
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21267  | https://doi.org/10.1038/s41598-023-48575-7

www.nature.com/scientificreports

Dynamic analysis and optimal 
control of a stochastic investor 
sentiment contagion model 
considering sentiments isolation 
with random parametric 
perturbations
Sida Kang 1, Xilin Hou 1*, Yuhan Hu 2 & Hongyu Liu 3

Investor sentiment contagion has a profound influence on economic and social development. 
This paper explores the diverse influences of various investor sentiments in modern society on the 
economy and society. It also investigates the interference of various uncertain factors on investor 
sentiments in the modern economy and society. On this basis, the dual-system stochastic SPA2G2R 
model was constructed, incorporating positive and negative sentiments, as well as a supervision 
and isolation mechanism. The global existence of positive solutions was established, and sufficient 
conditions for the disappearance and steady distribution of investor sentiment were calculated. 
An optimal control strategy for the stochastic model was put forward, with numerical simulation 
supporting the theoretical analysis results. A comparison with parameter changes in the deterministic 
model was also conducted. The research reveals a competitive relationship between different 
investor sentiments. Enhancing societal guidance mechanisms promotes positive investor sentiment 
contagion. Timely control by the supervisory department effectively curbs the spread of investor 
sentiment. Additionally, white noise promotes investor sentiment contagion, suggesting effective 
regulation through control of noise intensity and disturbance parameters.

The production, contagion, and spread of investor sentiment have played an indispensable role in the develop-
ment of human economic activities. Generally, investors express positive and negative sentiments during different 
stages of investor sentiment contagion in the development of the market  economy1. At the same time, given the 
constant changes in social demand, investor sentiments of various natures require timely macro-control to adapt 
to the  times2. Therefore, studying the contagion mechanism and control measures of investor sentiment is crucial.

The mechanism of investor sentiment contagion bears a striking resemblance to that of infectious diseases 
and information  transmission3,4. Therefore, scholars usually study investor sentiment contagion based on clas-
sical models of infectious diseases and information transmission, such as the SI  model5, the SIS  model6, and 
the ILSR  model7. Subsequently, a series of models were successively put forward, including the SIR sentiment 
contagion model with an interactive  mechanism8, the SEI1I2R sentiment contagion model with different group 
 characteristics9, the HAR − RV  sentiment contagion model with media report  effect10, and the MNE − SFI 
sentiment contagion model with dynamic multiple  mechanisms11.

In recent years, scholars have conducted extensive studies on the influence of investor sentiment on the 
economy and the market. Naeem et al.12 tested the predictive abilities of online investors for six major crypto-
currency returns. Their study shows that online investor sentiment is an important non-linear predictor of most 
major cryptocurrency returns. Jing et al.13 proposed a model combining deep learning and sentiment analysis 
to predict share prices. Gong et al.14 introduced an investor sentiment index based on partial ordinary least 
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squares techniques, enabling the predictability of stock volatility through sentiment measures. Wang et al.15 
comprehensively studied the causal relationship between the crude oil futures market and investor sentiment 
under extreme impacts. The results indicated that crude oil futures were more susceptible to negative extreme 
impacts than positive ones. Chen et al.16 revealed the predictability of the energy futures market involving inves-
tor sentiment. They introduced a new investor sentiment index capturing the characteristics of the energy futures 
market, including sentiment conversion and internet attention.  Ho17 analyzed the non-linear causality between 
crude oil prices and Chinese investor sentiment, considering time-varying effects and dynamic influences. The 
research results show that oil prices have a time-varying negative effect on Chinese investor sentiment in most 
cases. Piñeiro-Chousa18 used panel data to analyze the influence of investor sentiment extracted from social 
networks on the green bonds market. According to recent research results, most scholars concur that investor 
sentiment has the most prominent influence on the stock  market19,20.

Meanwhile, the study on investor sentiment contagion has gradually become a research hotspot in recent 
years. Han et al.21 proposed a set of compound methods based on wavelet, contagion entropy, and network 
analysis to explore the model of investor sentiment contagion among enterprises. In an effort to elucidate the 
influence of investor sentiment on the stock market, Chen et al.22 constructed the dynamic SIRS model based on 
the integration of investor sentiment, investor structure, and the capital market. The research results demonstrate 
that as the influence of investors’ mutual communication increases or the calm sentiment rate decreases, investor 
sentiment will begin to spread, leading to an increased probability of frenzied overbought conditions in the stock 
market. Song et al.23 and Liu et al.24 constructed the SOSa− SPSa sentiment contagion model, considering both 
optimism and pessimism and discussed the model’s application in finance.

On this basis, the research on uncertainty AI methods for uncertainty data has also widely concerned in recent 
years. This also provides theoretical and methodological support for the study of the disturbance of uncertainty 
factors on the investor sentiment contagion.  Wang25 propose a bottom-up layer-by-layer design scheme, using the 
Wang-Mendel method (WM Method) to design each layer of fuzzy systems and a DCFS with parameter sharing 
to save memory and computational resources. And then apply the DCFS model to predict a synthetic chaotic 
plus random time series and the Hang Seng Index of the Hong Kong stock market. Chen et al.26 found that the 
granular mean shift clustering algorithm has better clustering performance than traditional clustering algorithms, 
such as Kmeans, Gaussian mixture, etc. Sang et al.27 proposed a fuzzy rough feature selection method based on 
robust non-linear vague quantifier for ordinal classification. Tong et al.28 proposed a finite-time adaptive fuzzy 
event-triggered output-feedback control design method under the framework of finite-time stability criterion 
and adaptive backstepping control design technique, and rigorously proved the semi-global finite-time stability 
of the control system. He et al.29 proposed a granular elastic network regression model based on granules to solve 
the problem of traditional linear regression models that are difficult to handle uncertain data. They found that 
granular elastic network has better fitting advantage than traditional linear regression model.

The aforementioned scholars made extensive studies on the influences of investor sentiment on different 
economies and markets. However, there are relatively few studies on the dynamic process of investor senti-
ment contagion. In addition, most studies on investor sentiment contagion are concentrated in deterministic 
environments. These studies ignore the interference of random factors on the contagion of investor sentiment. 
Normally, the realistic social system is complex, with many uncertain  factors30, and the factors influencing inves-
tor sentiment are often random. And the studies that include a stochastic perturbation term in deterministic 
investor sentiment contagion models are also uncommon. At the same time, positive investor sentiment tends 
to foster development in the economy and society, while negative investor sentiment usually restricts economic 
and social  progress31–33. Supervisors could find it more beneficial to control investor sentiment by supervising 
different investor sentiments and isolating the disseminators of investor sentiment to adapt to various social 
demands better. Unlike the isolation of disease spread, regulatory isolation of investor sentiment contagion only 
requires disseminators to refrain from expressing their views. On this basis, this paper puts forward the stochastic 
SPA2G2R model, considering various investor sentiment contagions and regulatory isolation. The uniqueness of 
the global existence of positive solutions is established. After calculating the sufficient conditions of information 
disappearance and steady information distribution, appropriate parameters are selected as control variables. 
Finally, numerical simulation is employed to verify the rationality of the proposed theorem.

The remaining sections are arranged as follows. In “The model”, the stochastic SPA2G2R model considering 
different investor sentiment contagions and regulatory isolation is constructed. “Existence of the global and 
positive solution” proves the uniqueness of the global existence of positive solutions. “Disappearance of the 
Information” gives sufficient conditions for investor sentiment disappearance. “A sufficient condition for the 
stationary distribution” gives sufficient conditions for the steady distribution of investor sentiment. “The stochas-
tic optimal control model” introduces the optimal control existence and optimal control strategy for different 
investor sentiment contagions, as well as the supervision and isolation. In “Numerical simulations”, numerical 
simulation is used to analyze the influence of random disturbance strength on investor sentiment contagion as 
well as supervision and isolation. The last section gives conclusions.

The model
This study considers an open virtual community where the population size changes with time t. The total popu-
lation size can be expressed by N(t). Individuals in the community are categorized as follows: (1) Susceptible 
individuals who have not been exposed to any type of investor sentiment, S(t); (2) Disseminators of positive 
investor sentiment, P(t); (3) Disseminators of negative investor sentiment, A(t); (4) Individuals under supervi-
sion and isolation from disseminators of positive and negative investor sentiments, G1(t) and G2(t) , respectively. 
(5) Individuals who no longer disseminate positive or negative investor sentiment, R1(t) and R2(t) , respectively. 
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According to the meanings represented by each compartment, and the flow relationships between them, a flow 
diagram of the model can be constructed, as shown in Fig. 1.

Based on Fig. 1, a SPA2G2R model can be constructed. The parameters in Fig. 1 can be interpreted as follows:

• The number of individuals in the social system generally changes with time. Therefore, this paper defines B 
as the number of people who enter the social system. µ is defined as the rate of individuals moving out of the 
social system due to force majeure;

• As positive and negative investor sentiments begin to disseminate in the social system, susceptible individu-
als will have a probability of coming into contact with disseminators of investor sentiments. Therefore, the 
rate of contact with disseminators of positive investor sentiment is defined as α1 , and the rate of contact 
with disseminators of negative investor sentiment is defined as α2 . Simultaneously, susceptible individuals 
have a certain probability θ1 of being influenced by the guidance mechanism and consequently becoming 
disseminators of positive investor sentiment;

• When positive and negative investor sentiments are simultaneously disseminated in the social system, there 
exists a probability that disseminators of these two sentiments come into contact with each other. Therefore, 
this mutual contact rate of disseminators of the two investor sentiments is defined as β . Similarly, dissemina-
tors of negative investor sentiment have a probability θ2 of being influenced by guidance mechanisms, such 
as self-learning or publicity, and thus become disseminators of positive investor sentiment;

• When the social system deems it unnecessary for the two types of investor sentiments, some disseminators 
of investor sentiment have certain probabilities γ1 and γ2 to actively choose to cease investor sentiment con-
tagion due to the effectiveness of information. Other disseminators of investor sentiment have probabilities 
�1 and �2 of undergoing regulatory isolation by the management, transforming into isolated groups G1 and 
G2 of investor sentiment. In addition, as the disseminated investor sentiments cease to spread, the isolated 
groups of investor sentiment experience a reduction in the enthusiasm for investor sentiment contagion. 
Finally, they have probabilities ǫ1 and ǫ2 of choosing not to disseminate investor sentiment any longer.

In addition, the uncertain factors in social systems are commonly referred to as environmental noise. It is not 
scientific to study the spread of investor sentiment while ignoring random environmental noise fluctuations. 
Incorporating environmental noise into deterministic models is more representative of how investor senti-
ment contagion in real society. The random factors added to the spread models mainly include three classical 
approaches: (1) Introducing Gaussian white noise into deterministic parameter perturbation  models34. (2) Ran-
dom perturbation encompassing the positive endemic equilibrium of deterministic  models35. (3) Alternating 
between regimes based on the probability of Markov  chains36. Since random perturbations in the environment 
may affect the contact rate under guidance mechanism and the proportion of investor sentiment disseminators 
under regulatory quarantine, this paper uses Gaussian white noise to generate random perturbations of θ1 , θ2 , 
�1 and �2 , and the parameters of random perturbation are expressed as follows:

(1)θ1 → θ1 + σ1Ẇ1(t), θ2 → θ2 + σ2Ẇ2(t), �1 → �1 + σ3Ẇ3(t), �2 → �2 + σ4Ẇ4(t).

Figure 1.  The flow diagram of the model.
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Here, Wi(i = 1, 2, 3, 4) are independent standard Brownian motions and σ 2
i > 0(i = 1, 2, 3, 4) represent the 

intensities of Wi(i = 1, 2, 3, 4) , respectively. In this paper, W1 , W2 , W3 and W4 represent the relationship without 
mutual influence between θ1 , θ2 , �1 and �2 , respectively.

The stochastic perturbation parameters are introduced into the deterministic model to construct a stochastic 
SPA2G2R model driven by Gaussian white noise, and the stochastic model can be represented as:

Existence of the global and positive solution
In the rest of this paper, let (�,F , {F t}t≥0, P) be a complete probability space with a filtration {F t}t≥0 satisfy-
ing the usual conditions. And while F 0 contains all P − null sets, it is increasing and right  continuous37. It also 
can be denoted as:

Whether the global solution is existence is the basis of analyzing the dynamic behavior of stochastic system (2). At 
the same time, according to the actual situation, it is required a positive value for the dynamic model of investor 
sentiment contagion. The stochastic system (2) can be proved global and positive by Theorem 1.

Theorem 1 The existence of a unique positive solution (S(t),P(t),A(t),G1(t),G2(t)) ∈ R
5
+ of stochastic system (2) 

is satisfied any given initial value (S(t),P(t),A(t),G1(t),G2(t)) ∈ R
5
+ . The probability of the solution is 1 and 

remains in R5
+.

Proof The existence of a unique local positive solution (S(t), P(t),A(t),G1(t),G2(t)) ∈ R
5
+ of stochastic sys-

tem (2) on t ∈ [0, τe) , which is based on the coefficients of deterministic system are locally Lipschitz continuous 
of any given initial value (S(t), P(t),A(t),G1(t),G2(t)) ∈ R

5
+ . τe is the explosion  time38. It is need to have that 

τe = ∞ a.s. to show this solution globally. The stopping time τ+ can be defined by:

Let set inf ∅ = ∞ ( ∅ denotes the empty set). It is easy to get τ+ ≤ τe . So if τ+ = ∞ a.s. is proved, then τe = ∞ 
and (S(t),P(t),A(t),G1(t),G2(t)) ∈ R

5
+ a.s. for all t ≥ 0 . Assume that τ+ < ∞ , then T > 0 is existence such 

that P(τ+ < T) > 0 . Define C2 function V: R5
+ → R

5
+ by V(X) = InSPAG1G2 . Let using Itô′s formula to cal-

culate the differential of V along the solution trajectories of stochastic system (2). For ω ∈ (τ+ < T) and for all 
t ∈ [0, τe) , we get

Positivity of X(t) implies that

where

So we have

Note that some components of X
(

τ+
)

 equal 0. Thereby

(2)































dS(t) = (B− α1θ1SP − α2SA− µS)dt − α1σ1SPdW1(t),

dP(t) =
(α1θ1SP + βθ2AP − �1P − γ1P − µP)dt
+α1σ1SPdW1(t)+ βσ2APdW2(t)− σ3PdW3(t),

dA(t) =
(α2SA− βθ2AP − �2A− γ2A− µA)dt
−βσ2APdW2(t)− σ4AdW4(t),

dG1(t) = (�1P − ε1G1 − µG1)dt + σ3PdW3(t),
dG2(t) = (�2A− ε2G2 − µG2)dt + σ4AdW4(t).

(3)R
5
+ = {(x1, x2, x3, x4, x5)|xi > 0, i = 1, 2, 3, 4, 5}.

(4)τ+ = inf {t ∈ [0, τe) : S(t) ≥ 0orP(t) ≥ 0orA(t) ≥ 0orG1(t) ≥ 0orG2(t) ≥ 0}.

(5)

dV(X(t)) =
[

B
S − α1θ1P − α2A− µ− 1

2α
2
1σ

2
1 P

2
]

dt +

[

α1θ1S + βθ2A− �1 − γ1 − µ

− 1
2α

2
1σ

2
1 S

2 − 1
2β

2σ 2
2A

2 − 1
2σ

2
3

]

dt

+

[

α2S − βθ2P − �2 − γ2 − µ

− 1
2β

2σ 2
2 P

2 − 1
2σ

2
4

]

dt +
[

�1P
G1

− ε1 − µ− 1
2σ

2
3
P2

G2
1

]

dt

+
[

�2A
G2

− ε2 − µ− 1
2σ

2
4
A2

G2
2

]

dt − α1σ1PdW1 + α1σ1SdW1 + βσ2AdW2 − σ3dW3

−βσ2PdW2 − σ4dW4 +
σ3P
G1

dW3 +
σ4A
G2

dW4.

(6)
dV(X(t)) ≥ L(S, P,A,G1,G2)dt − α1σ1(P − S)dW1 + βσ2(A− P)dW2

−σ3(1−
P
G1
)dW3 − σ4(1−

A
G2
)dW4,

(7)

L(S, P,A,G1,G2) = −µ− (�1 + γ1 + µ)− (�2 + γ2 + µ)− (ε1 + µ)− (ε2 + µ)

− 1
2α

2
1σ

2
1 P

2 − 1
2α

2
1σ

2
1 S

2 − 1
2β

2σ 2
2A

2 − 1
2σ

2
3 − 1
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2
4

− 1
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2σ 2
2 P

2 − 1
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1
− 1

2σ
2
4
A2

G2
2
.

(8)
V(X(t)) ≥ V(X0)+

∫ t
0 L(S(u),P(u),A(u),G1(u),G2(u))du

−
∫ t
0 α1σ1(p(u)− S(u))dW1(u)−

∫ t
0 βσ2(A(u)− P(u))dW2(u)

−
∫ t
0 σ3(1−

P(u)
G1(u)

)dW3(u)−
∫ t
0 σ4(1−

A(u)
G2(u)

)dW4(u).
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Letting t → τ+ in system (8), one have

According to Eq. (8) and Eq. (9), it can be obtained that Eq. (10) is less than or equal to −∞ . Meanwhile, for any 
given initial value (S(0),P(0),A(0),G1(0),G2(0)) ∈ R

5
+ and S(u),P(u),A(u),G1(u),G2(u) in Eq. (10) belong to a 

positive invariant set and is bounded. Therefore, S(u),P(u),A(u),G1(u),G2(u) are greater than 0 and greater than 
−∞ , then Eq. (10) is greater than −∞ . This result is contradictory. In addition, the result obtained by Eq. (10) 
rejects the original hypothesis τ+ < ∞ . Thus, τ+ = ∞ .   �

Disappearance of the information
Theorem 2 and Theorem 3 give the condition for the disappearance of the investor sentiment. The condition 
is expressed by intensities of noises and parameters of deterministic system. In the stochastic SPA2G2R model 
built in this paper, (1) Theorem 2 gives the condition for the disappearance of positive investor sentiment, (2) 
Theorem 3 gives the condition for the disappearance of negative investor sentiment.

Theorem 2 For any given initial value (S(0),P(0),A(0),G1(0),G2(0)) ∈ R
5
+ , lim

t→∞
sup ln P(t)

t ≤ K(σ 2
1 , σ

2
2 , σ

2
3 ) holds 

a . s . .  Fu r t h e r ,  K(σ 2
1 , σ

2
2 , σ

2
3 ) < 0  ,  t h e n  P ( t )  t e n d  t o  0  e x p o n e nt i a l l y  a . s . ,  w h e re 

K
(

σ 2
1 , σ

2
2 , σ

2
3

)

=
θ21
2σ 2

1
+

θ22
2σ 2

2
− (�1 + γ1 + µ+ 1

2σ
2
3 ).

Proof Use Itô′s formula to calculate the differentiation of P(t) in stochastic system (2), and d ln P(t) can be 
written as:

Thus, ln P(t) can be denoted as:

Denote

�1(t) and �2(t) are continuous local martingale. The quadratic variation of �1(t) and �2(t) can be denoted as:

By exponential martingale  inequality38, it can be known that

where 0 < c < 1 , k is a random integer. Using Borel-Cantelli lemma, it is easy to know that the random integer 
k0(ω) exists such that for k > k0 for almost all ω ∈ � , sup0≤t≤k[�(t)− c

2
��(t)�] ≤ 2

c . Therefore, for all t ∈ [0, k] , 
one have

Then, it can be obtained that

noting that

(9)lim
t→τ+

V(X(t)) = −∞.

(10)
−∞ ≥ V(X0)+

∫ τ+

0 L(S(u),P(u),A(u),G1(u),G2(u))du

−
∫ τ+

0 α1σ1(p(u)− S(u))dW1(u)−
∫ τ+

0 βσ2(A(u)− P(u))dW2(u)

−
∫ τ+

0 σ3(1−
P(u)
G1(u)

)dW3(u)−
∫ τ+

0 σ4(1−
A(u)
G2(u)

)dW4(u) > −∞.

(11)d ln P(t) =
[

α1θ1S + βθ2A− (�1 + γ1 + µ)− 1
2α

2
1σ

2
1 S

2 − 1
2β

2σ 2
2A

2 − 1
2σ

2
3

]

dt
+α1σ1SdW1 + βσ2AdW2 − σ3dW3.

(12)
ln P(t) = ln P(0)+

∫ t
0

[

α1θ1S(u)+ βθ2A(u)− (�1 + γ1 + µ)

− 1
2α

2
1σ

2
1 S

2(u)− 1
2β

2σ 2
2A

2(u)− 1
2σ

2
3

]

du

+
∫ t
0 α1σ1S(u)dW1(u)+

∫ t
0 βσ2A(u)dW2(u)− σ3dW3(t).

(13)
�1(t) =

∫ t
0 α1σ1S(u)dW1(u),

�2(t) =
∫ t
0 βσ2A(u)dW2(u),

(14)
��1(t)� = σ 2

1

∫ t
0 α

2
1S

2(u)du,

��2(t)� = σ 2
2

∫ t
0 β

2A2(u)du.

(15)P

{

sup
0≤t≤k

[�(t)−
c

2
��(t)�] >

2

c
ln k

}

≤ k−
2
c ,

(16)
∫ t
0 α1σ1S(u)dW1(u) ≤

1
2 cσ

2
1

∫ t
0 α

2
1S

2(u)du+ 2
c ln k,

∫ t
0 βσ2A(u)dW2(u) ≤

1
2 cσ

2
2

∫ t
0 β

2A2(u)du+ 2
c ln k.

(17)
ln P(t) ≤ ln P(0)+

∫ t
0

[

α1θ1S(u)+ βθ2A(u)− (�1 + γ1 + µ)− 1
2σ
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3

− 1
2 (1− c)α2

1σ
2
1 S

2(u)− 1
2 (1− c)β2σ 2
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]

du

+ 2
c ln k +

2
c ln k − σ3W3(t),
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Substituting Eq. (18) into Eq. (17), ln P(t) can be written as:

Hence, for k − 1 ≤ t ≤ k , ln P(t)t  can be obtained as:

By the strong law of large numbers to the Brownian motion, let k → ∞ and then t → ∞ , it can be known that 
lim
t→∞

sup W3(t)
t = 0.

Therefore

Finally, let c → 0 , lim
t→∞

sup ln P(t)
t  can be obtained as:

  �

Theorem 3 For any given initial value (S(0),P(0),A(0),G1(0),G2(0)) ∈ R
5
+ , lim

t→∞
sup lnA(t)

t ≤ K
(

σ 2
2 , σ

2
4

)

 holds 

a.s.. Further, K(σ 2
2 , σ

2
4 ) < 0 , then A(t) tend to 0 exponentially a.s., where K

(

σ 2
2 , σ

2
4

)

=
θ22
2σ 2

2
−

(

�2 + γ2 + µ+ 1
2σ

2
4

)

.

Proof Use Itô′s formula to calculate the differentiation of A(t) in stochastic system (2), and d lnA(t) can be 
written as:

Thus, lnA(t) can be denoted as:

Denote

�3(t) is continuous local martingale. The quadratic variation of �3(t) can be denoted as:

Similar to Theorem 2, for all t ∈ [0, k] , one can obtain

And then, it can be obtained that

noting that
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α1θ1S(u)−

1
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1 S
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2
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∫ t
0

[

θ21
2(1−c)σ 2

1
+

θ22
2(1−c)σ 2

2
− (�1 + γ1 + µ+ 1
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+

θ22
2(1−c)σ 2

2
− (�1 + γ1 + µ+ 1
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c ln k +
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t ≤ ln P(0)
t +
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1
+
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c ·
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c ·
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t→∞

sup
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− (�1 + γ1 + µ+
1
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t
≤

θ21

2σ 2
1

+
θ22

2σ 2
2

− (�1 + γ1 + µ+
1

2
σ 2
3 ).

(23)d lnA(t) =

[

α2S − βθ2P − (�2 + γ2 + µ)−
1

2
β2σ 2

2 P
2 −

1

2
σ 2
4

]

dt − βσ2PdW2 − σ4dW4.

(24)
lnA(t) = lnA(0)+

∫ t
0

[

α2S(u)− βθ2P(u)− (�2 + γ2 + µ)− 1
2β

2σ 2
2 P

2(u)− 1
2σ

2
4

]

du

−
∫ t
0 βσ2P(u)dW2(u)− σ4dW4(t).

(25)�3(t) =

∫ t

0
βσ2P(u)dW2(u),

(26)��3(t)� = σ 2
2

∫ t

0
β2P2(u)du.

(27)
∫ t

0
βσ2P(u)dW2(u) ≤

1

2
cσ 2

2

∫ t

0
β2P2(u)du+

2

c
ln k.

(28)lnA(t) ≤ lnA(0)+

∫ t

0

[

α2S(u)− βθ2P(u)− (�2 + γ2 + µ)

− 1
2 (1− c)β2σ 2

2 P
2(u)− 1

2σ
2
4

]

du+
2

c
ln k − σ4W4(t),
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Substituting Eq. (29) into Eq. (28), lnA(t) can be written as:

Hence, for k − 1 ≤ t ≤ k , lnA(t)t  can be obtained as:

By the strong law of large numbers to the Brownian motion, let k → ∞ and then t → ∞ , it can be known that

Finally, let c → 0 , lim
t→∞

sup lnA(t)
t  can be obtained as:

  �

Remark 1 K
(

σ 2
1 , σ

2
2 , σ

2
3

)

=
θ21
2σ 2

1
+

θ22
2σ 2

2
−

(

�1 + γ1 + µ+ 1
2σ

2
3

)

 and K(σ 2
2 , σ

2
4 ) =

θ22
2σ 2

2
−

(

�2 + γ2 + µ+ 1
2σ

2
4

)

 
are decreasing in σ 2

1  , σ 2
2  , σ 2

3  and σ 2
4  . The investor sentiment will disappearance eventually if σ 2

1  , σ 2
2  , σ 2

3  and σ 2
4  are 

large enough, where K
(

σ 2
1 , σ

2
2 , σ

2
3

)

< 0 and K
(

σ 2
2 , σ

2
4

)

< 0.

A sufficient condition for the stationary distribution
Theorem 4 gives the unique stationary distribution of the existence of stochastic system (2). This also means the 
stability in a stochastic sense.

Theorem 4 If the stochastic system (2) with initial condition (S(0),P(0),A(0),G1(0),G2(0)) ∈ R
5
+ and the follow-

ing conditions are satisfied

where

then the stationary distribution π exists, and the solution of stochastic system (2) is ergodic.

By the investor sentiment-existence equilibrium point E∗ = (S∗, P∗,A∗,G∗
1 ,G

∗
2 ) can be get that

Proof Define a C2 function V:

where

The differential L operator to �1 can be calculated as:

(29)−βθ2P(u)−
1

2
(1− c)β2σ 2

2 P
2(u) ≤

θ22

2(1− c)σ 2
2

.

(30)
lnA(t) ≤ lnA(0)+

∫ t
0

[

θ22
2(1−c)σ 2

2
− (�2 + γ2 + µ+ 1

2σ
2
4 )

]

du+ 2
c ln k − σ4W4(t)

= lnA(0)+
[

θ22
2(1−c)σ 2

2
− (�2 + γ2 + µ+ 1

2σ
2
4 )

]

t + 2
c ln k − σ4W4(t).

(31)
lnA(t)

t
≤

lnA(0)

t
+

θ22

2(1− c)σ 2
2

−

(

�2 + γ2 + µ+
1

2
σ 2
4

)

+
2

c
·
ln k

k − 1
− σ4

W4(t)

t
.

(32)lim
t→∞

sup
lnA(t)

t
≤

θ22

2(1− c)σ 2
2

− (�2 + γ2 + µ+
1

2
σ 2
4 ).

(33)lim
t→∞

sup
lnA(t)

t
≤

θ22

2σ 2
2

−

(

�2 + γ2 + µ+
1

2
σ 2
4

)

.

(34)0 < Ŵ < min
(

ξ1S
2, ξ2P

2, ξ3A
2, ξ4G

2
1, ξ5G

2
2

)

,

(35)

Ŵ = 1
2σ

2
3 P

∗ + 1
2σ

2
4A

∗,

ξ1 = µ− α2
1σ

2
1 ,

ξ2 = (�1 + γ1 + µ)−
(

β2σ 2
2 + σ 2

3

)

,

ξ3 = (�2 + γ2 + µ)−
(

β2σ 2
2 + σ 2

4

)

,
ξ4 = ε1 + µ,
ξ5 = ε2 + µ.

(36)lim
t→∞

1

t
E

∫ t

0

[

ξ1(S(u)− S∗)2 + ξ2(P(u)− P∗)2 + ξ3(A(u)− A∗)2

+ξ4(G1(u)− G∗
1)

2 + ξ5(G2(u)− G∗
2)

2

]

du < Ŵ.

(37)�(S, P,A,G1,G2) = �1(P)+�2(A)+�3(G1)+�4(G2)+�5(S, P,A,G1,G2),

(38)

�1(P) = P − P∗ − P∗ ln P
P∗ ,

�2(A) = A− A∗ − A∗ ln A
A∗ ,

�3(G1) = G1 − G∗
1 − G∗

1 ln
G1
G∗
1
,

�4(G2) = G2 − G∗
2 − G∗

2 ln
G2
G∗
2
,

�5(S, P,A,G1,G2) =
1
2 (S + P + A+ G1 + G2 − S∗ − P∗ − A∗ − G∗

1 − G∗
2)

2.
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According to E∗ = (S∗, P∗,A∗,G∗
1 ,G

∗
2 ) , it is easy to get that

and then, L�1 can be expressed as:

where α1θ1(S − S∗) ≥ 0 and βθ2(A− A∗) ≥ 0.
By simple calculation, one can get

due to 12 (x + y)2 ≤ x2 + y2 , it is easy to obtain that

Similarly, L�2 can be obtained that

Next, the differential L operator to �3 can be calculated as:

According to E∗ = (S∗, P∗,A∗,G∗
1 ,G

∗
2 ) , it is easy to get that

and L�3 can be obtained as:

where �1P(G1−G∗
1 )

G1G
∗
1

≥ 0 and G1
∗ > 0.

By simple calculation, one can get

due to 12 (x + y)2 ≤ x2 + y2 , it is easy to obtain that

Similarly, L�4 can be obtained that

Finally, the differential L operator to �5 can be calculated as:

(39)
L�1 = [α1θ1SP + βθ2AP − (�1 + γ1 + µ)P] ∂�1

∂P + 1
2

(

α2
1σ

2
1 S

2P2 + β2σ 2
2A

2P2 + σ 2
3 P

2
)

∂2�1

∂P2

= (P − P∗)[α1θ1S + βθ2A− (�1 + γ1 + µ)]+ 1
2α

2
1σ

2
1 S

2P∗ + 1
2β

2σ 2
2A

2P∗ + 1
2σ

2
3 P

∗,

(40)�1 + γ1 + µ = α1θ1S
∗ + βθ2A

∗,

(41)L�1 = (P − P∗)
[

α1θ1(S − S∗)+ βθ2(A− A∗)
]

+
1

2
α2
1σ

2
1 S

2P∗ +
1

2
β2σ 2

2A
2P∗ +

1

2
σ 2
3 P

∗,

(42)
L�1 ≤ α1θ1(S − S∗)(P − P∗)+ βθ2(A− A∗)(P − P∗)+ 1

2α
2
1σ

2
1 [(S − S∗)+ S∗]2P∗

+ 1
2β

2σ 2
2 [(A− A∗)+ A∗]2P∗ + 1

2σ
2
3 P

∗,

(43)
L�1 ≤ α1θ1(S − S∗)(P − P∗)+ βθ2(A− A∗)(P − P∗)+ α2

1σ
2
1 (S − S∗)2P∗

+β2σ 2
2 (A− A∗)2P∗ + 1

2σ
2
3 P

∗.

(44)L�2 ≤ α2(S − S∗)(A− A∗)− βθ2(A− A∗)(P − P∗)+ β2σ 2
2 (P − P∗)2A∗ +

1

2
σ 2
4A

∗.

(45)
L�3 = (�1P − ε1G1 − µG1)

∂�3
∂G1

+ 1
2σ

2
3 P

2 ∂2�3

∂G2
1

= (G1 − G∗
1)(

�1P
G1

− ε1 − µ)+ 1
2σ

2
3 P

2.

(46)ε1 + µ =
�1P

∗

G∗
1

,

(47)
L�3 = (G1 − G∗

1 )(
�1P
G1

− �1P
∗

G∗
1
)+ 1

2σ
2
3 P

2

= (G1 − G∗
1 )

[

−
�1P(G1−G∗

1 )

G1G
∗
1

+ �1(P−P∗)
G∗
1

]

+ 1
2σ

2
3 P

2.

(48)L�3 ≤ �1(P − P∗)(G1 − G∗
1 )+

1

2
σ 2
3

[

(P − P∗)+ P∗
]2
,

(49)L�3 ≤ �1(P − P∗)(G1 − G∗
1 )+ σ 2

3 (P − P∗)2.

(50)L�4 ≤ �2(A− A∗)(G2 − G∗
2 )+ σ 2

4 (A− A∗)2.
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Substitute Eqs. (43), (44), (49), (50) and (51) into Eq. (37) to get

By Eq. (34), the ellipsoid

lies entirely in R5
+ . According  to37, it is easy to know that stochastic system (2) has a stable stationary distribu-

tion.   �

Remark 2 By Theorem 4, there exist

so that the solution of stochastic system (2) fluctuates around E∗ . Moreover, the difference between deterministic 
system and stochastic system (2) decreases with the values of σ1 , σ2 , σ3 and σ4 decreasing.

The stochastic optimal control model
Based on the random investor sentiment contagion model established above, the paper recognizes that positive 
investor sentiment significantly promotes economic and social development. Conversely, when managers need 
to regulate investor sentiment, effective measures of regulatory isolation can be implemented. In this view, the 
paper introduces two control objectives aimed at facilitating the transformation of positive investor sentiment 
disseminators and groups under regulatory isolation. Consequently, the four constants of proportionality in the 
model θ1, θ2, �1 and �2 were changed into control variables θ1(t), θ2(t), �1(t) and �2(t).

Hence, the objective function can be proposed as:

and the objective function satisfy the state system as:

(51)

L�5 =

(

S + P + A+ G1 + G2 − S∗

−P∗ − A∗ − G∗
1 − G∗

2

)[

B− µS − (�1 + γ1 + µ)P − (�2 + γ2 + µ)A
−(ε1 + µ)G1 − (ε2 + µ)G2

]

=

(

S − S∗ + P − P∗ + A− A∗

+G1 − G∗
1 + G2 − G∗

2

)

[

−µ(S − S∗)− (�1 + γ1 + µ)(P − P∗)
−(�2 + γ2 + µ)(A− A∗)− (ε1 + µ)(G1 − G∗

1 )
−(ε2 + µ)(G2 − G∗

2 )

]

≤ −µ(S − S∗)2 − (�1 + γ1 + µ)(S − S∗)(P − P∗)− (�2 + γ2 + µ)(S − S∗)(A− A∗)
−(ε1 + µ)(S − S∗)(G1 − G∗

1 )− (ε2 + µ)(S − S∗)(G2 − G∗
2 )− µ(S − S∗)(P − P∗)

−(�1 + γ1 + µ)(P − P∗)2 − (�2 + γ2 + µ)(A− A∗)(P − P∗)− µ(S − S∗)(G2 − G∗
2 )

−(ε2 + µ)(P − P∗)(G2 − G∗
2 )− µ(S − S∗)(A− A∗)− (�1 + γ1 + µ)(P − P∗)(A− A∗)

−(�2 + γ2 + µ)(A− A∗)2 − (ε1 + µ)(A− A∗)(G1 − G∗
1 )− (ε2 + µ)(A− A∗)(G2 − G∗

2 )
−µ(S − S∗)(G1 − G∗

1 )− (�1 + γ1 + µ)(P − P∗)(G1 − G∗
1 )− (ε1 + µ)(P − P∗)(G1 − G∗

1 )

−(ε1 + µ)(G1 − G∗
1 )

2 − (ε2 + µ)(G1 − G∗
1 )(G2 − G∗

2 )− (�2 + γ2 + µ)(A− A∗)(G1 − G∗
1 )

−(�1 + γ1 + µ)(P − P∗)(G2 − G∗
2 )− (�2 + γ2 + µ)(A− A∗)(G2 − G∗

2 )− (ε2 + µ)(G2 − G∗
2 )

2

−(ε1 + µ)(G1 − G∗
1)(G2 − G∗

2).

(52)

�(S, P,A,G1,G2) ≤ α2
1σ

2
1 (S − S∗)2 + β2σ 2

2 (A− A∗)2 + 1
2σ

2
3 P

∗ + β2σ 2
2 (P − P∗)2

+ 1
2σ

2
4A

∗ + σ 2
3 (P − P∗)2 + σ 2

4 (A− A∗)2 − µ(S − S∗)2

−(�1 + γ1 + µ)(P − P∗)2 − (�2 + γ2 + µ)(A− A∗)2

−(ε1 + µ)(G1 − G∗
1 )

2 − (ε2 + µ)(G2 − G∗
2 )

2

= (α2
1σ

2
1 − µ)(S − S∗)2 +

[

β2σ 2
2 + σ 2

3 − (�1 + γ1 + µ)
]

(P − P∗)2

+
[

β2σ 2
2 + σ 2

4 − (�2 + γ2 + µ)
]

(A− A∗)2 − (ε1 + µ)(G1 − G∗
1 )

2

−(ε2 + µ)(G2 − G∗
2)

2 + 1
2σ

2
3 P

∗ + 1
2σ

2
4A

∗.

(53)−ξ1(S − S∗)2 − ξ2(P − P∗)2 − ξ3(A− A∗)2 − ξ4(G1 − G∗
1 )

2 − ξ5(G2 − G∗
2 )

2 + Ŵ = 0

(54)

lim
(σ1,σ2,σ3,σ4)→0

Ŵ = 0,

lim
(σ1,σ2,σ3,σ4)→0

ξ1 = µ > 0,

lim
(σ1,σ2,σ3,σ4)→0

ξ2 = �1 + γ1 + µ > 0,

lim
(σ1,σ2,σ3,σ4)→0

ξ3 = �2 + γ2 + µ > 0,

lim
(σ1,σ2,σ3,σ4)→0

ξ4 = ε1 + µ > 0,

lim
(σ1,σ2,σ3,σ4)→0

ξ5 = ε2 + µ > 0,

(55)J(P,G1,G2) =

∫ tf

0

[

P(t)+ G1(t)+ G2(t)− c1/2θ
2
1 (t)− c2/2θ

2
2 (t)− c3/2�

2
1(t)− c4/2�

2
2(t)

]

,
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The initial conditions for system (56) are satisfied:

where

while U is the admissible control set. 0 and tf  are the time interval. The control strength and importance of control 
measures are expressed as c1 , c2 , c3 and c4 , which are the positive weight coefficients.

Theorem 5 There exists an optimal control pair 
(

θ∗1 , θ
∗
2 , �

∗
1, �

∗
2

)

∈ U  , so that the function is established as:

Proof Let X(t) = (S(t),P(t),A(t),G1(t),G2(t),R1(t),R2(t))
T and

The following five conditions must be satisfied and then the optimal control pair is existence. 

(i) The set of control variables and state variables is nonempty.
(ii) The control set U is convex and closed.
(iii) The right-hand side of the state system is bounded by a linear function in the state and control variables.
(iv) The integrand of the objective functional is convex on U.
(v) There exist constants d1, d2 > 0 and ρ > 1 such that the integrand of the objective functional satisfied: 

It is clearly that conditions (i)–(iii) established. Then, the condition (iv) can be easily established such that

Next, for any t ≥ 0 , there is a positive constant M which is satisfied |X(t)| ≤ M , therefore

Let d1 = min
{

c1
2 ,

c2
2 ,

c3
2 ,

c4
2

}

, d2 = 2M and ρ = 2 , then condition (v) is established. Hence, the optimal control 
can be realized.   �

Theorem 6 There exist adjoint variables δ1, δ2, δ3, δ4, δ5 for the optimal control pair 
(

θ∗1 , θ
∗
2 , �

∗
1, �

∗
2

)

 that satisfy:

With boundary conditions:

In addition, the optimal control pair 
(

θ∗1 , θ
∗
2 , �

∗
1, �

∗
2

)

 of state system (56) can be given by:

(56)































dS(t) = [B− α1θ1(t)SP − α2SA− µS]dt − α1σ1SPdW1(t),

dP(t) =
[α1θ1(t)SP + βθ2(t)AP − �1(t)P − γ1P − µP]dt
+α1σ1SPdW1(t)+ βσ2APdW2(t)− σ3PdW3(t),

dA(t) =
[α2SA− βθ2(t)AP − �2(t)A− γ2A− µA]dt
−βσ2APdW2(t)− σ4AdW4(t),

dG1(t) = [�1(t)P − ε1G1 − µG1]dt + σ3PdW3(t),
dG2(t) = [�2(t)A− ε2G2 − µG2]dt + σ4AdW4(t).

(57)S(0) = S0, P(0) = P0,A(0) = A0,G1(0) = G1,0,G2(0) = G2,0,

(58)θ1(t), θ2(t), �1(t), �2(t) ∈ U
�
=

{

(θ1, θ2, �1, �2)|(θ1(t), θ2(t), �1(t), �2(t))
measurable, 0 ≤ θ1(t), θ2(t), �1(t), �2(t) ≤ 1,∀t ∈ [0, tf ]

}

,

(59)J(θ∗1 , θ
∗
2 , �

∗
1, �

∗
2) = max{J(θ1, θ2, �1, �2) : (θ1, θ2, �1, �2) ∈ U}.

(60)
L(t;X(t), θ1(t), θ2(t), �1(t), �2(t)) = P(t)+ G1(t)+ G2(t)− c1/2θ

2
1 (t)

− c2/2θ
2
2 (t)− c3/2�

2
1(t)− c4/2�

2
2(t).

(61)−L(t;X(t), θ1; θ2; �1; �2) ≥ d1(|θ1|
2 + |θ2|

2 + |�1|
2 + |�2|

2)ρ/2 − d2.

(62)S′ ≤ B, P′ ≤ α1θ1(t)SP + βθ2(t)AP,A
′ ≤ α2SA,G

′
1 ≤ �1(t)P,G

′
2 ≤ �2(t)A.

(63)
−L(t;X(t), θ1; θ2; �1; �2) = (c1θ

2
1 (t)+ c2θ

2
2 (t)+ c3�

2
1(t)+ c4�

2
2(t))/2

−P(t)− G1(t)− G2(t)

≥ d1(|θ1|
2 + |θ2|

2 + |�1|
2 + |�2|

2)
ρ/2

− 2M.

(64)



























































dδ1
dt =

�

(δ1 − δ2)α1θ1(t)P + (δ1 − δ3)α2A
+δ1µ+ (ζ1 − ζ2)α1σ1P

�

dt − ζ1dW1,

dδ2
dt =

�

1+ (δ1 − δ2)α1θ1(t)S + (δ3 − δ2)βθ2(t)A
+(δ2 − δ4)�1(t)+ (δ2 − δ2)γ1 + δ2µ− ζ4σ3
+(ζ1 − ζ2)α1σ1S + (ζ3 − ζ2)βσ2A+ ζ2σ3

�

dt + ζ2dW1 + ζ2dW2 − ζ2dW3,

dδ3
dt =

�

(δ1 − δ3)α2S + (δ3 − δ2)βθ2(t)P
+(δ3 − δ5)�2(t)+ (δ3 − δ5)γ2 + δ3µ
(ζ3 − ζ2)βσ2P + ζ3σ4 − ζ5σ4

�

dt − ζ3dW2 − ζ3dW4,

dδ4
dt = [1+ (δ4 − δ6)ε1 + δ4µ]dt + ζ4dW3,
dδ5
dt = [1+ (δ5 − δ7)ε2 + δ5µ]dt + ζ5dW4,

(65)δ1(tf ) = δ2(tf ) = δ3(tf ) = δ4(tf ) = δ5(tf ) = 0.
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Proof In order to obtain the expression of optimal control system and optimal control pair, define a Hamiltonian 
function, which can be written as:

According to the Pontyragin maximum principle, the adjoint system can be written as:

and the boundary conditions of adjoint system are

Then, the optimal control pair 
(

θ∗1 , θ
∗
2 , �

∗
1, �

∗
2

)

 can be calculated as:

  �

Remark 3 So far, the optimal control system can be got includes state system (56) with the initial conditions 
S(0), P(0), A(0), 

G1(0),G2(0) and the adjoint system (64) with boundary conditions with the optimization conditions. The 
optimal control system can be written as:

(66)

θ∗1 (t) = min
{

1,max
{

0, (δ1−δ2)α1SP
c1

}}

,

θ∗2 (t) = min
{

1,max
{

0, (δ3−δ2)βAP
c2

}}

,

�
∗
1(t) = min

{

1,max
{

0, (δ2−δ4)P
c3

}}

,

�
∗
2(t) = min

{

1,max
{

0, (δ3−δ5)A
c4

}}

.

(67)

H = −P(t)− G1(t)− G2(t)+ c1/2θ
2
1 (t)(t)+ c2/2θ

2
2 (t)(t)+ c3/2�

2
1(t)+ c4/2�

2
2(t)

+δ1[B− α1θ1(t)SP − α2SA− µS]+ δ2[α1θ1(t)SP + βθ2(t)AP − �1(t)P − γ1P − µP]
+δ3[α2SA− βθ2(t)AP − �2(t)A− γ2A− µA]+ δ4[�1(t)P − ε1G1 − µG1]
+δ5[�2(t)A− ε2G2 − µG2]+ (−ζ1α1σ1SP)+ [ζ2(α1σ1SP + βσ2AP − σ3P)]
+[ζ3(−βσ2AP − σ4A)]+ ζ4σ3P + ζ5σ4A,

(68)
dδ1

dt
= −

∂H

∂S
,
dδ2

dt
= −

∂H

∂P
,
dδ3

dt
= −

∂H

∂A
,
dδ4

dt
= −

∂H

∂G1
,
dδ5

dt
= −

∂H

∂G2
,

(69)δ1(tf ) = δ2(tf ) = δ3(tf ) = δ4(tf ) = δ5(tf ) = 0.

(70)

θ∗1 (t) = min
{

1,max
{

0, (δ1−δ2)α1SP
c1

}}

,

θ∗2 (t) = min
{

1,max
{

0, (δ3−δ2)βAP
c2

}}

,

�
∗
1(t) = min

{

1,max
{

0, (δ2−δ4)P
c3

}}

,

�
∗
2(t) = min

{

1,max
{

0, (δ3−δ5)A
c4

}}

.
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and

Numerical simulations
This section will adopt the Rung-Kutta algorithm for numerical simulation to verify the theorem proposed by the 
stochastic system (2). The reason of using Rung-Kutta algorithm is that the investor sentiment contagion model 
constructed in this paper is an ordinary differential equation with random parameter perturbation. Choosing 
the Rung-Kutta algorithm can quickly and stably obtain the analytical solution of the equation. Thus, the trend 
of investor sentiment contagion can be observed. The advantages and applicability of the Rung-Kutta algorithm 
are (1) Rung-Kutta method is a numerical method for solving ordinary differential equations, including non-
linear and coupled equations. (2) Rung-Kutta method can control the error and efficiency by adjusting the step 
size, thus adapting to different accuracy requirements. (3) Rung-Kutta method can use embedded methods to 
estimate and control the error, thus improving the reliability and stability. (4) Rung-Kutta method is an explicit 
method, which does not need to solve linear or nonlinear equations, thus reducing the computational complex-
ity. (5) Rung-Kutta method has a wide range of applications in natural science, engineering, physics, chemistry, 
biology, geology and other fields, and can be used to simulate various dynamical systems, diffusion processes, 
wave equations, temperature changes and other phenomena.

In most previous studies, clear stipulations on the values of parameters have been lacking. Therefore, this 
section will combine the range of values of the basic reproductive number R0 and the fundamental conditions 
presented in the theorem to rationalize the parameter values in the model.

To observe the influence of random factors on investor sentiment contagion and the effects of random distur-
bance on the characteristics of various group changes in the deterministic model, the parameter values should meet 
the basic condition that investor sentiment can widely spread in the social system, i.e., the basic reproductive num-
ber R0 > 1 . Thus, the parameter value was taken as B = 1,α1 = 0.3,α2 = 0.3,β = 0.3, θ1 = 0.3, θ2 = 0.3, �1 = 0.1,

�2 = 0.1, γ1 = 0.1, γ2 = 0.1, ǫ1 = 0.1, ǫ2 = 0.1,µ = 0.1.
First, the disturbance strength σ = 0.0001 . Figure 2 presents the probability histogram of population 

S(t),P(t),A(t),G1(t), G2(t) . As shown in Fig. 2, the probability of all populations adhering to the social system 
remains stable. Figure 3 provides a comparison of trends in population S(t),P(t),A(t),G1(t),G2(t) between 
deterministic and non-deterministic systems over time. Figure 3 shows that as external random environmental 
factors are introduced into the social system, investor sentiment contagion in the system with random distur-
bance terms surpasses that in the deterministic system. This suggests a positive role played by random envi-
ronmental disturbance in promoting investor sentiment contagion. Though these environmental disturbances 
promote investor sentiment contagion, it remains unstable in the social system, with the density of each popula-
tion constantly fluctuating over time.

(71)























































































































































































































dS(t) =

�

B− α2SA− µS

−α1 min
�

1,max
�

0, (δ1−δ2)α1SP
c1

��

SP

�

dt − α1σ1SPdW1(t),

dP(t) =











α1 min
�

1,max
�

0, (δ1−δ2)α1SP
c1

��

SP

+βmin
�

1,max
�

0, (δ3−δ2)βAP
c2

��

AP

−min
�

1,max
�

0, (δ2−δ4)P
c3

��

P − γ1P − µP











dt

+α1σ1SPdW1(t)+ βσ2APdW2(t)− σ3PdW3(t),

dA(t) =





α2SA− βmin
�

1,max
�

0, (δ3−δ2)βAP
c2

��

AP

−min
�

1,max
�

0, (δ3−δ5)A
c4

��

A− γ2A− µA



dt

−βσ2APdW2(t)− σ4AdW4(t),

dG1(t) =
�

min
�

1,max
�

0, (δ2−δ4)P
c3

��

P − ε1G1 − µG1

�

dt + σ3PdW3(t),

dG2(t) =
�

min
�

1,max
�

0, (δ3−δ5)A
c4

��

A− ε2G2 − µG2

�

dt + σ4AdW4(t),

dδ1
dt =

�

(δ1 − δ2)α1 min
�

1,max
�

0, (δ1−δ2)α1SP
c1

��

P + (δ1 − δ3)α2A

+δ1µ+ (ζ1 − ζ2)α1σ1P

�

dt − ζ1dW1,

dδ2
dt =

















1+ (δ1 − δ2)α1 min
�

1,max
�

0, (δ1−δ2)α1SP
c1

��

S

+(δ3 − δ2)βmin
�

1,max
�

0, (δ3−δ2)βAP
c2

��

A

+(δ2 − δ4)min
�

1,max
�

0, (δ2−δ4)P
c3

��

+(δ2 − δ2)γ1 + δ2µ− ζ4σ3
+(ζ1 − ζ2)α1σ1S + (ζ3 − ζ2)βσ2A+ ζ2σ3

















dt + ζ2dW1 + ζ2dW2 − ζ2dW3,

dδ3
dt =







(δ1 − δ3)α2S + (δ3 − δ2)βmin
�

1,max
�

0, (δ3−δ2)βAP
c2

��

P

+(δ3 − δ5)�2(t)+ (δ3 − δ5)γ2 + δ3µ
(ζ3 − ζ2)βσ2P + ζ3σ4 − ζ5σ4






dt − ζ3dW2 − ζ3dW4,

dδ4
dt = [1+ (δ4 − δ6)ε1 + δ4µ]dt + ζ4dW3,
dδ5
dt = [1+ (δ5 − δ7)ε2 + δ5µ]dt + ζ5dW4,

(72)δ1(tf ) = δ2(tf ) = δ3(tf ) = δ4(tf ) = δ5(tf ) = 0.
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Figure 2.  Frequency histograms of (A) S(t), (B) P(t), (C) A(t), (D) G1(t) , (E) G2(t) when 
σi(i = 1, 2, 3, 4) = 0.0001.

Figure 3.  Comparison between deterministic model and stochastic model of the densities of (A) S(t), (B) P(t), 
(C) A(t), (D) G1(t) , (E) G2(t) change over time when σi(i = 1, 2, 3, 4) = 0.0001.
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Next, the disturbance strength was increased to σ = 0.001 . Figure 4 presents the probability histogram of 
population S(t),P(t),A(t),G1(t),G2(t) . As shown in Fig. 4, the probability of all populations adhering to the 
social system remains stable. Figure 5 provides a comparison of trends in population S(t),P(t),A(t),G1(t),G2(t) 
between deterministic and non-deterministic systems over time. As shown in Figure 5, the increase in distur-
bance strength has enhanced the volatility of the system. However, the contagion trend of investor sentiment 
has not changed.

Then, to observe the impacts of different disturbance strengths on investor sentiment contagion, we combined 
and analyzed the trend charts of investor sentiment contagion changing over time in the non-deterministic 
system for disturbance strengths of 0.001 and 0.0001, respectively. As shown in Fig. 6, the fluctuation of investor 
sentiment contagion gradually stabilizes with the decrease in disturbance strength. This indicates that investor 
sentiment is more prone to spreading in a system with random environmental factors. Effectively controlling the 
random factors in the system can, in turn, regulate the fluctuation of investor sentiment contagion.

Finally, to verify the effectiveness of the proposed control strategy, other parameters are kept constant, 
while random parameters θ1, θ2, �1, �2 are controlled. This allows observation of the trends of populations 
P(t),A(t),G1(t),G2(t) changing over time when the optimal control strategy is adopted. As shown in Fig. 7, 
when the disturbance strength σ = 0.0001 and optimal control is adopted to random parameters θ1, θ2, �1, �2 , 
the densities of populations P(t) and G1(t) are superior to those without control measures. This indicates that 
the proposed optimal control strategy effectively promotes positive investor sentiment contagion, maximizing 
the regulatory isolation of investor sentiment. On the contrary, the densities of populations A(t) and G2(t) are 
lower than those without control measures taken. This indicates that the proposed optimal control measures can 
effectively curb negative investor sentiment contagion. Moreover, since negative investor sentiment is effectively 
controlled, additional measures to control isolated populations are unnecessary.

The disturbance strength σ = 0.001 was further increased. As shown in Fig. 8, when optimal control was 
adopted to random parameters θ1, θ2, �1, �2 , the trend in the densities of populations P(t),A(t),G1(t),G2(t) 
remains unchanged. Subsequently, the two sets of images were combined and analyzed. As shown in Fig. 9, the 
change of disturbance strength only affected the fluctuation of investor sentiment contagion, not the overall 
trend. Therefore, the optimal control strategy proposed here can effectively promote positive investor sentiment 
contagion and supervise investor sentiment regardless of the strength of the disturbance.

Conclusions
In this paper, the random factors in the social system were added to the deterministic model, constructing 
the stochastic SPA2G2R model that includes parameter disturbance. Additionally, two deterministic param-
eters—the conversion rate of positive investor sentiment and regulatory isolation rate—were changed into non-
deterministic parameters. The paper establishes the uniqueness of the global positive solution, calculates the 

Figure 4.  Frequency histograms of (A) S(t), (B) P(t), (C) A(t), (D) G1(t) , (E) G2(t) when 
σi(i = 1, 2, 3, 4) = 0.001.
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Figure 5.  Comparison between deterministic model and stochastic model of the densities of (A) S(t), (B) P(t), 
(C) A(t), (D) G1(t) , (E) G2(t) change over time when σi(i = 1, 2, 3, 4) = 0.001.

Figure 6.  Comparison between σi(i = 1, 2, 3, 4) = 0.001 and σi(i = 1, 2, 3, 4) = 0.0001 of the densities of (A) 
S(t), (B) P(t), (C) A(t), (D) G1(t) , (E) G2(t) change over time.
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sufficient conditions for information disappearance and stable information distribution, and presents an optimal 
control strategy for the stochastic model. Numerical simulations were conducted to verify the probability density 
distribution of the stochastic model and the influence of white noise disturbance on information transmission. 
Furthermore, the tendencies of information transmission under various disturbance strengths were compared.

The study yields the following results: (1) White noise disturbance has the potential to promote positive 
investor sentiment contagion and restrain negative investor sentiment contagion. (2) As the disturbance strength 
increases, the randomness of the model gradually intensifies, and the fluctuation of information transmission 
tendency becomes more pronounced. (3) The effective control of investor sentiment contagion can be achieved 
by manipulating random parameters. Notably, the optimal control strategy proposed in this study differs from 
previous approaches, providing the optimal value calculated based on control variables.

The approach of building a non-deterministic model of investor sentiment contagion by incorporating uncer-
tain factors into the deterministic model aligns more closely with the complexity of the real social system. This 
study, based on the relevant research, uses the mean field differential equation to describe the dynamic process 
of investor sentiment contagion. At the same time, by introducing the random factors in the social system into 
the deterministic model, it can better reflect the real phenomenon of the social system. In addition, the control 
strategy given in this paper is based on the optimal solution calculated by the optimal control model.The research 
findings indicate that leveraging the randomness and complexity inherent in the economy and society can greatly 
promote positive investor sentiment contagion, contributing to economic and social development. For investor 
sentiment that is deemed unnecessary, the study recommends harnessing social fluctuations and implementing 
timely regulatory isolation measures.

Different from previous studies, the highlights of this article are (1) In terms of research perspective, this arti-
cle used the mean field differential equation model to describe the contagion mechanism of investor sentiment, 

Figure 7.  The densities of (A) S(t), (B) P(t), (C) A(t), (D) G1(t) , (E) G2(t) change over time when 
σi(i = 1, 2, 3, 4) = 0.0001 under constant control measure and optimal control.
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which can describe the contagion trend of investor sentiment from a microscopic perspective. (2) In terms of 
research methods, this article used white noise perturbation to characterize the random phenomena of social 
systems, and adds random parameter perturbation terms to the deterministic investor sentiment contagion 
model. This making the model constructed in this article more practical. (3) In terms of research results, the 
optimal control strategy proposed in this study differs from previous approaches, providing the optimal value 
calculated based on control variables. The research results of this article are different from past studies, as mul-
tiple investor sentiment exhibit a mutually inhibitory relationship during the contagion process. In addition, 
the control method proposed in this article can effectively promote the contagion of different investor sentiment 
by adjusting the random disturbance term. At the same time, the isolation of investor sentiment can quickly 
eliminate the contagion of various investor sentiment.

In this paper, the white noise perturbation has been used to characterize the impact of random factors in 
social systems on the investor sentiment contagion. And a stochastic SPA2G2R model considering different 
investor sentiment contagion and regulatory isolation has been constructed. White noise can clearly characterize 
the continuous random perturbation to the system disturbance. However, in the real social systems, the non-
continuous random perturbations are also relatively common phenomena. This paper mainly focused on the 
impact of continuous random perturbations on the contagion of investor sentiment, without considering the 
impact of non-continuous random perturbations on the contagion of investor sentiment. In future research, the 
non-continuous random perturbation phenomena existing in social systems will be considered. And construct 
an investor sentiment contagion model with non-continuous random perturbations. At the same time, the L ́e vy 
jump will be used to characterize the impact of non-continuous random perturbations on the contagion of 
investor sentiment. On this basis, the contagion trends of continuous and non-continuous random perturbations 

Figure 8.  The densities of (A) S(t), (B) P(t), (C) A(t), (D) G1(t) , (E) G2(t) change over time when 
σi(i = 1, 2, 3, 4) = 0.001 under constant control measure and optimal control.
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will be compared. And the different impacts of continuous and non-continuous random perturbations on the 
contagion of investor sentiment will be analyzed.

Data and code availability
All raw data are within the manuscript.
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