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Trapped atoms 
in spatially‑structured vector light 
fields
Maurizio Verde 1*, Christian T. Schmiegelow 2,3, Ulrich Poschinger 1 & 
Ferdinand Schmidt‑Kaler 1

Spatially‑structured laser beams, eventually carrying orbital angular momentum, affect electronic 
transitions of atoms and their motional states in a complex way. We present a general framework, 
based on the spherical tensor decomposition of the interaction Hamiltonian, for computing atomic 
transition matrix elements for light fields of arbitrary spatial mode and polarization structures. We 
study both the bare electronic matrix elements, corresponding to transitions with no coupling to 
the atomic center‑of‑mass motion, as well as the matrix elements describing the coupling to the 
quantized atomic motion in the resolved side‑band regime. We calculate the spatial dependence of 
electronic and motional matrix elements for tightly focused Hermite–Gaussian, Laguerre–Gaussian 
and for radially and azimuthally polarized beams. We show that near the diffraction limit, all these 
beams exhibit longitudinal fields and field gradients, which strongly affect the selection rules and 
could be used to tailor the light‑matter interaction. The presented framework is useful for describing 
trapped atoms or ions in spatially‑structured light fields and therefore for designing new protocols and 
setups in quantum optics, ‑sensing and ‑information processing. We provide open code to reproduce 
our results or to evaluate interaction matrix elements for different transition types, beam structures 
and interaction geometries.

Most contemporary experiments in the domain of quantum optics and related fields are based on the precise 
control of matter by light at the single-atom level. The underlying techniques and devices have seen a consider-
able development throughout the last decades, leading to many emerging applications, such as atomic frequency 
standards, sensors for magnetic or electric fields, rotations or inertial forces, quantum simulators and quantum 
computers. On the other hand, structured laser beams, featuring superior focusing properties, have already been 
successfully applied in many fields of physics and technology, including optical  trapping1 and manipulation 
of microscopic  particles2–4 as well as to superresolution microscopy  techniques5–7. In the context of quantum 
technology, other applications, such as atomic  clocks8,9 and quantum  computers10,11, may also benefit from 
tailoring light-matter interactions beyond the options offered by commonly used Gaussian beams. A general-
ized theoretical framework of light-matter interaction for general structured laser beams is needed to proceed 
beyond specific case studies such as those for Bessel- or Lauguerre–Gaussian vortex  beams12–14. Modern optics 
instrumentation allows for generating and characterizing a rich variety of different vortex beams with complex 
polarization  structure15, or tightly focused light well beyond the validity range of the paraxial  approximation16–19. 
These tailored light fields are generated by spatial light modulators which allow for programmable and switchable 
beams, or by holographic plates which allow for very precise control over the spatial structure of laser fields. 
On the other hand, many experimental platforms can provide well localized single atomic absorbers. Examples 
include single ions or ion crystals in Paul  traps20 or Penning  traps21, or neutral atoms in optical lattices or tweezer 
 arrays22, as well as solid state systems like rare-earth ions in a host  crystal23, or nitrogen or silicon-color centers 
in diamond  crystals24.

In this work we present a semiclassical treatment of light-matter interaction, with quantized matter and clas-
sical electromagnetic fields, beyond the typically made two assumptions, that the atomic absorbers are strongly 
localized as compared to the spatial variation scales of electromagnetic fields, and that light can be described by 
plane-waves or by Gaussian beams within the paraxial approximation. Specifically, we consider a single trapped 
ion as partially localized, with its electronic state highly localized near the nucleus within approximately 0.1 nm 
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and its center-of-mass wave function spreading a few tens of nanometers. The latter scale approaches, but it is 
still smaller than the wavelengths of driving light fields for typical electric dipole transitions. The results naturally 
extend to trapped neutral atoms, if the confining potential is sufficiently strong. We do not distinguish between 
atomic ions and neutral atoms, assuming strong confinement in both cases. On the other side, focused beams 
are described by accounting for their inherent vector character beyond the paraxial approximation. From these 
requirements, we derive a theoretical framework which allows for predicting, designing and harnessing the 
properties of structured light fields. Our work is supposed to serve also as a tool to explore assets when apply-
ing tailored light fields to localized atomic samples or condensed matter absorbers. We provide the code which 
was used to generate all results shown in this work. Earlier versions of this code were used by us to predict and 
simulate the expected response of trapped ions in various experiments using structured beams; such as in the 
demonstration of the transfer of optical angular momentum to a single  ion25, in the super-resolution micros-
copy of ion wave  packets26 and in the demonstration of the coherent excitation of motional states with vortex 
 beams27. This manuscript is also designed as a guide for using our code, such that readers can adapt it to their 
specific use-cases.

We start by presenting a closed form to evaluate the focal electric fields of propagating waves beyond the 
paraxial approximation and taking into account the full vector properties of the field. Then, we discuss the 
interaction Hamiltonian, taking the electric dipole (E1) and electric quadrupole (E2) transitions into account, 
and discuss several interesting example scenarios, with special attention on vortex light carrying orbital angular 
momentum. We describe arbitrary light-matter interaction geometries represented by different angles between 
the quantizing magnetic field and the beam’s propagation direction and we account for multiple polarization dis-
tributions by using the spherical tensor decomposition of the interaction Hamiltonian and several mathematical 
identities. For example, we show that for strongly focused beams, the polarization in the focal plane is in general 
position-dependent, which leads to complex spatial dependencies of the excitation probabilities. Evidence of 
this property was experimentally demonstrated in our previous works with ions centered on vortex  beams25,28. 
Moreover, we demonstrate how more complex features arise if the spatial position of the atomic absorber is varied 
transversally across the  beam13,29. This can be either realized by scanning the ion’s position across the beam or by 
moving the beam with respect to a fixed  absorber26,30. Finally, we extend the theoretical framework accounting 
for the atomic center-of-mass motion, which is fundamental to describe tightly bound neutral atoms in optical 
tweezers, or trapped ions in Paul traps. In these cases, the quantized external degrees of freedom couple to the 
electric field via light  forces27. In the last section, we sketch applications for tailored light fields, with emphasis 
on quantum computing and -simulation. We point out that structured light may provide an addressable way to 
control and measure motion transverse to the beam’s propagation direction, improve cooling of atomic sensors 
and mitigating frequency shift from parasitic transitions for atomic  clocks31. Incentivized by these perspectives, 
we expect further applications or generalizations of the presented framework.

Spatially structured light fields
Propagating light is typically described by plane waves or paraxial waves. Plane waves are exact solutions of 
Maxwell’s equations, which have infinite spatial extent and are therefore unphysical. Paraxial waves are approxi-
mate solutions of Maxwell’s equations, which more properly describe light fields encountered in realistic set-
tings. The paraxial approximation, as derived e.g.  in32,33, relies on expanding the electromagnetic field in terms 
of powers of the factor krkz  , where kr and kz denote, respectively, the transversal and longitudinal wavenumbers. 
Usually, in describing the light-matter interaction, only the zeroth order is retained, which accounts for trans-
versely polarized propagating fields. Typical paraxial solutions are the ubiquitous Gaussian-type beams, i.e. 
the Hermite-Gauss (HG) and Laguerre-Gauss (LG) solutions, where the paraxial factor can be expressed as 
(kzw0)

−1 , with kz = 2π
�

 being the wavenumber and w0 the beam waist at the focus. These solutions accurately 
account for light beams where the transverse mode profile slowly changes along the propagation direction. In 
particular, LG solutions adequately describe light fields carrying orbital angular momentum, associated to helical 
wavefronts, when the beams are softly focused. In this regime, the orbital angular momentum is independent 
from the polarization degree of freedom, i.e. the spin angular momentum. However, even if these two quantities 
have been demonstrated to be separately gauge  invariant34, they cannot be associated with angular momentum 
operators obeying the standard commutation  relations35,36 and in general they cannot be properly decoupled. 
As discussed e.g.  in37–39, the distinction between orbital and spin angular momentum breaks down for strongly 
confined fields close to the diffraction  limit40–42, for beams featuring a spatially modulated polarization, and 
for light fields near the singularity of optical  vortices43,44. In these cases, the non-separability between spin and 
orbital angular momentum must be taken into account. We refer to these fields as spatially structured vector 
light fields and provide a rigorous framework for computing transition matrix elements for such fields, valid 
beyond the paraxial approximation.

Propagation of vector light and its properties in the focus have been extensively studied and predict two main 
features. First, spatial variations which are strong on the wavelength scale lead to the appearance of longitudinal 
electric field components. This fact can be seen as a consequence of the integral representation of focal fields 
introduced  in45. Indeed, when beams are described as a superposition of plane waves propagating along different 
directions, a unique k-vector is intrinsically ill-defined and longitudinal electric fields accordingly emerge. We 
stress here, that such fields are completely different from the pure longitudinal electromagnetic fields. Second, the 
separation between polarization and spatial degrees of freedom is no longer valid and vector solutions involving 
non-separable combinations of spatial and polarization modes become  necessary46,47. Here, we discuss this aspect, 
with special attention to the case of LG beams, explicitly showing the non-separability between spin and orbital 
angular momentum, whose interplay can generate strong longitudinal fields along the propagation (z)  axis17,48,49.
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Analytical expressions of electric fields have been carried out in complete compliance with Maxwell’s equa-
tions as non-paraxial corrections of the paraxial  solution50. Focal fields can therefore be explicitly calculated 
to the desired degree of accuracy. We start from the plane polarized Lorentz-gauge vector potential �A(�r, t) 
describing an electromagnetic beam in the free space, with no charges or currents, propagating along the z axis 
at wavenumber k and optical frequency ω:

where f (�r) is a slowly varying function obeying the Helmholtz equation. We use the Lorentz condition 
φ = ( ik )∇ · �A to calculate the electric field from the vector potential alone �E(�r, t) = −( ik )∇(∇ · �A(�r, t))− ik�A(�r, t) . 
As shown  in44, being �ei the unit vectors along the directions i = x, y, z , we reach the general expression:

where we neglected the higher order corrections proportional to the second order spatial derivatives ∂i∂jf (�r) and 
we considered the positive frequency part only. The ellipticity parameter σ describes the optical polarization. 
In the soft-focusing limit of vanishing gradients of the mode function, σ = 0 describes purely linear polariza-
tion along x, while σ = ±1 describes purely circular polarizations. The two peculiar properties of vector beams 
explicitly appear in Eq. (2). Longitudinal field components ∝ �ez are proportional to transverse gradients of 
the mode function ∂x,yf (�r) . Moreover, these components and therefore the overall polarization depend on the 
position within the light field. To account for tightly focused HG beams, we use Eq. (2) by means of the mode 
function f HGn,m (�r):

where w0 is the beam waist, Hn and Hm are the Hermite polynomials and ψ(z) = arctan(z/zR) is the usual Gouy 
phase for the Rayleigh length zR = kw2

0/2 . In particular, the mode function f HG0,0 (�r) within Eq. (2) allows to deal 
with highly focused TEM00 Gaussian beams. Similarly, focused LG beams are described by the mode function 
f LGl,p (�r) , which depends on the integer radial index p ≥ 0 and the integer azimuthal index l associated to orbital 
angular momentum. In cylindrical coordinates {ρ,φ, z} , the mode function f LGl,p (�r) reads:

where Cl
p =

√

2p!/π(p+ |l|)! is a normalization constant, L|l|p (x) are the generalized Laguerre polynomials and 
ψLG(z) = −(2p+ |l| + 1) arctan(z/zR) is the generalized Gouy phase. Other vortex fields, sharing the same 
transverse intensity distribution of LG beams, but a different polarization distribution, are the radially and 
azimuthally polarized vector beams. They are superpositions of LG beams:

These two beams display different properties in the focal  plane51. In Fig. 1 we plot the transverse profiles in 
the focal plane for the longitudinal and circular field components

for several tightly focused beams. One can recognize some of the most prominent features: Spatially modulated 
longitudinal electric field components appear for all beams except for the azimuthally polarized vortex light, 
which displays a perfectly vanishing longitudinal electric field component. The radially polarized one shows a 
distinctive longitudinal field concentrating at its center on the focus. Moreover, the LG beam with orbital angu-
lar momentum l = 1 and aligned polarization l = σ = 1 displays a longitudinal field with a doughnut-shaped 
profile, while the anti-aligned LG beam, l = −σ = 1 , displays a Gaussian-shaped longitudinal field which “fills” 
the vortex center.

Spherical tensor decomposition for light‑matter interaction
Here, we present a framework which can be used to compute atomic transition matrix elements for general vector 
light fields of arbitrary mode structure. Specifically, it can be applied to electric dipole and electric quadrupole 
transitions for atomic species with or without nuclear spin.

We consider an atom, with a single valence electron at position �r = (x, y, z) with respect to the nucleus located 
at �R = (X,Y ,Z) . The atom is interacting with a monochromatic laser beam, with an optical frequency ω and 
an arbitrary spatial mode structure �E(�R + �r, t) = �E(+)(�R + �r)+ c.c. characterized by the appearance of both 

(1)�A(�r, t) = f (�r)(�ex + iσ�ey)ei(kz−ωt) + c.c.,

(2)�E(+)(�r, t) =
{

(�ex + iσ�ey)f (�r)+
i

k
[∂xf (�r)+ iσ∂yf (�r)]�ez

}

ei(kz−ωt),

(3)f HGn,m (x, y, z) = E0√
π

w0

w(z)
Hn

(√
2x

w(z)

)

Hm

(√
2y

w(z)

)

exp

(

−x2 + y2

w(z)2
+ ikz

x2 + y2

2R(z)
+ iψ(z)

)

,

(4)f LGl,p (ρ,φ, z) = E0√
2
Cl
p

w0

w(z)

(

ρ
√
2

w(z)

)|l|
L
|l|
p

(

2ρ2

w(z)2

)

exp

(

ilφ − ρ2

w(z)2
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ρ2

2R(z)
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)

,

(5)

�E(+)
rad = 1√

2

[

�E(+)
LG (1, 0, 1)+ �E(+)

LG (−1, 0,−1)
]

�E(+)
azi = 1√

2

[

�E(+)
LG (1, 0, 1)− �E(+)

LG (−1, 0,−1)
]

.

(6)Ez(x, y) = �E(x, y) · �ez Eσ=±1(x, y) = �E(x, y) · (�ex + iσ�ey)
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transversal and longitudinal components and a general polarization distribution. By considering the first two 
terms in the multipole expansion of the electric field �E(+)(�R + �r) around the nuclear position �R , we can write the 
interaction Hamiltonian that describes optically driven electric dipole and quadrupole transitions, as follows:

The electric field and its gradients are evaluated at the atom’s center-of-mass position �R . The first and second 
terms describe the dipole and the quadrupole interaction, respectively. This approximation is accurate as long 
as the valence electron’s spatial wavefunction is strongly localized on the scale of the variations of the electric 
field. As shown  in52,53, two further higher order terms, one accounting for interactions with two electrons and 
the nucleus and the so-called Röntgen term, are by several orders of magnitude smaller. The generalization of 
this treatment to magnetic transitions or to higher-order terms in the electric field multipole expansion, which 
play a role in optical frequency  standards31,54, is straightforward. If the optical frequency lies near one specific 
electronic resonance, we use the rotating wave approximation, i.e. we neglect the oscillatory time-dependence 
and only consider the positive-frequency part Ĥ(+)

I  . Each term in Ĥ(+)
I  involves a combination of the electronic 

position operator components, multiplying the electric field components or their gradients. We can then rewrite 
all these terms, using a more suitable set of electronic operators, to take advantage of the symmetry properties 
of the electronic eigenstates.

For atoms, the spherical symmetry of the nucleus’ Coulomb potential leads to electronic eigenstates fac-
torizing in an angular part, described by universal spherical harmonics YJ ,m(θ ,φ) , and a radial part �n,J (r) , 
where n is the principal quantum number, J is the total angular momentum eigenvalue and m its projection on 
the magnetic quantization axis. To separate the radial and angular part of Ĥ(+)

I  in the calculation of transition 
matrix elements between different electronic eigenstates, a natural choice is the use of irreducible spherical ten-
sor operators. These have well-defined transformation properties under rotations. Their matrix elements, in the 
basis of angular momentum eigenstates, are written in terms of Clebsch-Gordan coefficients by means of the 
Wigner–Eckart  theorem55. Here, as we consider electronic dipole and quadrupole transitions, we rewrite Ĥ(+)

I  
by using rank-1 and rank-2 irreducible spherical tensors T̂∆J

∆m , where ∆J = 0, 1, 2 is the change of total angular 
momentum and ∆m = +∆J , · · · ,−∆J is the change of its projection on the quantization axis. Without loss of 
generality, we assume that the quantization axis is induced by an external magnetic field �B = B0ẑ aligned along 
the z-direction. Here, it is worth noticing that even if the direction of the quantization axis is completely arbitrary, 
the introduction of a magnetic-induced quantization axis is relevant for two reasons. First, an external magnetic 

(7)Ĥ
(+)
I (�r; �R) =

∑

i

r̂iE
(+)
i

∣

∣

∣
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∑

i,j
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∂E
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j

∂ri
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∣

∣

∣

∣

∣ �̂R
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Figure 1.  Normalized transverse profiles of the electric field modulus for longitudinal and circular polarization 
components, calculated by the provided Mathematica code (see the Supplementary material). Here and in all 
following plots the scale factor in panel indicates by how much the shown values are scaled up to cover the full 
color scale. Large factors correspond to weak polarization components. Different vector beam types are shown, 
e.g. HG and LG beams as described by Eqs. (3) and (4) and radially and azimuthally polarized beams described 
by Eqs. (5). All the vortex beams pertain to radial index p = 0 and orbital angular momentum l = ±1 . All the 
beams are close to the diffraction limit with a chosen beam waist of w0 = 1 µm for the optical wavelength is 
� = 0.729 µm.
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field allows to define a common quantization axis, independently on the polarization of the driving laser beams. 
Secondly, thanks to the Zeeman splitting the different magnetic transitions can be separately laser driven. Given 
this choice, the position operators, in terms of spherical tensors, are:

and the dipole interaction Hamiltonian reads:

where the electric field components Ei are evaluated in the center-of-mass position and do not rely on elec-
tronic coordinate operators. From Eq. (9), the relative strengths for electric dipole transitions characterized by 
�m = 0,±1 can be evaluated. In order of doing that, the propagation direction �k of the light field has to be chosen 
with respect to magnetic quantization axis. For instance, if �k is parallel to �B , then Ez(�r) describes the longitudinal 
field component, while Ex(�r) and Ey(�r) are the transverse components. In that case, �m = 0 are driven by the 
longitudinal component field Ez(�r) , and �m = ±1 transitions are driven by the transverse components, namely 
by the circular polarization components Ex(�r)∓iEy(�r) . The relative transition strengths, are proportional to the 
electric field components described by spatial mode profiles shown in Fig. 1.

To obtain the quadrupole interaction part in terms of the spherical tensor operators, we express the terms 
quadratic in the position operators by exploiting the algebra of irreducible spherical tensors

with the Clebsch–Gordan coefficients 
〈

J ,m|J1,m1; J2,m2

〉

 , as follows:

We neglect the terms containing the spherical tensor T̂0
0 as it does not mediate neither electric dipole nor 

electric quadrupole transitions and it is therefore irrelevant for the following analysis. The terms depending on 
T̂1
∆m with ∆m1 = 0,±1 describe electric quadrupole transitions with ∆J = 1 . The corresponding Hamiltonian 

can be written as:

The remaining terms, containing T̂2
∆m , with ∆m = 0,±1,±2 , describe quadrupole transitions with ∆J = 2 

through the interaction Hamiltonian:

where we used ∇ · �E = 0 to simplify the factor multiplying the tensor component T̂2
0 . All the electric field gradi-

ents terms ∂iEj are scalar quantities evaluated at the atomic center-of-mass position. Equations (9), (11) and (12), 
rely on all the electric field components and their gradients. The description of light-matter interaction beyond 
the paraxial approximation becomes then natural and longitudinal fields or spatially modulated polarization can 
be easily taken into account. Therefore, writing the interaction Hamiltonians in terms of tensor operators offers 
a clear advantage when evaluating transition matrix elements for arbitrary vector light fields.
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The usage of tensor operators allows for invoking the Wigner–Eckart theorem, stating that the matrix element 
of a tensor operator between two atomic eigenstates with principal quantum numbers n1,2 , angular momentum 
quantum numbers J1,2 and magnetic quantum numbers m1,2 factorizes as

where the reduced matrix element 
〈

n2, J2||T̂�J ||n1, J1
〉

 depends only on the principal and angular momentum 
quantum numbers, and the Clebsch–Gordan coefficients 

〈

J1m1�J�m|J2m2

〉

 depend only on the angular momen-
tum and magnetic quantum numbers. For a given atomic position �R in a vector light field and given transition 
of the atomic species of interest, the transition matrix elements factorize as follows:

Crucially, f (n1, n2, J1, J2) depends only on the atomic species and the electronic transition, while the relative 
transition strength

contains the properties of the light field and depends on the atomic position �R as well as on the sub-transition 
m1 ↔ m2 of interest. The coefficients c(�m)

ij  can be read off from Eqs. (11) and (12). For studying the effects arising 
from using structured light fields, we are only interested in the relative transition strengths µ(�R; J2, J1,m2,m2) , 
which can now readily be evaluated for different field types and electronic transitions, now characterized by 
�m = 0,±1,±2 . Moreover, we can describe any interaction geometry as parametrized by the angle between the 
propagation direction and the magnetic quantization axis. In that case, we keep the axis system for the beam’s 
description, we rotate the atomic quantization axis relative to it, and we finally replace the tensor operators in 
Eqs. (11) and (12) by the transformed ones. To account for electronic dipole transitions, the same rules will apply 
to Eq. (9). The transformation is achieved by rotating the spherical tensors around a given axis �a by the angle θ 
using the reduced Wigner (small) d-Matrices:

for both �J = 1, 2 . The explicit form of the Wigner (small) d-Matrices is well  known55.
Finally, the spatial extent of the center-of-mass wavefunction �(�R) (defined with respect to the trap center �R0 ) 

can lead to non-negligible corrections when the matter wavepacket is too large to be considered as a point-like 
sensor of the electric field and its gradient, but small enough as compared to the typical beam’s spatial lenghts like 
the optical wavelenght � or the beam waist w 0 . It is worth underlying here, that this conditions are fulfilled for 
a usual trapped ion interacting with a structured laser beam, where the wavefunction �(�R) spreads over tens of 
nanometers, while the beam spatial variations are in the hundred nanometers range. Under these assumptions, 
the beam’s optical phase is considered constant over �(�R) and the effective relative transition amplitudes are 
obtained by averaging the matrix element from Eq. (15) over the wavepacket’s probability distribution:

where �R0 is the center of the trapping potential. The averaged µ̄(�R0) can predict the residual excitation appear-
ing where the bare transition matrix element µ(�R0) is vanishing. It happens, for instance, when a single ion is 
placed in the center of the vortex field. In that case, as shown  in27, a residual excitation can be measured and 
characterized as a function of the wavefunction’s extent, which probes the non-vanishing electric fields near the 
vortex phase-singularity.

Note that the above formalism can be equivalently applied to atomic species with nuclear spin. In this case 
the total angular momentum is F = J + I , being I the nuclear spin, and Eqs. (9) and (15) have to be correspond-
ingly modified by taking �J → �F and �m → �mF . Moreover, it is worth underlying some key aspects of 
the introduced framework as compared to previous theoretical  works13,56–58. First, it shows a wide applicability 
spectrum, which goes beyond the treatment of atomic excitation by light carrying orbital angular momentum, 
and encompasses a broader range of spatially structured vector beams. Second, even when dealing with vortex 
light, the particular choice of the beam, commonly in the form of Bessel or LG beams, is not the starting point for 
the theoretical analysis, but only appears for concrete calculations. Finally, in the context of perturbation theory, 
by following the ideas presented  in59, it could be further generalized to multi-photons transitions.

(13)
〈

n2, J2,m2|T̂�J
�m|n1, J1,m1

〉

=
〈

n2, J2||T̂�J ||n1, J1
〉

√
2J1 + 1

〈

J1m1�J�m|J2m2

〉

(14)
〈

n2, J2,m2|Ĥ(+)
I (�R)|n1, J1,m1

〉

= f (n1, n2, J1, J2) µ(�R; J2, J1,m2,m2),

(15)
µ(�R; J2, J1,m2,m2) =

∑

i, j
= x, y, z

+�J
∑

�m=−�J

〈

J1m1�J�m|J2m2

〉

c
(�m)
ij ∂iEj|�R

(16)T̂�J
�m(�r) →

˜̂
TJ
�m(�r) =

∑

m′
d�J
�m,m′(θ , �a)T̂�J

m′ (�r)

(17)µ̄(�R0; J2, J1,m2,m2) =
∫

µ(�R0 + �R; J2, J1,m2,m2)|�(�R)|2d3 �R,
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Spatial dependence of electric quadrupole transitions in vector light beams
In this section, we analyze relative transition strengths for different beam types, sub-transitions and interaction 
geometries for the particular example of the �J = 2 electric quadrupole transition 42S1/2 ↔ 32D5/2 near 729 nm 
in a 40 Ca+ ion. The findings presented here directly carry over to other atomic species for identical ratios of 
beams waist to driving wavelength.

In Fig. 2, we show transition strengths for sub-transitions between different Zeeman levels, in the focal 
plane of the various types of structured beams shown in Fig. 1, for the case that the drive field propagates along 
the quantization axis. Here, rotational symmetry around the propagation axis imposes conservation of the 
z-component of total angular momentum. Under typical conditions, where the driving wavelength is by far the 
smallest spatial scale of the light field, mainly the longitudinal gradients of transverse components ∂zEx and ∂zEy 
drive electric quadrupole transitions. The �m = ±1 transitions exhibit the strongest coupling, but vanish where 
the transverse electric field amplitude is zero, as for example on the optical axis of LG and HG beams. However, 
in the proximity of such field nulls and for tightly focused beams, the strong transversal field gradients drive 
�m = ±2 transitions. Furthermore, combinations of transverse and longitudinal gradients ∂xEx , ∂yEy and ∂zEz 
enable driving of �m = 0 transitions. These terms become dominant in the limit of extremely tight focusing, 
characterized by strong longitudinal fields.

We recover the experimental findings and theoretical predictions of Refs.25,28,29. In the particular case of LG 
beams with a single unit of orbital angular momentum l = ±1 , we find the non-vanishing transition strength 
for �m = 0 transitions, as occurring in the vortex beam singularity, when the optical spin and orbital angular 
momenta σ and l are anti-parallel, σ = −l . This behaviour is moreover quantified across the transverse cross-
section of the laser beam’s focal plane. Transitions with �m = +1 are mostly driven by the longitudinal gradient 
of the electric field and lead to transition strengths proportional to the electric field modulus, which is vanishing 
on the optical axis of HG and LG beams. Conversely, the transitions strengths for �m = +2, 0 depend on the 
transverse electric field gradients. On the optical axis, these vanish for a the Gaussian mode, while assuming 
maximum values for HG beams. LG beams with topological charge l = 1 , feature strong field gradients on 
the optical axis, which lead to peak transition strengths in the center for �m = 0 and vanishing strengths for 
�m = +2 . Very small gradients lead to rather weak �m = −1 transitions, except for radial and azimuthal light 
fields, which contain circular polarization σ = −1 and can also drive strong �m = −1 and weak �m = −2 

Figure 2.  Relative transitions strengths computed from Eq. (15) for a �J = 2 electric quadrupole transition. 
Shown are excitation strength profiles in the focal plane of a drive field propagating along the quantization (z) 
axis, for beam types and parameters as in Fig. 1. Profiles are shown for different sub-transitions characterized by 
the change in the magnetic quantum number �m , with m1 = +1/2 as the initial state.
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transitions. Our formalism, when applied to LG beams, is in full agreement with previous predictions based on 
different theoretical  approaches13,56–58.

To explore the effect of different angles θ between the quantization axis and the propagation direction of 
the light field, we exploit the rotation properties of spherical tensors. The role of the angle θ can be intuitively 
understood for dipole transitions, where the electric field components Ez and Eσ=±1 , defined via Eq. (6), drive 
respectively �m = 0 and �m = ±1 transitions. In that case, rotating the quantization axis effectively means to 
redefine these components with the consequent modification of matrix element cross-sections. However, in the 
case of electronic quadrupole transitions, see Eqs. (11) and (12), this mapping is much more involved and we 
cannot follow a simple intuition.

To exemplify the role of different light-matter interaction geometries, we consider the specific sub-transition 
�m = 0 , for which the relative transition strength for different incidence angles are shown in Fig. 3. The electric 
field gradients appearing in Eq. (12), mix under rotations and interfere, giving rise to complex spatial patterns of 
the transitions strengths. Interestingly, radially and azimuthally polarized LG beams, when driving quadrupole 
transition at certain angles with the magnetic field, affect the atom in a similar way that is produced when HG 
beams propagating along the quantization axis are impinging it. This can be understood by considering that in 
general LG beams can be written as superposition of HG beams. The different components in such superposition 
can be then modulated by the light-matter interaction geometry. Other useful features can be highlighted by 
quantifying the role of the incidence angle θ on the transitions strengths. For example, one can characterize the 
sensitivity on fluctuations on the direction of the magnetic field over a set of different �m quadrupole transitions. 
The effect of unavoidable magnetic field fluctuations can be then reduced by choosing the optimal configuration. 
More generally, the framework presented allows for exploring different geometries to tailor light-matter interac-
tion for specific purposes. This could be particularly useful in the context of motional sidebands.

We emphasize that our formalism allows for the treatment of arbitrary structured light fields, beyond the 
HG and LG vector beams analysed in this work. We expect it to be of particular use when dealing with more 
complex electric field structures or  topologies60 and extremely focused beams, where no analytical description, 
but only numerical evaluation is available. In these cases, the framework will work with discretized electric field 
components and discretized gradients. For instance, numerical evaluation of focal  fields40 produced via different 
real world optical systems can be used to carry out even more detailed predictions.

Figure 3.  Relative transitions strengths computed from Eq. (15) for a �J = 2 electric quadrupole transition. 
The beam types represented in Fig. 1 are used to calculate the excitation strength profiles for a single atom 
lying in the beam’s focal plane. The sub-transition �m = 0 , with initial state m1 = +1/2 , has been considered 
for different light-matter interaction geometries which are parametrized by different angles θ , in the y, z plane, 
between the light propagation direction along ẑ and the magnetic quantization axis. The top row θ = 0 , is 
identical to the middle row ( �m = 0 ) of Fig. 2. Different patterns arise from different combinations of field 
gradient terms. For particular orientations, the excitations profiles for radially and azimuthally vortex light 
resembles the ones of HG beams. In particular, azimuthally polarized light leads to perfectly vanishing excitation 
strength for θ = 0 , while the on-axis excitation is maximized for radially polarized light.
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Coherent coupling of structured light fields to the motion of harmonically trapped 
atoms
In this section, we extend the framework developed above to describe coherent coupling to the motion of single 
harmonically trapped ions or neutral atoms. We again focus on electric quadrupole transitions, which exhibit 
narrow linewidths, much smaller that the harmonic confinement secular frequencies. This admits optical driv-
ing within the resolved sideband regime and therefore coherent driving of transitions between different oscillator 
eigenstates as achieved by weakly detuning the laser frequency. Note that some of the following predictions have 
been already experimentally  tested27.

A Coulomb crystal of N ions confined in a harmonic potential is described by a set of 3N collective modes 
of oscillations (normal modes). For strong confinement (resolved sideband regime) and low temperatures 
(Lamb–Dicke regime), quantum mechanical behaviour of the normal modes can be observed. The normal modes 
are independently quantized, using the annihilation and creation operators âi and â†i  ( i = {1, · · · , 3N} ), which 
create or destroy motional quanta pertaining to mode i, respectively. In the following, we restrict the treatment 
to the case of a single ion, which has three secular modes. These describe oscillations at secular frequencies ωq 
and along directions q = {X,Y ,Z} , which are the mutually orthogonal main axes of the confining trap potential. 
The oscillator eigenstates â†qâq|nq� = nq|nq� are characterized by motional quantum numbers nq . In the resolved 
sideband regime, transitions between different eigenstates can be coherently driven. In order to describe the 
relative coupling strengths, we extend the framework introduced above by replacing the atomic center-of-mass 
coordinate �R by �R0 + �̂R , where �R0 is the trap center and �̂R is the atomic position operators describing the displace-
ment from the equilibrium position. The relative transition strength Eq. (15) then also becomes an operator 
µ̂

(

�R0 + �̂R
)

 . We compute the transition matrix elements between oscillator eigenstates with respect to the 
motional quantum numbers {nq}:

The common treatment of motional transitions in the resolved sideband regime consists of assuming a plane-
wave driving field, for which the electronic matrix elements do not depend on the atom position. The relative 
transition strength factorizes into the electronic matrix element and a motional matrix element, which is obtained 
by expressing the plane-wave field in terms of the atomic position operator �̂R and taking its matrix elements with 
respect to oscillator  eigenstates61. The validity of this approach clearly breaks down for tightly focused drive fields.

First-order sideband transitions on mode p are driven by detuning the drive field by ±ωp from the electronic 
(carrier) resonance. Upon transition from the initial to the final electronic state, the motional quantum number 
of the mode is changed by �np = ±1 . In the following, we describe how the relative transition amplitudes for 
first-order sideband transitions can be computed for arbitrary vector fields. To that end, we expand the bare (elec-
tronic) relative transition strength Eq. (15) around the trap center �R0 up to first order in the atomic coordinates:

Restricting to a first-order sideband of mode p, i.e. n′p = np ± 1 and n′q = nq for q  = p , the zeroth order term 

vanishes and only one term from the first expansion order remains. Using q̂ =
√

�

2mωq
(âq + â†q) , we derive the 

relative transition strengths for the blue sideband (bsb) n′p = np + 1 and red sideband (rsb) n′p = np − 1:

Considering again an electric quadrupole transition and assuming the special—but experimentally relevant—
case that the beam axis system coincides with the trap axis system, we invoke Eq. (15) to calculate the spatial 
derivative of the bare transition strength:

For the case that the axes systems do not coincide, we have to employ the derivative direct along �ep:

(18)µ(�R0 + �̂R, {n′q}, {nq}) =
〈

{n′q}|µ̂
(

�R0 + �̂R
)

|{nq}
〉

.

(19)µ(�R0 + �R) = µ(�R0)
〈

{n′q}|{nq}
〉

+
∑

q=X,Y ,Z

∂µ

∂q

∣

∣

∣

∣�R0

〈

n′q|q̂|nq
〉

+O(q2).

(20)µbsb(�R0) =
∂µ

∂p

∣

∣

∣

∣�R0

√

�

2mωp

√

np + 1,

(21)µrsb(�R0) =
∂µ

∂p

∣

∣

∣

∣�R0

√

�

2mωp

√
np.

(22)∂pµ(�R; J2, J1,m2,m2)|�R0 =
∑

i,j=X,Y ,Z

+�J
∑

�m=−�J

〈

J1m1�J�m|J2m2

〉

c
(�m)
ij ∂p∂iEj|�R0

(23)∂p =
∑

q=X,Y ,Z

(

�ep · �eq
)

∂q
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Comparing Eq. (15) against Eqs. (20) and (22), we see that for a quadrupole transition, the field gradients 
govern the bare electronic transition strengths, while second spatial derivatives of the field govern the coupling 
to the atomic motion.

We apply this framework for a �J = 2 quadrupole transition to compute relative transition strengths for 
�n = 0 (carrier) and �nq = 1 (blue sideband) transitions for all modes q = X,Y ,Z , by assuming the atom being 
in its motional ground state and lying in the focal plane of the structured beams covered above. The extension 
to arbitrary sidebands with different intial motional state is straightforward by means of Eqs. (20) and (21). The 
results for magnetic sub-transitions �m = +1 are shown in Fig. 4. The trap axes coincide with the axis system 
defined by the laser beam, with z being the magnetic quantization axis as above. The laser beam also propagates 
along direction z.

As expected, the carrier excitation profiles ( �n = 0 ), reflect the intensity profile of the σ = �m = +1 polari-
zation component, compare to first row of Fig. 1. Here, the transition strength is governed by the optical phase 
gradient along the propagation direction, which is determined by the traveling wave term eikz . For the sidebands 
pertaining to modes along the transverse directions x and y, we see that the transitions strengths are proportional 
to the gradients of the carrier transition strengths along the respective direction. For HG and LG beams, the 
transition strengths for these sidebands peak at the center of the beam. This is particularly interesting as at these 
points, the carrier excitation strength is vanishing, as has been experimentally shown in Ref.27. The bottom row 
of Fig. 4 shows the sideband transitions strengths for the mode longitudinal to the beam propagation direction 
(z). As for the carrier transition, these are proportional to the beam intensity, as they are mainly generated by the 
traveling wave component eikz . Conversely (not shown), when l  = σ a distinct longitudinal  field28 concentrates 
at the center of the focused beam, which changes the excitation profiles for the �m = 0 transition, see Fig. 2.

Note that the framework introduced above can be used to predict the transversal motional excitations of 
a single trapped ion when is placed in the phase singularity of a vortex beam or within a slightly misaligned 
Gaussian beam, as respectively reported  in27  and62. In both works, the electric field gradients perpendicular 
to the light propagation direction lead to transversal motion excitations, where the transition strengths are 
described by an effective transverse Lamb–Dicke parameter η⊥ and modulated by the beam mode profiles and 
polarization structures.

Figure 4.  Relative transition strengths for carrier �n = 0 , see Eq. (15) and blue sideband �nj = 1 transitions, 
see Eq. (20), are calculated for the m = + 1

2
↔ m = + 3

2
 sub-transition of a �J = 2 quadrupole transition. Blue 

sideband strenghts are calculated under the assumption that the atom is in the motional ground state. The drive 
field propagates along the quantization axis z with circular polarization σ = +1 (except for radially and 
azimuthally polarized beams), the trap axes are aligned with the laser axis system, and the beam types and 
parameters are the same as above. �nj = 1 refers to the addition of a single motional quanta along the 
j-direction. The transition strengths for the longitudinal (z) and transversal (x, y) sideband, are rescaled by the 
Lamb–Dicke parameters ηz = k

√

�

2mωz
 and ηx,y =

√
2

w0

√

�

2mωx,y
 introduced in Ref.27.
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Discussion and outlook
This work provides a unified and generalized treatment of light-matter interaction for strongly localized atoms 
interacting with structured light fields, beyond the paraxial approximation. We explicitly derived equations 
describing atomic dipole and quadrupole transitions, for arbitrary interaction geometry as defined by the light 
propagation direction and the quantizing magnetic field. The treatment was extended to describe the coupling to 
the atomic motion for the case of harmonically trapped atoms, with a specific focus on trapped-ion experiments. 
In this context, we highlighted how the introduced formalism precisely describes the surprising predictions, 
reported in literature, when trapped ions interact with vortex light fields driving electronic quadrupole transi-
tions and their longitudinal and transversal motional sidebands.

Our generalized framework allows for the quantitative description of light-matter interaction using more 
general vector fields with arbitrary mode functions and spatially modulated polarization. In conjunction with 
the provided code, it allows for exploring a wealth of phenomena occurring when atomic systems are coherently 
manipulated using structured light fields. In the following, we discuss a number of possible application scenarios.

As noted initially, technological applications for structured light fields currently emerge, including e.g. 
 photolithography63. In the context of such applications, trapped atoms may serve as precise probes with sub-
wavelength resolution for mapping out the properties of the light fields, in order to characterize and improve 
optical instrumentation.

Structured light fields can be a valuable asset for many emerging quantum technologies. For example, optical 
frequency  standards31 can be improved using vortex beams, allowing for ac Stark-shift-free excitation of clock 
transitions. In the context of trapped-ion quantum computing, vortex beams can be applied to realize optimized 
quantum gates with minimized parasitic Stark shifts and off-resonant scattering. In particular, vortex beams can 
efficiently generate state-dependent optical forces transverse to the beam propagation  direction64, which can 
allow for increased versatility of optical addressing schemes operating on linear Coulomb crystals. For many 
trapped-ion qubit realizations, single- and multi-qubit gates are realized via two-photon Raman transitions 
mediated by off-resonant E1 electric dipole transitions. For example, for qubits based on the spin of the valence 
electron of 40 Ca+  ions65–67, stimulated Raman transitions mediated by the S1/2 ↔ P1/2 transition coherently drive 
transitions between the Zeeman sublevels mJ = ±1/2 of the electronic ground state and the respective motional 
sidebands. Using such stimulated Raman transitions in conjunction with structured light fields may lead to 
interesting applications, for example to drive motional sideband without parasitic carrier excitation. Moreover, 
spin-dependent optical forces generated by vortex beams may be used to implement coherent spin-dependent 
ion SWAP  operations68,69. Finally, highly excited Rydberg atoms or  ions70,71 can provide the possibility to study 
light-matter interaction on the single atom level in a new regime, where the spatial features of the driving fields 
are smaller or of the same order than the spatial extent of the electronic wavefunctions.

Data availability
All the data described in the paper are generated by running the Mathematica code provided in the Supple-
mentary material. The reader can find there the information to reproduce all the plots discussed in the paper.
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