the text classification 
model, which is the loss of the text classification model evaluated on D MLO-val dataset. These learned W weights 
thus influence the predicted data weights a′is , which tailor to the domain of the text classification model, thereby 
acting as a feedback loop.

A three‑level optimization framework
We unify the above three stages into a multi-level optimization framework as follows.

(1)S∗(W) = min
S

M
∑

i=1

W(l(S, ti , si)) · l(S, ti , si)

(2)C∗(S∗(W)) = minCL(C,D
MLO-tr)+ γ L(C,G (D MLO-tr, S∗(W)))

(3)min
W

L(C∗(S∗(W)),D MLO-val)

Stage - I

MLO Training 
dataset

Stage - II

Paraphrasing 
model - S(W)

Generated 
Paraphrased data

Train a long COVID 
classification model 

- C(S(W))

MLO Validation 
dataset 

Evaluate long COVID 
classification model 

Stage - III
Update MWN parameters - W

Figure 2.  Our end-to-end data-reweighting-based multi-level optimization framework for domain adaptive 
paraphrasing. MWN refers to the meta-weight-network for data reweighting.
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The three stages defined above are performed end-to-end with interleaved dependency. The solution of stage I, 
S∗(W) , is used in stage II to generate data. The generated data, along with original training data, is used to train 
the classification model, the obtained solution is C∗(S∗(W)) , which is then evaluated on D MLO-val in stage III. 
The Meta-Weight-Network parameters (W) are learned by minimizing this validation loss which acts as feedback 
in stage III. The solution learned in this stage ( W ′ ) influence the solution of stage II, C∗(S∗(W ′)) , and thereby 
changing solution obtained in stage I, S∗(W ′).

Optimization algorithm
This section uses a gradient-based optimization algorithm to solve the MLO problem in Eq. (4). One step gradi-
ent  descent39 of S is used to approximate S∗(W):

We substitute S∗(W) ≈ S′ into the next level objective function to solve for the optimal text classification model 
parameters. C∗(S∗(A)) is approximated using one-step gradient descent of C:

The optimal W parameters are learned by gradient descent of the objective function of stage III, in which the 
above obtained C∗(A) ≈ C′ is substituted.

where

Finite difference approximation reduces the computational complexity of expensive matrix-vector products in 
Eq. (8).

where,

Eq. (9) can be further approximated by:

w h e r e ,  α±
S = 0.01

�∇S′L(C
± ,G (D MLO-tr,S′))�2

 ,  S±+ = S ± α+
S ∇S′L(C

+,G (D MLO-tr, S′))  , 

S±− = S ± α−
S ∇S′L(C

−,G (D MLO-tr, S′))

(4)

minW L(C∗(S∗(W)),D MLO-val)

s.t. C∗(S∗(W)) = minCL(C,D
MLO-tr)+ γ L(C,G (D MLO-tr, S∗(W)))

S∗(W) = minS

M
∑

i=1

W(l(S, ti , si)) · l(S, ti , si)

(5)S∗(W) ≈ S′ = S − ηs∇S

(

M
∑

i=1

W(l(S, ti , si)) · l(S, ti , si)

)

(6)C∗(A) ≈ C′ = C − ηc
(

∇C(L(C,D
MLO-tr)+ γ L(C,G (D MLO-tr, S′)))

)

(7)W ← W − ηw∇WL(C′,D MLO-val)

(8)
∇WL(C′,D MLO-val) = ∂S′

∂W
∂C′

∂S′
∂L(C′ ,D MLO-val)

∂C′ =

ηsηcγ∇
2
W ,S

(

M
∑

i=1

W(l(S, ti , si)) · l(S, ti , si)

)

∇2
S′ ,CL(C,G (D MLO-tr, S′))∇C′L(C′,D MLO-val)

(9)

≈
ηsηcγ
2α

{[∇S′L(C
+,G (D MLO-tr, S′))−∇S′L(C

−,G (D MLO-tr, S′))]∇2
W ,S

M
∑

i=1

W(l(S, ti , si)) · l(S, ti , si)}

α =
0.01

∥

∥∇C′L(C′,D MLO-val)
∥

∥

2

,C± = C ± α∇C′L(C′,D MLO-val).

(10)1

α±S
{∇W

M
∑

i=1

W(l(S+± , ti , si)) · l(S
+
± , ti , si)−∇W

M
∑

i=1

W(l(S−± , ti , si)) · l(S
−
± , ti , si)}

Algorithm 1.  Optimization algorithm
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We perform these update steps alternatively until convergence. Then the classification model is further trained 
on the entire training dataset D tr for a few iterations until convergence. The overall algorithm is presented in 
Algorithm 1.

Experiments
Dataset
The dataset used in this work for long COVID-related article classification is publicly available on  HuggingFace50. 
Given the difficulty in obtaining annotated long COVID-related article datasets due to the previously discussed 
challenges, we conduct comprehensive experiments on this readily available dataset. The dataset was manually 
curated by domain experts, with the initial subset gathered by experts from the Robert Koch Institute (RKI). They 
collected the data by querying a variety of related search strings in the PubMed  database51 and other COVID-
related databases. Additionally, data was sourced from the ‘long COVID research library’ released by Pandemic-
Aid Networks, which has compiled crucial articles on long COVID. The dataset is binary and classifies documents 
into two categories: non-long COVID (labeled by 0) and long COVID (labeled by 1) related documents. The text 
of this dataset predominantly comprises titles and abstracts that succinctly summarize the research articles. The 
distribution of the dataset is as follows: the training set consists of 207 examples, the validation set contains 207 
examples, and the test set includes 138 examples. For training the paraphrasing model, we employ the MRPC 
 dataset52, which is specifically curated for paraphrasing tasks. In this study, a subset of approximately 500 training 
examples from this dataset is utilized to finetune the paraphrasing model.

Baselines
We compare our method with the following baselines. Vanilla: Vanilla training of the text classifier on the given 
training dataset. EDA26: EDA is a heuristic-based technique to address data deficiency. The authors propose 
the following operations: random insertion, synonym replacement, random swap, and random deletion. Back 
translation24: Back translation is performed by translating texts from the source language to a target language 
using a trained language model. Then these texts in the target language are translated back into the source lan-
guage using another trained language model to be used as auxiliary data. We use a pretrained Opus-MT-based53 
sequence-to-sequence model pretrained on the English-French language for back translation. T5 abstractive 
summarization: To address the issue of data scarcity, text summarization is conducted on input texts, generating 
concise summaries by employing the T5-large  model54. Keyword replacement: We adopted a keyword replace-
ment strategy using a comprehensive list of terms related to long COVID, as detailed  in50. The keywords utilized 
are PASC, long COVID, long term COVID effects, post-acute sequelae, post-acute sequelae of SARS-CoV-2, 
long-haul COVID, post-acute COVID syndrome, persistent COVID-19, post-acute COVID19 syndrome, long 
hauler COVID, longCOVID, post-acute sequelae of SARS-CoV-2 infection, long haul COVID, chronic COVID 
syndrome, and long-COVID. In our approach, we generated 16 unique augmentations for each input text by 
replacing each occurrence of a keyword with another term from the aforementioned list, contingent on the 
keyword’s presence in the text, following  EDA26.

Experimental setup
The model used for text classification in  EDA26 has been used in this work. The model consists of an input layer 
followed by 64 hidden LSTM units (bidirectional layer), a dropout layer with a probability of 0.5, a bi-directional 
layer with 32 LSTM units, and another dropout layer with a probability of 0.5 followed by ReLU activation func-
tion and a 20 unit hidden layer followed by a softmax layer. The maximum length of the input sentence is set to 
128. AdamW optimizer has been used to optimize the network with ǫ = 10−8 , β1 = 0.9 and β2 = 0.999. The weight 
decay is set to 0. A 3× 10−3 learning rate has been used. The batch size is set to 8. The meta-network is a three-
layer MLP network with an input layer, two hidden layers of 25 hidden nodes, a dropout layer of probability 0.2, 
and an output layer of size one followed by a sigmoid activation function to bound the value in [0, 1] range. We 
use a learning rate of 1× 10−4 to learn the meta-network weights. AdamW optimizer with ǫ = 10−8 , β1 = 0.9, β2 
= 0.999 and weight decay = 0 has been used to learn the data weights. The trade-off parameter � is set to 0.85 for 
all our experiments because this value performed well in our initial experiments. Our experiments have used the 
BART-base48 model as a paraphrasing model. The maximum text length has been set to 128, and the minimum 
text length has been set to 65. We utilized the byte-level BPE tokenizer as employed in the RoBERTa  model55 for 
our text processing tasks. A batch size of 8 has been used. We use an AdamW optimizer with ǫ = 10−8 , β1 = 0.9 
and β2 = 0.999. The model has been optimized with a learning rate of 2× 10−5 . Linear rate decay with a warm-up 
ratio of 0.1 and weight decay of 0.01 has been used. The end-to-end framework is run for 10 epochs and further 
finetuning of the classification model is performed for 20 epochs. We perform experiments on five randomly 
sampled seeds and report each experiment’s mean and standard deviation for evaluation. The experiments have 
been performed on an A100 GPU machine.

The results reported in this work are based on the test set of the long COVID  dataset50. However, for testing 
with real articles from the internet, we can simply extract the titles and abstracts from the research articles-these 
succinctly summarize the work-and pass them to the model for classification. To extract metadata such as titles 
and abstracts from the articles directly, we leverage the open-source library ‘paper scrap er’56,57.

Results
Tables 2 show the mean and standard deviation of the Accuracy, F1, Precision, Recall, and AUC of five methods 
on long COVID article classification over five runs using different random seeds. We have used four methods, 
namely Vanilla, EDA, Back Translation, and T5 abstractive summarization, as our baselines for comparison. 

https://github.com/PhosphorylatedRabbits/paperscraper
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We observe that our method outperforms the baselines on all five evaluation metrics by a large margin, which 
indicates the efficacy of our method.

From Table 2, the following observations can be made. First, our approach outperforms Vanilla, implying 
that the generated texts play a crucial role in improving model accuracy, which can be attributed to its diversity 
and high quality.

Secondly, our approach significantly outperforms EDA, achieving a 14.5% increase in accuracy and an 11.24% 
improvement in F1 score compared to EDA. Similar gains were observed for AUC, Precision and Recall metrics. 
These results suggest that employing rule-based techniques like EDA may introduce noise into the original text, 
leading to suboptimal performance. For example, EDA’s synonym replacement and random deletion operations 
could inadvertently remove or replace essential medical terminology words that are critical for classification. 
In contrast, our method generates sentences by applying paraphrasing operations to the input text. We train a 
paraphrasing model that incorporates feedback from the text classification model, thereby improving its genera-
tion based on the classification model’s performance. Consequently, our approach mitigates the introduction 
of noise into the text, unlike the rule-based techniques employed by EDA. Furthermore, it is noteworthy that 
EDA generates between 8 and 16 augmentations for each input sentence, while our approach surpasses EDA’s 
performance with just a single augmentation per input sentence.

Thirdly, our method outperforms the T5 abstractive summarization baseline. The T5 large model is pretrained 
on non-medical domains and employed for abstractive summarization of input texts to address data deficiency 
issues. In comparison, our approach achieves a 17.39% higher accuracy and a 15.67% improvement in F1 score 
compared to the T5 abstractive summarization baseline, highlighting the effectiveness of our domain adaptive 
paraphrasing-based approach. We observe a similar trend for AUC, Precision and Recall. The T5 model’s pre-
training on non-medical domains may lead to summaries that exclude crucial information necessary for long 
COVID article classification. Furthermore, the T5 model may prioritize compressing the input text to fit the 
summarization format, potentially resulting in the exclusion of critical information needed for classification. It 
may also generate  hallucinations58. An example of generated example is presented in Table 5. Conversely, our 
paraphrasing model maintains context and meaning, avoiding information loss found in summarization, and 
uses feedback from the downstream classification model to ensure generated sentences are beneficial for sub-
sequent text classification (Table 5). Therefore, our method outperforms the T5-based summarization baseline.

Fourth, our method performs better than the Back translation baseline. In back translation, we use a 
sequence-to-sequence model based on Opus-MT. Our method achieves an accuracy improvement of 16.37% 
and an F1 score improvement of 15.11%. A similar trend is noticed for AUC, Precision and Recall metrics too. 
Back translation may introduce noise into the generated texts. An example of generated example is presented in 
Table 5. This noise can arise from potential translation errors and information loss, especially when the input 
text, specific to the medical domain, is translated to another language (French in our case) and back to English 
using a non-medical pretrained model, which may introduce unwanted words and alter medical terminology 
in undesirable ways. In contrast, our approach’s feedback mechanism minimizes such risks by encouraging the 
paraphrasing model to generate text that are more relevant sentences for the long COVID article classification 
task than the Back translation baseline. Therefore, our domain adaptive paraphrasing-based approach provides 
a more effective method for generating additional training data for long COVID article classification.

Fifth, our approach outperformed the Keyword Replacement baseline, where augmentations are generated 
by substituting one long COVID-related keyword for another. One of the reasons is that some instances in the 
training dataset might imply a connection to long COVID without explicitly mentioning it, making them unaf-
fected by the Keyword Replacement strategy. In contrast, our method, through adaptive data augmentation, 
captures a deeper understanding of the text’s context, as reflected in its enhanced performance

Sixth, we compared our method to a rule-based strategy that classifies texts based on specific keywords, lev-
eraging the same keyword list  from50 as the Keyword Replacement baseline. Our results, summarized in Table 3, 
emphasize the superiority of our approach, which discerns the nuances of content, over traditional keyword-
based search engines that mainly rely on a predefined keyword list.

Seventh, majority of baseline methods demonstrated a very high standard deviation compared to our 
approach on Recall metric. This can largely be attributed to the baseline method’s inability to correctly identify 
articles pertaining to long COVID, often misclassifying them as non-long COVID articles. Our method, on the 
other hand, utilizes a domain adaptive approach for generating diverse paraphrases, which significantly enhances 

Table 2.  Results on long COVID article classification dataset. The evaluation metrics used are Accuracy, 
F1 score, Precision, Recall and AUC (reported in percentage). Mean and std refer to the mean and standard 
deviation of the evaluation metric over five random seeds. Bold indicates the best performance.

Method Accuracy F1 Precision Recall AUC 

Mean Std Mean Std Mean Std Mean Std Mean Std

Vanilla 62.32 1.02 63.97 3.13 60.51 1.44 68.52 8.29 66.84 1.85

EDA 68.26 2.35 69.35 3.99 66.47 3.66 74.11 12.01 74.61 2.09

Back translation 66.38 0.74 65.48 3.28 66.57 3.27 65.58 9.46 71.14 3.08

T5 Abstractive summarization 65.36 3.35 64.92 3.91 64.75 3.3 65.29 5.99 69.02 2.50

Keyword replacement 65.65 6.19 67.64 4.04 64.62 8.65 72.35 6.92 70.80 5.86

Ours 82.75 2.47 80.59 2.48 81.99 3.42 79.41 3.83 85.50 3.56
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the model’s generalization capabilities and robustness. This strategy effectively reduces the standard deviation in 
the Recall metric, leading to more consistent and reliable results. This inference strongly indicates the superiority 
of our approach in handling the complexity of long COVID literature classification. Further exploration of this 
observation is undertaken in the Qualitative Analysis Section.

Eighth, to assess the generalizability of our method, we evaluated the previously trained LSTM-based models 
on 100 recent articles related to COVID-19 collected from bioRx iv59. Of these, 70 articles pertained to long 

Table 3.  Comparison of our method and the rule-based approach on long COVID article classification 
dataset. The evaluation metrics used are Accuracy, F1 score, and AUC. Bold indicates the best performance.

Method Accuracy F1 AUC 

Rule-based approach 69.56 56.25 69.14

Ours 82.75 80.59 85.50

Table 4.  Results were obtained from testing 100 articles collected from the internet, evaluated using an LSTM 
model checkpoint previously trained on the long COVID  dataset50, serving as the backbone for classification. 
The evaluation metrics used are Accuracy, F1 score, Precision, and Recall (reported in percentage). Bold 
indicates the best performance.

Method Accuracy F1 Precision Recall

Vanilla 61 73.1 70.67 75.71

EDA 61 64.86 87.80 51.43

Back translation 63 71.32 77.97 65.71

T5 abstractive summarization 58 69.12 71.21 67.14

Keyword replacement 72 82.72 72.83 95.71

Ours 79 86.62 78.16 97.14

Table 5.  Comparison of original and augmented texts generated by our method and baselines. The first 
augmented text in the baselines is generated using back-translation method, while the second is from 
abstractive summarization method. Augmented texts in the “Ours” category are generated by our proposed 
method.

Original Augmented

Baselines

 Epidemiology and organ specific sequelae of post acute COVID19 A narrative review Long COVID a term 
coined by COVID 19 survivors describes persistent or new symptoms in a subset of patients who have recov-
ered from acute illness Globally the population of people infected with SARS CoV 2 continues to expand rap-
idly necessitating the need for a more thorough understanding of the array of potential sequelae of COVID 19 
The multisystemic aspects of acute COVID 19....

Long VOCID narrative journal a term invented by VOCID 19 survi-
vors describes persistent or new symptoms in a subset of patients who 
have recovered from acute disease The global population of people 
infected with SARS CoV 2 continues to increase rapidly, requiring a 
deeper understanding of the range of potential sequelae of VOCID 19 
The multisystemic aspects of VOCID 19....

 Assessment of tryptophan and kynurenine as prognostic markers in patients with SARS CoV 2 Immune 
dysregulation and inflammation in patients with SARS CoV 2 is associated with a poor clinical outcome 
We investigated the value of the inflammatory markers tryptophan and kynurenine in predicting the survival 
outcome of patients with SARS CoV 2 The study included 252 inpatients with a SARS CoV 2 infection ....

The evaluation of tryptophan and kynurenine as prognostic markers 
in patients with Dysregulation and Immune Inflammation of SARS 
CoV 2 in patients with Dysregulation and Immune Inflammation of 
SARS CoV 2 .... included 252 patients with Immune Inflammation 
of SARS CoV 2 CoV 2 in patients with Immune Inflammmuna-
tion CoV in patients with Immune Inflammmunulation CoV in 
patients with Immune Inflammmunation CoV in patients with 
Immune Inflammulence CoV in patients CoV in patients CoV 
CoV....

Ours

 COVID 19 still remains a severe global health threat Despite the high speed development of vaccines that 
efficiently prevent COVID 19 there are still no effective treatments of the disease once people are infected 
MicroRNAs are powerful regulators of gene expression They are intensely investigated as therapeutic targets 
up to the clinical stage In addition microRNAs can be detected in the circulation and thus represent promis-
ing diagnostic and prognostic biomarkers for long COVID 19

COVID 19 still remains a severe global health threat Despite the high 
speed development of vaccines that efficiently prevent COVID 19, 
there still are still no effective treatments for the disease once people 
are infected MicroRNAs are powerful regulators of gene expression 
They are intensely investigated as therapeutic targets to the clinical 
stage In addition microRNas can be detected in the circulation and 
thus represent promising diagnostic and prognostic biomarkers for 
long-term COVID syndrome.

 .... This became an even larger concern after the COVID 19 outbreak left millions of people dead worldwide 
and generated huge amounts of infected or potentially infected wastes The management and disposal of 
medical wastes during and post COVID 19 represent a major challenge in all countries but this challenge is 
particularly great for developing countries that do not have robust waste disposal infrastructure The main 
problems in developing countries include inefficient treatment procedures, limited capacity of healthcare 
facilities, and improper waste disposal procedures.

.... This became a major concern after the COVID infection left 
millions of people dead worldwide and generated huge amounts of 
contaminated or potentially infected wastes The management and 
disposal of medical wastes during and post COVID was a major chal-
lenge in developing country (particularly in developing nations) A 
review of the current challenges : The main problems in developing 
Countries such as lack of adequate healthcare facilities and lack of 
skilled workers.

https://www.biorxiv.org/
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COVID, while the remaining 30 were not related to long COVID. We followed the procedure outlined in the 
‘Experimental Setup’ section for this experiment and compared the model’s predictions with manual annotations 
provided by two senior PhD students. The results are summarized in Table 4. Our method outperformed the 
baseline methods in terms of accuracy, F1 score, and recall. Although EDA achieved a higher precision than 
ours, it exhibited substantially lower recall, even below the vanilla baseline, indicating a potential bias towards 
classifying articles as non-long COVID. In contrast, our model not only maintained a balance between precision 
and recall but also showed enhanced performance on this new test set, demonstrating the generalization ability 
of our approach.

Ablation studies
We perform the following ablation studies to further understand the effectiveness of our method proposed,

• Para-Sep: It is an ablation study without the data-reweighting feedback link in our method. The BART-based48 
paraphrasing and text classification models are trained separately. The paraphrasing model is first trained 
to produce auxiliary dataset. Then the classification model is trained on its training data and the generated 
auxiliary data. There is no domain adaptation feedback link. From Fig 3a, our method outperforms Para-
Sep baselines by a huge margin. This result highlights the effectiveness of our meta-weight-network-based 
data reweighting in providing valuable feedback to the paraphrasing model, enabling it to generate more 
suitable texts in the target domain. While Para-Sep involves separate training of the paraphrasing and text 
classification models, our approach incorporates a feedback loop where these models influence each other 
through the data weights. The meta-weight-network parameters are optimized to benefit the downstream 
text classification task, resulting in superior performance compared to Para-Sep, which lacks such a feedback 
loop.

• Impact of augmentation dataset (Only-Aug): In this ablation study, we investigate the effect of the generated 
data on the downstream text classification accuracy during testing. We train the classification model solely 
on the generated data, excluding the original training dataset. This results in the following optimization 
problem: 

  With reference to Fig 3a, it becomes evident that exclusively training a classification model using generated 
data could result in compromised performance and high standard deviation. One of the primary reasons for 
this observation is the inherent advantage of human-curated training data, which is typically characterized 
by lower noise levels compared to generated data. Consequently, an overemphasis on utilizing generated data 
might negatively impact the model’s overall performance metrics. Therefore, it is crucial to strike a balance 
between human-curated and generated data in order to maximize the effectiveness of the classification model.

• Effect of γ : In this ablation study, we investigate the impact of varying the hyperparameter γ on the down-
stream text classification performance, measured by test accuracy. We examine the effects of γ values in the 
set {0.01, 0.85, 3, 5} on test accuracy. As depicted in Figure 3b, when γ is increased from 0.01 to 0.85, the 
accuracy improves from 68.41% to 82.75%, reflecting an improvement of 14.34%. This suggests that the influ-
ence of the generated data grows with increasing γ . However, further increasing γ results in a gradual decline 
in accuracy. This trend indicates that as γ becomes larger, there is an improvement in the model performance 
owing to an enhancement in the diversity of the training data leading to a better understanding of the task. 
However by further increasing γ , the impact of the generated data surpasses that of the training data. Since 
the original training data is less noisy than the generated data, placing excessive emphasis on the generated 
data hurt the model’s performance.

minW L(C∗(S∗(W)),D MLO-val)

s.t. C∗(S∗(W)) = L(C,G (D MLO-tr, S∗(W)))

S∗(W) = minS

M
∑

i=1

W(l(S, ti , si)) · l(S, ti , si)

Figure 3.  Ablation studies.
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• Architecture of downstream classification model: Our data augmentation framework was primarily designed 
to be agnostic to the choice of downstream model architecture. Initially, we employed a lightweight LSTM 
model with 15.3M parameters to demonstrate efficacy with less complex architectures. Subsequently, we also 
experimented with the pre-trained RoBERTa base  model55, which contains 125M parameters and is a variant 
of the BERT  model60. Impressively, our approach consistently outperformed the baselines, including standard 
RoBERTa fine-tuning, emphasizing the effectiveness of our adaptive data augmentation pipeline. Detailed 
results with the RoBERTa base model are presented in Table 6. This shows that our method is agnostic to text 
classifiers and can be leveraged to improve different text classifiers.

Qualitative analysis
In this subsection, we perform an in-depth qualitative analysis of test examples, focusing on cases where our 
method correctly classifies instances that all the baseline methods fail to identify. Due to space constraints, we 
include only a few such instances in Table 7. Intriguingly, all these examples are long COVID-related articles. 
Upon closer scrutiny, we found that many of these misclassified examples do not contain the term ‘long COVID’ 
or ‘Sequelae’ (indicating the continuation of the disease). Despite the absence of these terms, our model manages 
to correctly classify these examples as long COVID articles, while the baselines failed. This can be attributed to 
the training of our method on diverse training and good quality generated examples, which has enhanced its 
robustness. Consequently, our model is capable of extracting and leveraging significant features, going beyond 
superficial markers like ‘long COVID’ or ‘Post-Acute Sequelae of SARS-CoV-2 infection’. It can identify a range of 
related words and phrases such as ‘long-term consequences of COVID-19’ and ‘post-COVID’, as well as sentences 
like ‘At six months after COVID-19, critical illness, death, and new disability’, within the broader context of the 
article, which varies from one article to another. The ability of our method to accurately classify these articles 
thus demonstrates its effectiveness in discerning and understanding the deeper, more intricate characteristics of 
long COVID articles, marking a notable improvement over traditional baseline methods.

Extension to multi‑class classification
We aim to extend our method to categorize long COVID articles into more granular sub-classes, facilitating 
easier access and better organization. This enhancement will streamline database maintenance and improve 
the efficiency of information retrieval for healthcare professionals. However, this will necessitate a significant 
investment in time and resources, which we plan to address in our future work.

Table 6.  Results on long COVID article classification dataset using the RoBERTa base as the backbone 
classification model. The evaluation metrics used are Accuracy, F1 score, Precision, Recall and AUC (reported 
in percentage). Mean and std refer to the mean and standard deviation of the evaluation metric over five 
random seeds. Bold indicates the best performance.

Method

Accuracy F1 Precision Recall AUC 

Mean Std Mean Std Mean Std Mean Std Mean Std

Vanilla 81.59 5.69 81.15 5.01 83.23 8.53 79.71 4.87 88.59 5.21

EDA 80.87 1.75 78.82 3.32 86.37 3.35 73.24 8.23 90.01 0.86

Back translation 79.56 11.74 81.17 8.01 79.46 13.54 84.71 5.31 86.03 10.97

T5 Abstractive summarization 80.43 3.39 80.51 2.63 79.95 5.93 81.76 5.31 87.58 2.78

Ours 87.10 1.48 86.62 1.45 88.76 2.95 84.71 2.56 93.27 0.93

Table 7.  Qualitative analysis: This table presents selected examples of texts that our method correctly 
classified, while all the baseline methods failed to do so. All these instances belong to the ‘long COVID’ class.

“Health related quality of life issues including symptoms in patients with active COVID 19 or post COVID 19 a systematic literature review: This systematic review was performed to 
identify all relevant health related quality of life HRQoL issues associated with COVID 19. A systematic literature search was undertaken in April 2020. In four teams of three review-
ers each all abstracts were independently reviewed for inclusion by two reviewers. Using a pre defined checklist of 93 criteria for each publication data extraction was performed 
independently by two reviewers and subsequently compared and discussed. If necessary a third reviewer resolved any discrepancies. The search was updated in February 2021 to 
retrieve new publications on HRQoL issues including issues....”

“CSF rhinorrhoea post COVID 19 swab - A case report and review of literature: We report the case of a 59 year old male who presented with 2 months of persistent rhinorrhoea from 
left nostril post a nasal swab done for coryzal symptoms at the peak of the COVID 19 pandemic. Beta 2 transferrin confirmed it to be a CSF leak and imaging showed a left middle 
cranial fossa encephalocele herniating into the sphenoid sinus as the site of the leak post swab. The leak was treated endoscopically We describe....”

“Pathogenesis of taste impairment and salivary dysfunction in COVID 19 patients: Coronavirus disease 2019, COVID 19, is a highly transmissible pandemic disease caused by severe 
acute respiratory syndrome coronavirus 2 SARS CoV 2. The characteristics of the disease include a broad range of symptoms from mild to serious to death with mild pneumonia to 
acute respiratory distress syndrome and complications in extrapulmonary organs. Taste impairment and salivary dysfunction are common early symptoms in COVID 19 patients. The 
mouth is a significant entry route for SARS COV 2 similar to the nose and eyes. The cells of the oral epithelium taste buds and minor....”

“The impact of COVID 19 critical illness on new disability functional outcomes and return to work at 6 months a prospective cohort study There are few reports of new functional 
impairment following critical illness from COVID 19 We aimed to describe the incidence of death or new disability functional impairment and changes in health related quality of life 
of patients after COVID 19 critical illness at 6 months ....At six months after COVID 19 critical illness death and new disability was substantial ...”

“A map of metabolic phenotypes in patients with myalgic encephalomyelitis chronic fatigue syndrome Myalgic encephalomyelitis chronic fatigue syndrome ME CFS is a debilitating 
disease usually presenting after infection Emerging evidence supports that energy metabolism is affected in .....”
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Nevertheless, we perform a preliminary analysis of how our proposed method works in a multi-class 
classification setup. Hence, we evaluate our method’s efficacy in generating high-quality augmentations for a 
multi-class classification task. Given the limited availability of annotated long COVID datasets for evaluation, 
we opted to conduct additional experiments on the BioCreative LitCovid  dataset61. This dataset is a multi-class 
COVID-19 article classification dataset, categorizing research articles based on title and abstract into seven 
distinct categories: ‘Case Report’, ‘Diagnosis’, ‘Epidemic Forecasting’, ‘Mechanism’, ‘Prevention’, ‘Transmission’, 
and ‘Treatment’. To simulate a low-resource scenario, we selected 667 instances from the entire training dataset. 
Additionally, our validation and test datasets comprise 333 and 1511 instances, respectively. The class distribution 
across the training, validation, and test sets is consistent, with Prevention at 49%, Treatment at 16%, Diagnosis 
at 14%, Case Report at 12%, Mechanism at 5%, and both Epidemic Forecasting and Transmission at 2% each. 
We conducted experiments with this dataset following the setup in the paper. As shown in Table 8, our method 
demonstrated performance improvements over baseline approaches, underscoring its capacity to generate 
informative augmentations, enrich the training dataset, and enhance classifier performance, even in multi-class 
classification settings.

Conclusions
In this work, we propose a data-reweighting-based multi-level optimization framework with a meta-weight 
network for domain-adaptive paraphrasing, specifically designed to generate high-quality additional data for 
long COVID-related text classification. This framework addresses the prevailing challenge of limited datasets in 
this domain, ensuring the generation of high-quality additional data, which in turn, enhances the performance 
of machine learning models. Our framework trains a paraphrasing model and a long COVID article classifica-
tion model with a feedback mechanism to improve the paraphrasing model based on the performance of the 
long COVID article classification model. Thus we ensure that the generations from the paraphrasing model are 
advantageous for the long COVID article classification model. Our framework consists of three stages that are 
performed in an end-to-end fashion, 1) Training a paraphrasing model, 2) Paraphrasing the training dataset to 
generate additional dataset and use it to train the long COVID article classification model, 3) Updating the data 
weights of the paraphrasing model by minimizing the validation loss of the long COVID article classification 
model. A meta-weight-network is used to learn the data weights distribution of the paraphrasing model. Through 
extensive experimentation, our approach demonstrates significant improvement over the baselines in addressing 
data scarcity challenges, underscoring its potential to support the clinical community for long COVID related 
article/document classification.

In conclusion, this work establishes a solid foundation for future progress and investigations in the realm of 
machine learning-assisted long COVID research. As we continue our research endeavors, we plan to incorpo-
rate diverse data sources, such as electronic health records and social media posts, to bolster the robustness and 
comprehensiveness of our classification models. We further intend to expand the scope of classification tasks by 
including more labels and categories, enabling a more comprehensive representation of the intricacies associ-
ated with long COVID symptoms and treatment options. In addition, we will evaluate the effects of the evolving 
terminology related to long COVID on classification performance, ensuring that our models remain current 
and pertinent as our understanding of the condition advances. We further recognize the value of extracting key 
information and summaries from papers. Currently, our focus is on classification, but we see potential for advanc-
ing to summarization tasks. Building such features is complex, but our classification system lays a foundational 
groundwork for it. We further plan to club all these functionalities and maintain a long COVID related database. 
By pursuing these focused future research directions, we aim to significantly contribute to the development of 
highly effective and efficient tools for long COVID research and clinical practice.

Data availability
The dataset analyzed during the current study are available on Huggingface, https:// huggi ngface. co/ datas ets/ llang 
nickel/ long- covid- class ifica tion- data and https:// ftp. ncbi. nlm. nih. gov/ pub/ lu/ LitCo vid/ biocr eative/.

Table 8.  Results on BioCreative LitCovid  dataset61using the LSTM as the backbone classification model. The 
evaluation metrics used is Accuracy, F1 score, Precision, Recall and AUC (reported in percentage). F1 score, 
Precision, and Recall are computed using a macro-averaged approach, where each class is treated equally and 
metrics are averaged across all classes. AUC is calculated with a one-vs-one approach, assessing the classifier’s 
performance on each pair of classes as binary classification problems, then averaged. Mean and std refer to 
the mean and standard deviation of the evaluation metric over five random seeds. The dataset categorizes a 
COVID-19 related research article into seven categories. Bold indicates the best performance.

Method

Accuracy F1 Precision Recall AUC 

mean std mean std mean std mean std mean std

Vanilla 53.98 1.21 23.29 0.9 25.09 0.9 23.43 0.57 59.86 2.03

EDA 59.77 1.11 31.32 0.99 33.78 0.49 30.80 1.17 65.10 2.14

Back translation 58.19 2.01 26.36 4.39 27.49 5.7 26.97 3.54 64.50 3.27

T5 Abstractive summarization 60.33 1.66 29.91 2.45 32.77 3.4 30.22 2.02 65.11 1.77

Ours 66.22 2.24 35.72 1.98 36.99 2.09 35.92 1.83 69.6 0.78

https://huggingface.co/datasets/llangnickel/long-covid-classification-data
https://huggingface.co/datasets/llangnickel/long-covid-classification-data
https://ftp.ncbi.nlm.nih.gov/pub/lu/LitCovid/biocreative/
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