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A multi‑modal attention neural 
network for traffic flow prediction 
by capturing long‑short term 
sequence correlation
Xiaohui Huang 1, Yuan Jiang 1*, Junyang Wang 1, Yuanchun Lan 1 & Huapeng Chen 2

Accurate traffic flow prediction information can help traffic managers and drivers make more rational 
decisions and choices. To make an effective and accurate traffic flow prediction, we need to consider 
not only the spatio‑temporal dependencies between data, but also the temporal correlation between 
data. However, most existing methods only consider temporal continuity and ignore temporal 
correlation. In this paper, we propose a multi‑modal attention neural network for traffic flow 
prediction by capturing long‑short term sequence correlation (LSTSC). In the model, we employed 
attention mechanisms to capture the spatio‑temporal correlations of the sequences, and the model 
based on multiple decision forms demonstrated higher accuracy and reliability. The superiority of 
the model is demonstrated on two datasets, PeMS08 and PeMSD7(M), particularly for long‑term 
predictions.

Over the past few decades, an increasing number of private cars have brought a series of problems such as traf-
fic congestion and parking difficulties. Accurate traffic prediction can provide powerful decision-making basis 
for traffic managers and enable drivers to choose smoother roads for  travel1. Traditional machine learning to is 
often used predict traffic flow, such as Cai et al.2 proposed k-nearestneighbor (KNN) for traffic flow prediction. 
However, the KNN algorithm is a distance-based method that assumes linear relationships between samples. 
In traffic flow prediction, the relationship between the past and future flow is often nonlinear, making the KNN 
algorithm less suitable for effectively fitting the data. With the development of deep neural networks, methods 
such as long short-term memory (LSTM) and gated recurrent unit(GRU) have emerged to handle temporal 
 dependency3,4, while methods such as convolutional neural network (CNN) and graph convolution network 
(GCN) have emerged to handle spatial  dependency5,6. And some other approaches, such as Medrano et al.7 using 
attention mechanisms and Zhang et al.8 leveraging graph convolution, have been effective in predicting traffic 
flow. However, these prediction methods still have three limitations.

Fixed spatial dependency
In the traffic road network, the traffic flow between different nodes often affects and correlates with each other. 
As shown in Fig. 1, the traffic flow at node A may be influenced by nodes C and D. This influence may even 
change over time, for example, the correlation between an industrial zone and a residential area may be stronger 
on workdays but weaker on non-workdays. Therefore, when conducting traffic flow prediction, it is necessary to 
capture this dynamic spatial dependency.

Limited‑range temporal dependency
For a certain node, different historical traffic flows may have different impacts on the current traffic flow at that 
node. As shown in Fig. 2, the traffic flow at node A at time tl may have weak dependency with the traffic flow at 
time tl−n , but strong dependency with the traffic flow at time tl−n−1 . Therefore, capturing this type of nonlinear 
and highly dynamic long temporal dependency is also one of the key points of traffic flow prediction.

Temporal dependency
As shown in Fig. 3, temporal dependency refers to the relationship between data at adjacent time points in the 
time dimension. It describes the relationship between the data at a time point and the data at its adjacent previous 
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or next time point. Temporal correlation refers to the relationship between data in two adjacent time periods 
in the time dimension. Each time period can contain data from one or more time points, and time correlation 
describes the mutual association between the data in these two adjacent time periods. This association may be 
positive, negative, or unrelated, depending on how the data changes over time. If we only consider the time 
dependency and ignore the correlation between future and past traffic flow, we may not be able to fully utilize the 
potential information of the traffic flow data. This is because traffic flow often has certain patterns and regulari-
ties, such as the flow might change regularly within specific time periods. Therefore, considering the correlation 
between traffic flow data is very important for improving the accuracy of prediction. This is why combining the 
time dependency and the correlation between traffic flows in the model helps to improve the prediction accuracy.

In the past few years, with the strong emergence of attention mechanisms in image and natural language 
 processing9,10, and the superiority of CNN on Euclidean structured data, we were inspired to apply attention 
mechanisms and CNN in our model to address spatio-temporal dependencies and temporal correlation.

In this article, we input all traffic flow data into a spatio-temporal feature extraction module to obtain dynamic 
spatial dependency and long-term temporal dependency. Then, the CNN is used to capture the temporal cor-
relations in the historical traffic flow data and combine it with the spatiotemporal information extracted from 
the data. An attention-based periodicity module is added to improve the errors caused by a single decision. 
In summary, the proposed model in this article effectively integrates dynamic spatial dependency, long-term 
temporal dependency, temporal correlations, and periodicity to enhance the prediction accuracy of traffic flow 
data. The experimental results demonstrate that incorporating temporal correlations can improve the predictive 
accuracy of the model. The main contributions of this work can be summarized as follows:

• We propose a capturing long-short term sequence correlation method for discovering the relationship 
between traffic flow of neighbor time spans.

• We develop a multi-modal attention framework by fusing the periodicity and temporal sequence correlation 
for traffic flow prediction.

• We evaluate the LSTSC model on two real-world datasets and the experimental results demonstrate that the 
LSTSC model outperforms the baseline algorithms.

Figure 1.  Dynamic spatial dependency.

Figure 2.  Long temporal dependency.

Figure 3.  Temporal correlation.
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The structure of this work is summarized as follows. “Related work section” section give the related work 
on traffic flow prediction. The definition and notation of traffic flow have been given in “Definition and nota-
tion” section. The general framework of the proposed model is presented in “A multi-modal attention neural 
network” section. “Experiment and result analysis” section presents the results of the model. Finally, the paper 
is concluded in “Conclusion” section.

Related work
In the section, we will elaborate on the traffic flow prediction method based on graph convolution, the methods 
based on CNN and the methods based on attention mechanism.

Traffic prediction methods based on CNN
CNN model is one of the most important classical structures in deep learning models, and which is often used 
to solve the traffic prediction problem. Yang et al.11 classified traffic data according to proximity (short-term 
characteristics), periodicity and trend (long-term characteristics), and mapped them into a two-dimensional 
space composed of time and space. The high-level spatio-temporal features learned by CNN from matrices 
with different time lags are further fused with external factors through a logistic regression layer to obtain the 
final prediction. Zhang et al.12 used the spatio-temporal feature selection algorithm (STFSA) to determine the 
optimal input data time delay and spatial data amount, and extracted the selected spatio-temporal traffic flow 
features from the actual data and converted them into a two-dimensional matrix. A CNN is later used to learn 
these features to build a prediction model. Cao et al.13 proposed a traffic speed prediction model based on CNN 
and LSTM. Firstly, CNN was used to extract the daily periodicity and weekly periodicity characteristics of traf-
fic speed in the target area, and the spatio-temporal characteristics of CNN output were extracted through the 
LSTM layer. Ma et al.14 used the nonlinear fitting ability of CNN to extract deep features from the convolutional 
layer and pooling layer for model training. Yu et al.15 used 3D convolutional kernels to simultaneously extract 
and fuse spatio-temporal features in traffic flow data to ensure that temporal information is treated as spatial 
information in all network layers.

Although CNN can capture the spatial dependencies in traffic flow prediction, the topology of traffic networks 
is typically irregular, and traditional CNN are better suited for regular grid-like data, making it challenging to 
handle irregular data.

Traffic prediction methods based on graph neural networks
The GCN model acts as a feature extractor just like a CNN, except it works on graphs. Zhao et al.16 proposed a 
temporal GCN, which combined GCN and GRU. In simple terms, for complex topologies of traffic data, we can 
use GCN to capture spatial dependency and GRU to capture temporal dependency of traffic data. Ali et al.17 
combined GCN based on LSTM with previously published models to capture spatial patterns and short-time 
temporal features of images. Chen et al.18 proposed a novel location-graph convolutional network (Location-
GCN). Location-GCN adds a new learnable matrix to the GCN mechanism, and uses the absolute value of the 
matrix to represent the different degree of influence between different nodes. Peng et al.19 used the dynamic 
traffic flow probability graph to model the traffic network, and performed graph convolution on the dynamic 
graph to learn the spatial features of the data, and combined with the LSTM unit to learn the temporal features 
of the data. Tang et al.20 adjusted the graph convolutional network based on spatial correlation to extract the 
spatial features of the road network.

LSTM was designed to address the issue of short-term time dependencies in traditional RNN. However, in 
excessively long sequences, problems of gradient vanishing or exploding can still arise. Gradient vanishing pre-
vents the model from learning long-term dependencies, while gradient exploding leads to numerical overflow, 
causing instability in network training.

Traffic prediction methods based on attention mechanism
Attention mechanism is a commonly used module in deep learning. As a resource allocation scheme, it uses lim-
ited computing resources to process more important information, which is the main means to solve the problem 
of information overload. Liao et al.21 proposed an improved dynamic Chebyshev GCN model. In this method, 
an attention mechanism based Laplacian matrix update method is proposed, which approximately constructs 
features from data of different periods. Wang et al.22 provided a learnable location attention mechanism that can 
effectively aggregate the information of neighboring roads. Yin et al.23 designed an internal attention mechanism 
to capture the temporal dependency, and in addition used adjacency as a prior to divide the nodes in the road 
network into different neighborhood sets. In this way, attention can dynamically capture spatial dependency 
within and between same-order neighborhoods. Zheng et al.24 designed a Conv-LSTM model based on atten-
tion mechanism. A reasonable attention mechanism was designed in the model to distinguish the importance 
of different time stream sequences by automatically assigning different weights. Inspired by the role of attention 
mechanism in regulating information flow, Wei et al.25 embedded the attention mechanism into GRU and LSTM 
recurrent modules in an attempt to focus on the important information of internal features.

Although the introduction of the attention mechanism has addressed some deficiencies in previous traffic 
flow models, these attention-based models still lack the capture of temporal correlation, meaning they do not 
capture the association between future and past data. Inspired by these studies, we use attention mechanisms 
and CNN to capture spatio-temporal dependencies and temporal correlation separately.

Definition and notation
In this section, we will give some definition and notations related to traffic flow forecasting.
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Temporal dependency and temporal correlation
As shown in Fig. 3, temporal correlation can be defined as: by observing the historical traffic flows in two adjacent 
time slots and using CNNs to capture the temporal correlations in the data, the equation is as follows:

where Conv represents CNN, while Xt1∼tn and Xt1+n∼t2n represent two adjacent historical traffic flow data seg-
ments in the time dimension. In order to comprehensively capture the spatiotemporal information in the data, we 
introduced the channel dimension D. We are able to leverage the traffic flow information from multiple channels, 
integrating data from different channels to provide more comprehensive and accurate data features as output.

Temporal dependency can be defind as: by observing the continuous historical traffic flows in a time interval 
and using attention mechanism to capture the temporal dependencies between the data, the equation is as follows:

where Att represents attention mechanism.

Traffic flow prediction problem
Td
wth, Td+3

w  th and Td+6
w  th respectively represent the dth day, (d + 3) th day and (d + 6) th day of the wth week, and 

Td
w+1 represents the dth day of the (w + 1) th week. We collect the traffic flow data Xd

w;t1∼t2n
 , Xd+3

w;t1∼t2n
 and Xd+6

w;t1∼t2n
 

for time slots t1 ∼ t2n on the Td
w th day, Td+3

w  th day and Td+6
w  th day, as well as the traffic flow data Xd

w+1;t1∼tn
 for 

time slots t1 ∼ tn on the Td
w+1 th day as historical traffic flow data, and predict the traffic flow data for time slots 

tn+1 ∼ t2n on the Td
w+1 th day. Traffic flow prediction can be simply expressed as follows:

where C represents the temporal correlation of historical traffic flow data, X̂d
w+1;tn+1∼t2n

 represents predict the traf-
fic flow data for time slots tn+1 ∼ t2n on the Td

w+1 th day, P represents the periodicity of historical traffic flow data, 
and M1 and M2 represent respective components of the traffic flow prediction model. The periodicity of P refers 
to the occurrence or variation of similar events, phenomena, or patterns at the same time intervals every week.

A multi‑modal attention neural network
The overall framework of the model is shown in Fig. 4. The model first takes all historical traffic flow data as 
input, which includes the characteristics of traffic flow in time and space. These data are fed into the (spatial-
temporal transformer) STTN module, whose goal is to extract the dynamic spatial dependencies and long-term 
temporal dependencies from the data. In other words, this module analyzes historical traffic flow data to identify 
patterns and trends in traffic, which are important information for predicting future traffic flow. Next, the model 
uses a CNN to continue capturing the long-term and short-term temporal correlation of historical traffic flow 
data based on spatio-temporal dependencies. By analyzing this data, CNN can identify traffic flow patterns that 
vary over time, which is crucial for predicting future traffic flow. Then, the model combines the long-term and 
short-term temporal correlation information extracted by CNN with historical traffic flow data. Finally, the 
model integrates periodic information into the prediction model to avoid errors caused by single decisions. 
This is because considering the periodic nature of traffic flow (such as different traffic volumes on weekdays and 
weekends) is very helpful for improving prediction accuracy.

Long‑term temporal correlation and short‑term temporal correlation modules
For the long-term temporal correlation module, the traffic flow data for time slots t1∼tn and tn+1∼t2n on Td+3

w  th 
day and the traffic flow data for time slots t1∼tn and tn+1∼t2n on Td+6

w  th day can be spliced on the channel dimen-
sion respectively. The equation is as follows:

where the elements inside the brackets [.] are concatenated in a matrix format.
After splicing, the data dimension is reduced through the full connection layer. Finally, the spatio-temporal 

dependency and correlation capture module (STDCCM) module is input to obtain the spatio-temporal char-
acteristics of the traffic flow data, and the long-term temporal correlation of the data is extracted. For the short-
term temporal correlation module, first extract the spatio-temporal characteristics of the traffic flow data for 
time slots t1∼t2n on Td

w th day, and finally directly capture the short-term temporal correlation. The reason for 
the classification of short-term and long-term temporal correlation is that the importance of short-term and 
long-term temporal correlation may vary in different time steps.

(1)C = Conv
(

Xt1∼tn ,Xt1+n∼t2n

)

,

(2)T = Att
(

Xt1∼tn

)

,

(3)C =M1

(

Xd
w;t1∼t2n

,Xd+3
w;t1∼t2n

,Xd+6
w;t1∼t2n

)

,

(4)X̂d
w+1;tn+1∼t2n

=M2

(

Xd
w+1;t1∼tn

,C, P
)

,

(5)Xd+3,d+6
w;t1∼tn

=

[

Xd+3
w;t1∼tn

,Xd+6
w;t1∼tn

]

,

(6)Xd+3,d+6
w;tn+1∼t2n

=

[

Xd+3
w;tn+1∼t2n

,Xd+6
w;tn+1∼t2n

]

,
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The spatio-temporal dependency and correlation capture module(STDCCM) is shown in Fig. 5. This module 
consists of two parts, one is the STTN used to extract spatio-temporal dependencies, and the other is used to 
capture temporal correlation for temporal correlation. It first captures the spatio-temporal features of traffic flow 
data, and then extracts temporal correlation.

The STTN is composed of spatial transformer and temporal transformer. The key idea of spatial transformer 
is to assign different weights to different data points (such as sensors) at different time steps, as shown in Fig. 6, 
where ai,j represents the attention weight between node i and node j at the same time instant. Spatial transformer 
is composed of two parts, one is GCN, and the other is attention mechanism, as shown in Fig. 7.

Figure 4.  Framework of the LSTSC.

Figure 5.  Module structure of STDCCM.
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The GCN based on Chebyshev polynomial proximation extracts fixed spatial dependency Sf ∈ RN×dc , where 
N represents the number of sensors.The Chebyshev based graph convolution can effectively leverage the neigh-
borhood information of each node and perform convolution operations on different graph structures, which 
enhances the performance of GCNs on graph data.

The attention mechanism extracts dynamic spatial dependency St ∈ RN×dc , define three learnable matrices: 
the query matrix WS

q ∈ Rdc×dc , key matrix WS
k ∈ Rdc×dc , and value matrix WS

v ∈ Rdc×dc . The equations are as 
follows:

where the query subspace spanned by QS ∈ RN×dc , the key subspace by KS ∈ RN×dc and the value subspace by 
VS ∈ RN×dc . D is the channel dimension, and h is the number of heads in multi-head attention.

Attention scores SS ∈ RN×N between nodes are calculated with the cross-product of QS and KS,

Dynamic spatial dependencies St1 ∈ RN×dc can be obtained based on attention scores, value subspace, and the 
Residual Network,

The inclusion of the feed forward network is to enhance the model’s expressive capacity and non-linear modeling 
capabilities,

where WS
0  , WS

1  , and WS
2  are the weight matrices for the three layers.

The dynamic spatial dependencies and static spatial dependencies are fused using the following equation:

(7)

dc = D/h,

QS = XsW
S
q ,

KS = XsW
S
k ,

VS = XsW
S
v ,

(8)SS = softmax(QS(KS)T/
√

dc).

(9)
MS = SSVS ,

M
′S = Xs +MS

.

(10)
US = Relu(Relu(M

′SWS
0 )W

S
1 )W

S
2 ,

St1 = US +M
′S
,

Figure 6.  Spatial attention mechanism.

Figure 7.  Module structure of spatial transformer.
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where f1 and f2 represent linear projection to convert Sf1 and St1 into one-dimensional vector.
Finally, the results Ys ∈ RN×D of the multi-head attention mechanism are fused together using the following 

equation:

where WS
3  is the weight matrix.

Through the multi-head attention mechanism, the model can simultaneously focus on different relationships 
and patterns, thus better capturing the diversity and complexity in the data. This helps improve the model’s 
robustness and generalization, making it more effective and flexible in handling various types of input data. 
Additionally, the multi-head attention mechanism allows the model to attend to different feature interactions at 
different levels, enabling better extraction of high-level feature representations.

The key idea of temporal transformer is to achieve the acquisition of temporal dependency by assigning differ-
ent weights to different time steps, as shown in Fig. 8. bα,β represents the attention weight, which is the allocation 
of attention between node 1 at two different time instants. Specifically, if we consider two time instants, such as 
α and β , and a node 1 exists at both time instants, then bα,β represents the attention weight between the node 1 
at time instant α and the node 1 at time instant β . Temporal transformer is completely composed of attention 
mechanism, which can achieve long temporal dependency extraction, as shown in Fig. 9. Here, the value Xt = Ys 
that is input to the temporal transformer. Similar to spatial transformer, temporal dependencies are dynamically 
computed in high-dimensional latent subspaces.

The process of the temporal transformer is similar, with three learnable matrices being defined: the query 
matrix WT

q ∈ Rdc×dc , key matrix WT
k ∈ Rdc×dc , and value matrix WT

v ∈ Rdc×dc . The equations are as follows:

where the query subspace spanned by QT ∈ RH×dc , the key subspace by KT ∈ RH×dc and the value subspace by 
VT ∈ RH×dc , where H represents the size of the predicted time. D is the channel dimension, and h is the number 
of heads in multi-head attention.

Attention scores ST ∈ RH×H between nodes are calculated with the cross-product of QT and KT,

(11)
w = sigmoid(f1(Sf1)+ f2(St1)),

Ys1 = wSf1 + (1− w)St1 ,

(12)Ys = [Ys1 , ...,Ysh ]W
S
3 + Xs ,

(13)

dc = D/h,

QT = XtW
T
q ,

KT = XtW
T
k ,

VT = XtW
T
v ,

Figure 8.  Temporal attention mechanism.

Figure 9.  Module structure of temporal transformer.
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Temporal dependencies Tt1 ∈ RH×dc can be obtained based on attention scores, value subspace, and the Residual 
Network,

where WT
0  , WT

1  , and WT
2  are the weight matrices for the three layers.

Finally, the results Yt ∈ RH×D of the multi-head attention mechanism are fused together using the following 
equation:

where WT
3  is the weight matrix.

Temporal correlation is entirely composed of CNN and can capture temporal correlation by first concatenating 
the traffic flow data on the time dimension and then obtaining the temporal correlation through CNN.

Yl
t1

 signifies the spatio-temporal dependency of t1∼tn within the long-term temporal correlation module. Yl
t2

 
represents the spatio-temporal dependency of tn+1∼t2n within the long-term temporal correlation module. Ys

t1
 

corresponds to the spatio-temporal dependency of t1∼tn within the short-term temporal correlation module. 
Ys
t2

 indicates the spatio-temporal dependency of tn+1∼t2n within the short-term temporal correlation module.

Fusion mechanism
This module is mainly composed of attention mechanism, and its function is to realize the combination of tempo-
ral correlation and historical traffic flow data. The module consists of two parts, cross attention and data fusion. 
The structure of cross attention is shown in Fig. 10. We take the combination of short term temporal correlation 
and historical traffic flow data as an example, where the query subspace by Q = Qd ∈ RH×dm , the key subspace 
by K = Kd ∈ RH×dm and the value subspace by V = Vd ∈ RH×dm . The equation is as follows:

where query matrix Wq ∈ Rdm×dm , key matrix Wk ∈ Rdm×dm and value matrix Wv ∈ Rdm×dm . They are respon-
sible for converting the data information to the corresponding query subspace Qd , the key subspace Kd and the 
value subspace Vd . WF

1  and WF
2  represent weight matrices, and LayerNorm refers to layer normalization, which 

transforms the input of each neuron in a layer to have the same mean and variance, thereby accelerating con-
vergence. D is the channel dimension of the data, h is the number of multiple attention. The spatio-temporal 
dependencies were captured by STTN for the traffic flow data in time slots t1 ∼ tn on Td

w+1;t1∼tn
 th day, and this 

resulted in X ′d
w+1;t1∼tn

 . The same process applies to the long term temporal correlation cross attention module.
The calculation equation used in the data fusion module is shown as follows:

(14)ST = softmax(QH (KH )T/
√

dc).

(15)

MT = STVT ,

M
′T = Xt +MT

,

UT = Relu(Relu(M
′TWT

0 )W
T
1 )W

T
2 ,

Tt1 = UT +M
′T
,

(16)Yt = [Tt1 , ...,Tth ]W
T
3 + Xt ,

(17)Cl
w =Conv([Yl

t1
,Yl

t2
]),

(18)Cs
w =Conv([Ys

t1
,Ys

t2
]).

(19)

Qd = X ′d
w+1;t1∼tn

Wq,

Kd = Cs
wWk ,

Vd = Cs
wWv ,

dm = D/h,

Ad = softmax
(

QdK
T
d /dm

)

,

An = LayerNorm(AdVd + Vd),

Ff = Relu(AnW
F
1 )W

F
2 ),

Ȳ s
w;t1∼tn

= LayerNorm(Ff + An),

Figure 10.  Cross attention structure.
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where Ws , Wl are weight matrices, and Ȳ s
w;t1∼tn

 and Ȳ l
w;t1∼tn

 are the output results of short-term and long-term 
cross attention, respectively.

Period module and prediction layer
In order to reduce the error caused by a single decision, a period module is proposed. The module uses the traffic 
flow data at the time of Td

w th day, Td+3
w  th day and Td+6

w  th day, and first splices the data on the time dimension to 
obtain the output P′

w ∈ R3H×N , then extracts the spatio-temporal dependency of the data, and then reduces the 
dimension through the convolution neural network to obtain the final result Pw ∈ RH×N of the module, where 
H represents the size of the predicted time, and N represents the number of sensors.

Then the output result of the period module is used as the input data of the prediction layer, which is com-
posed of two layers of convolution. The equation is as follows:

Experiment and result analysis
In this section, the experimental process is described in detail from the following aspects: datasets, baselines, 
evaluation metrics, hyperparameter setting, convergence analysis, performance comparison and ablation studies.
We use traffic speed data as traffic flow information.

Datasets
Two real datasets: PeMSD7(M) and PeMS08, are used to evaluate the performance of LSTSC model. All the data 
is scaled to 0 to 1 with min-max normalization in the experiments, and the details of the datasets are shown in 
Table 1.

• PeMSD7(M) The traffic speed dataset is collected by the California Department of Transportation in the 
seventh district of California through 228 road traffic sensors, and the collected data samples are aggregated 
every 5 min. The dataset records the vehicle speed of the seventh district of California from May 1, 2012 to 
June 30, 2012.

• PeMS08 The traffic speed dataset is collected by the California Department of Transportation through 170 
road traffic sensors, and the collected data samples are aggregated every 5 min. The dataset records the vehicle 
speed of San Bernardino, California, from July 1, 2016 to August 31, 2016.

Baselines
The following provides a description of the baseline algorithms that are compared with the LSTSC model.

• FC-LSTM: As LSTM only considers the time series and does not take into account the spatial correlation 
between them, FC-LSTM is an improvement of the LSTM model by adding an attention mechanism, where 
the input of each gate is determined by three parts.

• DCRNN26: DCRNN introduces diffusion convolution as graph convolution to capture spatial dependency, 
and uses sequence-sequence architecture combined with GRU to capture temporal dependency.

• STGCN27: STGCN introduces the graph neural network into the prediction of spatio-temporal series to 
effectively extract the spatio-temporal dependency.

• GWNet28: GWNet includes two components, one is the adaptive dependency matrix, which is used to extract 
spatial dependency, and the other is the stacked dependent 1D conversion, which is used to extract temporal 
dependency.

(20)X̃c = WsȲ
s
w;t1∼tn

+WlȲ
l
w;t1∼tn

,

(21)X̂d
w+1;tn+1∼t2n

= Conv(Conv(X̃c + Pw)).

Table 1.  Details of the datasets.

Datasets PeMSD7(M) PeMS08

Start time 2012/05/01 2016/07/01

End time 2012/06/30 2016/08/31

Training set 2012/05/01–05/31 2016/07/01–08/01

Validating set 2012/06/01–06/15 2016/08/02–08/16

Testing set 2012/06/16–06/30 2016/08/17–08/31

Time interval 5 (min) 5 (min)
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Evaluation metrics
The evaluation metrics of LSTSC model are the same as  before23, including mean absolute error(MAE), root 
mean square error(RMSE) and mean absolute percentage error(MAPE). The equation is as follows:

where yi represents the actual value at a certain moment in Td
w+1;tn+1∼t2n

 th day, and ŷi represents the corre-
sponding predicted value. n represents the size of the predicted time. The reason why the above three metrics 
are selected in this paper is that MAE and RMSE can better reflect the actual situation of the predicted value 
error. For MAPE, theoretically, the smaller its value, the better the fitting effect of the prediction model and the 
better accuracy.

Parameter settings
Table 2 describes the parameters of LSTSC in the experiment. We use 12 historical time steps to predict the next 
12 time steps in the future. The CNN module, designed to extract temporal correlation, consists of a one-layer 
CNN with 12 filters, a stride of 1, a padding size of 0, and a convolution kernel size of 1× 1 . The number of heads 
for multi-head attention in the experiment is uniformly set to 2. The CNN module used in the prediction layer 
is a two-layer CNN, with the number of filters set to 12 and 1 respectively, a stride of 1, a padding size of 0, and 
a convolution kernel size of 1× 1 . LSTSC is optimized by Adam optimizer, and the batch size of the experiment 
is set to 16.

Hyperparametric studies
In this section, we investigate the influence of the dimension α of feed forward network to the results of traf-
fic flow prediction, which belongs to the multi-head attention mechanism. We study the result of traffic flow 
prediction when α is 1, 2, 3, 4. As shown in Table 3 (the best results in the table have already been indicated in 
bold.),The best experimental results for the PeMSD7(M) dataset were achieved when α = 2. When using the 
PeMS08 dataset, the model achieved the best results for the MAE metric at 15 min and 30 min when α = 4, and 
at 60 min when α = 2. For the MAPE metric, the model achieved the best results at 15 min and 30 min when α 
= 3, and at 60 min when α = 2. For the RMSE metric, the model achieved the best results at 15 min, 30 min, and 
60 min when α = 2. Therefore, when conducting long-term traffic flow forecasting, α value of 2 may be used.
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1

n

n
∑

i=1

∣

∣yi − ŷi
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Table 2.  Hyper parameter settings for the model.

Parameter Value

CNN layers (STDCCM) 1

CNN layers (prediction layer) 1

Number of filters in CNN (STDCCM) 12

Number of filters in CNN (prediction layer) 12,1

Number of heads in attention 2

Padding in CNN (STDCCM) 0

Stride in CNN (STDCCM) 1

Stride in CNN (prediction layer) 1,1

Padding in CNN (prediction layer) 0,0

Order for Chebyshev polynomials 2

Convolution kernel size (1,1)

Batch size 16

Times of training (Epoch) 300

Optimizer Adam

Learning rate 0.05

Dropout 0.2

n 12
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The convergence of LSTSC model
Figure 11 shows the loss curve of LSTSC model on two real datasets about training set and verification set during 
the experiment. By observing Fig. 11(a), we can find that on the PeMSD7(M) dataset, for the training set and 
the verification set, the MAE of the two datasets gradually decreases with the increase of the number of training 
iterations, but when the number of iterations is 65, the MAE of the training set and the verification set starts 
to reach a certain stability. By observing Fig. 11(b), for the training set and verification set of PeMS08 dataset, 
the MAE of both datasets gradually decreases with the number of training iterations increasing, but when the 
number of iterations is 128, the MAE of the training set and verification set starts to reach a certain stability.

Experimental results and analysis
The Highway Capacity  Manual29 recommends using a 15 min as short-term prediction interval for research and 
analysis  purposes30. Table 4 describes the results of LSTSC model and baseline algorithm on PeMSD7(M) and 

Table 3.  The traffic flow prediction results with the change of the parameters.

α value (PeMSD7(M)) MAE (15/30/45 min) MAPE (%) (15/30/45 min) RMSE (15/30/45 min)

α = 1 2.20/2.84/3.24 5.16/7.05/8.24 4.12/5.51/6.31

α = 2 2.17/2.75/3.07 5.15/6.81/7.75 4.05/5.33/6.00

α = 3 2.20/2.81/3.14 5.21/6.97/8.01 4.15/5.46/6.16

α = 4 2.17/2.78/3.11 5.17/6.89/7.82 4.06/5.36/6.08

α value (PeMS08) MAE (15/30/60 min) MAPE (%) (15/30/60 min) RMSE(15/30/60 min)

α = 1 13.77/14.22/15.54 9.21/9.52/10.57 22.22/23.49/25.96

α = 2 13.54/14.07/ 15.34 8.96/9.38/10.45 22.02/23.40/25.82

α = 3 13.51/14.06/15.50 8.83/9.37 /10.74 22.05/23.42/25.84

α = 4 13.36/14.01 /15.43 8.85/9.37/10.45 22.03/23.48/26.06

Figure 11.  The training and validation results on the two datasets: (a) PeMSD7(M) dataset; (b) PeMS08 dataset.

Table 4.  The experimental results of different models.

Models (PeMSD7(M)) MAE (15/30/45 min) MAPE (%) (15/30/45 min) RMSE(15/30/45 min)

FC-LSTM 3.57/3.94/4.16 8.60/9.55/10.10 6.20/7.03/7.51

DCRNN 2.37/3.31/4.01 5.54/8.06/9.99 4.21/5.96/7.13

STGCN 2.25/3.03/3.57 5.26/7.33/8.69 4.04/5.70/6.77

GWNet 2.14/2.80/3.19 4.93/6.89/8.04 4.01/5.48/6.25

LSTSC 2.17/2.75/3.07 5.15/6.81/7.75 4.05/5.33/6.00

Models (PeMS08) MAE (15/30/60 min) MAPE (%) (15/30/60 min) RMSE (15/30/60 min)

FC-LSTM 17.38/21.22/30.69 12.63/17.32/25.72 26.27/31.97/43.96

DCRNN 14.16/15.24/17.70 9.31/9.90/11.13 22.20/24.26/27.14

STGCN 14.95/15.92/17.65 9.87/10.42/11.34 23.48/25.36/28.03

GWNet 13.72/14.67/16.15 8.80/9.49/10.74 21.71/23.50/25.95

LSTSC 13.54/14.07/15.34 8.96/9.38/10.45 22.02/23.40/25.82
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PeMS08 datasets. For the PeMSD7(M) dataset and PeMS08 dataset, the performance of DCRNN and STGCN 
is better than that of FC-LSTM algorithm, which shows that road network information is crucial for traffic flow 
prediction. GWNet and LSTSC algorithms are superior to DCRNN and STGCN algorithms, which shows that 
time information is also essential for accurate prediction of traffic flow. For the PeMSD7(M) dataset, comparing 
the results of GWNet algorithm and LSTSC algorithm, based on the above three evaluation metrics, LSTSC is not 
as good as GWNet algorithm in short-term prediction ( ≤ 15 min), but LSTSC is better than GWNet algorithm in 
medium and long-term prediction (> 15 min). For the PeMS08 dataset, the LSTSC model based on MAE evalu-
ation index is superior to GWNet in both short-term traffic flow prediction and medium and long-term traffic 
flow prediction. The short-term traffic flow prediction result of LSTSC model based on MAPE evaluation index 
is not as good as that of GWNet model, but in the face of medium and long-term traffic flow prediction, LSTSC 
model is better than that of GWNet model. The short-term traffic flow prediction result of LSTSC model based on 
RMSE evaluation index is not as good as that of GWNet model, but in the face of medium and long-term traffic 
flow prediction, LSTSC model is better than that of GWNet model. The above results show that strengthening the 
capture of temporal correlation may help improve the accuracy of medium and long-term traffic flow prediction.

In order to observe the changes in evaluation metrics of each model more intuitively, as shown in Fig. 12, 
based on two real datasets, the rate of increase in MAE, MAPE, and RMSE values of the LSTSC model is lower 
than the baseline model as the prediction time advances, indicating that the long-term traffic flow prediction 
values of the LSTSC model are closer to the real values. Therefore, for long-term traffic flow prediction, the 
LSTSC model has more advantages.

Ablation studies
In this section, various ablation experiments are used to test the effectiveness of modules on LSTSC. These 
modules mainly include period module, long-term connection and short-term connection modules. The vari-
ants are listed below:

• LSTSC_ NoL: Apply short-term temporal correlation and period module to forecast traffic flow.
• LSTSC_ NoS: Use long-term temporal correlation and period module to forecast traffic flow.
• LSTSC_ NoP: Do not use period module to forecast traffic flow.
• LSTSC: The model includes long-term and short-term temporal correlation and non-single decision for traffic 

flow prediction.

Figure 12.  The experimental results on the two datasets: (a) MAE evaluation of model performance on 
PeMSD7(M) dataset; (b) MAPE (%) evaluation of model performance on PeMSD7(M) dataset; (c) RMSE 
evaluation of model performance on PeMSD7(M) dataset; (d) MAE evaluation of model performance on 
PeMS08 dataset; (e) MAPE (%) evaluation of model performance on PeMS08 dataset; (f) RMSE evaluation of 
model performance on PeMS08 dataset.
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For the ablation experiment on Eq. (20), we set Ws to a zero matrix while Wl remains a learnable parameter 
matrix. As a result, the contribution of Ȳ s

w;t1∼tn
 to the model output is eliminated, and the importance of Ȳ s

w;t1∼tn
 

can be assessed by comparing the model performance before and after ablation. A similar operation is performed 
for the ablation experiment on Ȳ s

w;t1∼tn
 , where Wl is set to a zero matrix and Ws remains a learnable parameter 

matrix. As a result, the contribution of Ȳ s
w;t1∼tn

 to the model output is eliminated. The reason for choosing this 
method is that we want to ablate the input features without changing the model structure, by merely modifying 
the weight matrices. By setting the weight matrix of a specific input feature to a zero matrix, we can completely 
eliminate the contribution of that feature to the model output, thereby assessing the importance of the feature. 
Additionally, since the result of multiplying any matrix by a zero matrix is still a zero matrix, this method is also 
computationally efficient.

Table 5 describes the results of the LSTSC model and its variants on the PeMSD7(M) and PeMS08 datasets. 
According to the experimental results of the two datasets, it can be found that the LSTSC model performs better 
than the LSTSC_NoLong, LSTSC_NoShort, and LSTSC_NoPeriod models for both short-term and long-term 
traffic flow prediction, respectively proving the effectiveness of long-term temporal correlation, short-term tem-
poral correlation, and period. For the PeMSD7(M) dataset, the experimental results of LSTSC_NoShort are better 
than those of LSTSC_NoLong and LSTSC_NoPeriod, indicating that short-term temporal correlation has a lower 
weight than long-term temporal correlation and period, while the experimental results of LSTSC_NoPeriod are 
worse than those of LSTSC_NoLong, indicating that the weight of period is higher than that of long-term tem-
poral correlation. For the PeMS08 dataset, the experimental results based on MAE, MAPE and RMSE metrics 
still reflect the conclusions obtained from the PeMSD7(M) dataset, where short-term temporal correlation have 
lower weights compared to long-term temporal correlation and periodicity, and periodicity has higher weights 
compared to long-term temporal correlation.

Due to the inherent periodicity in natural phenomena, traffic flow might exhibit cyclic patterns, with traffic 
patterns recurring on a weekly basis, for instance. Consequently, long-term temporal correlation could be more 
pronounced compared to short-term temporal correlation. In other words, traffic patterns may tend to repeat 
over longer time scales, such as a week, leading to stronger correlations in the long-term compared to short-term 
correlations. For example, let’s consider a major urban freeway that experiences heavy traffic during weekdays 
due to work commutes, resulting in a daily traffic pattern. However, on weekends, the traffic flow on the same 
freeway might decrease significantly, leading to a different traffic pattern. Over time, this daily pattern may not 
be as consistent as the weekly pattern, where traffic flow experiences regular fluctuations during weekdays and 
weekends. The long-term temporal correlation, in this case, would capture the recurrent weekly pattern, while 
the short-term temporal correlation would mainly reflect the daily fluctuations.

In general, the long-term temporal correlation module, short-term temporal correlation module and period 
module can effectively improve the traffic flow prediction performance of the model.

Conclusion
In order to strengthen the capture of temporal correlation and effectively solve the dynamic spatial depend-
ency and long-term temporal dependency in traffic flow prediction, we propose a multi-modal attention neural 
network for traffic flow prediction. In this model, an attention mechanism is designed to address the limited 
temporal dependency and fixed spatial dependency problems of the data. At the same time, CNNs are used to 
enhance the capture of temporal correlation in traffic data, and a fusion mechanism is designed to obtain the 
prediction results. In addition, we also design a multimodal attention neural network to solve the problem of 
single decision-making in the model. Finally, various experiments were conducted on two real-world datasets, 
and the results show that the performance of the proposed model in long-term traffic flow prediction is better 
than that of baseline algorithms.

Data availability
The datasets used and analysed during the current study are available from the corresponding author on reason-
able request.

Table 5.  Comparison of experimental results of model variation.

Varients (PeMSD7(M)) MAE (15/30/45 min) MAPE (%) (15/30/45 min) RMSE(15/30/45 min)

LSTSC_NoL 2.25/2.86/3.22 5.30/7.05/8.12 4.17/5.55/6.34

LSTSC_NoS 2.19/2.79/3.13 5.17/7.02/8.09 4.11/5.46/6.17

LSTSC_NoP 2.30/2.92/3.28 5.40/7.24/8.37 4.22/5.64/6.43

LSTSC 2.17/2.75/3.07 5.15/6.81/7.75  4.05/5.33/6.00

Varients (PeMS08) MAE (15/30/60 min) MAPE (%) (15/30/60 min) RMSE (15/30/60 min)

LSTSC_NoL 13.77/14.31/15.79 9.24/9.61/10.78 22.41/23.72/26.25

LSTSC_NoS 13.68/14.18/15.47 9.16/9.53/10.72 22.31/23.43/25.85

LSTSC_NoP 14.37/14.95/16.37 9.30/9.81/10.80 23.04/24.13/26.68

LSTSC 13.54/14.07/15.34 8.96/9.38/10.45 22.02/23.40/25.82
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