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Dictionary‑based matching graph 
network for biomedical named 
entity recognition
Yinxia Lou 1, Xun Zhu 1* & Kai Tan 2

Biomedical named entity recognition (BioNER) is an essential task in biomedical information analysis. 
Recently, deep neural approaches have become widely utilized for BioNER. Biomedical dictionaries, 
implemented through a masked manner, are frequently employed in these methods to enhance entity 
recognition. However, their performance remains limited. In this work, we propose a dictionary-
based matching graph network for BioNER. This approach utilizes the matching graph method to 
project all possible dictionary-based entity combinations in the text onto a directional graph. The 
network is implemented coherently with a bi-directional graph convolutional network (BiGCN) that 
incorporates the matching graph information. Our proposed approach fully leverages the dictionary-
based matching graph instead of a simple masked manner. We have conducted numerous experiments 
on five typical Bio-NER datasets. The proposed model shows significant improvements in F1 score 
compared to the state-of-the-art (SOTA) models: 2.8% on BC2GM, 1.3% on BC4CHEMD, 1.1% on 
BC5CDR, 1.6% on NCBI-disease, and 0.5% on JNLPBA. The results show that our model, which is 
superior to other models, can effectively recognize natural biomedical named entities.

Biomedical named entity recognition (BioNER) is a critical task in biomedical text mining that aims to identify 
various existing biomedical entities such as genes, proteins, chemicals, and diseases from text. BioNER is useful 
for extracting new genes and other important biomedical entities from research articles1. Additionally, BioNER 
serves as a foundational step for other essential tasks like relation extraction2 and knowledge base completion3. 
The accuracy of BioNER tools remains a crucial factor in the performance of biomedical text mining pipelines4. 
Improving the accuracy of BioNER is crucial for advancing biomedical research and developing new treatments 
and therapies for a wide range of diseases.

BioNER is often regarded as a sequence labeling problem. Owing to the rapid development of deep learning, 
many neural structures5,6 have been proposed to address this task. Basic neural networks such as long short-term 
memory network (LSTM) and its variant bidirectional LSTM (BiLSTM) achieve better performance compared 
with traditional feature-based approaches7. Other neural structure types like convolutional neural network 
(CNN)8 and Transformers9 can also be selected as alternatives and obtain comparable results. Taking the entity 
head-tail boundary detection as an auxiliary task enhances named entity recognition10. Inspired by the excellent 
ability of Bidirectional Encoder Representation from Transformers (BERT) on text representation, researchers 
proposed biomedical BERT (BioBERT) which is pre-trained on biomedical corpus11. Despite the great success 
achieved through deep learning methods, there remain some unresolved issues. One prominent shortcoming is 
that these models rarely integrate human knowledge. The deep neural networks often attempt to directly learn 
features from large scale labeled data. However, there also exists a substantial number of entities that rarely or 
even do not occur in the training set. Thus, the data-driven deep learning methods usually cannot handle such 
cases well.

To address the above challenge, one approach is to leverage extra dictionary information. Biomedical dic-
tionaries are already widely employed in many neural models12,13 as a supplementary information gathered 
from a simple masked manner, which normally will be fed into the input. Specifically, to fully leverage external 
dictionary resources, many works introduce position features of words within the lexicon, including the word’s 
beginning (B), middle (M), or end (E). Wang et al. 12 introduced a position-dependent entity type feature by 
attaching position labels (BME) to the rear of each word in the lexicon.13 presented a relational graph to utilize 
the position information of word tokens by adding the boundary information of words to the edges that link 
lexicon words and tokens. However, the works mentioned above that incorporate dictionary information and 
its positions have shown limited improvement in performance. Figure 1 illustrates that a single text can contain 
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multiple interacting entities from biomedical dictionaries, with three types of relationships among them: overlap-
ping, nested, and disjoint. Traditional models using the masked approach can only handle the disjoint situation. 
As depicted in Figure 1, the golden entity is only a sub-sequence of the masked entity but exists in the dictionary 
(one of the red bars). It also has complex spatial relationships with other red bars. For overlapping and nested 
situations, we need to devise a coherent structure to maintain all matching information (red bars) and handle 
the redundant parts among these entities strategically.

In this study, we propose a dictionary-based matching graph network (DMGN) to process all entities appear-
ing in the biomedical dictionary accurately. As shown in Fig. 2, each entity can be uniquely defined by a tuple 
including a start and end point, which can be treated as a connection from the start point to the end point. We 
can then construct a directional graph using these connections. To describe the graph, we introduce the graph 
convolutional network (GCN)14 to our method. In particular, we use the bidirectional GCN (BiGCN) to encode 
both the forward and backward graphs. This method computes the start and end information of each word when 
forming an entity. We also use BiLSTM and BioBERT as our basic encoders to represent the text information. The 
results on five datasets demonstrate that DMGN significantly improves the performance compared to methods 
using a masked manner.

Background
Long short‑term memory (LSTM)
LSTM takes a vector sequence [x1, x2, ...] as the input and outputs hidden states [h1, h2, ...] . LSTM consists of three 
main gates, including input gate, output gate and forget gate that precisely control the message flow through each 
inner module. In general, we use the sigmoid function as the activation function, which restricts the output value 
between zero and one.. The main procedure is formulated as follows:

(1)it = sigmoid(Wi[ht−1, xt ] + bi)

Figure 1.   A typical sample of biomedical named entity recognition task. Blue bar indicates the mask sequence 
generated by simple masked manner. Red bars represent all the possible entities appearing in the dictionary. 
Golden entity is ‘Wilms ’ tumor’ with type ‘disease’.
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Figure 2.   A sample demonstrates how entities appearing in the dictionary are transformed into unique 
connections. The matrix is an adjacent matrix. Red arrow or block means the golden entity.
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ct is the memory state and h0 is initialized to zeros, where t represents the time step. The parameters 
Wi ,Wf ,Wo,Wh and bi , bf , bo, bh are all trainable. The input gate it controls the weight of the last hidden vector 
to form the mid vector h̃t . The forget gate ft controls the proportion between the mid vector h̃t and the last hidden 
vector ht−1 to obtain the current hidden vector ht . The output gate ot controls the weight of the current memory ct.

The LSTM architecture described above can only process the input in one direction. The bi-directional long 
short-term memory (BiLSTM) model improves the LSTM by feeding the input to the LSTM network twice, 
once in the original direction and once in the reverse direction. Outputs from both directions are concatenated 
to represent the final output. This design allows the model to detect dependencies from both previous and sub-
sequent words in a sequence.

Graph convolutional network (GCN)
GCN14 is a specialized neural network designed for processing graph structured data. We can denote the nodes 
as H = {h1, h2, ...} in the graph, and H ∈ RN×E . N is the number of the nodes, and E is the size of the hidden 
vector hi , where i ∈ [1,N] . The graph embeddings of the nodes can be updated as follows:

D ∈ RN×N is the adjacent matrix of the graph. |D| is a normalization function related to the adjacent node 
number. W ∈ RE×E is a trainable weight. t denotes the current time step. Ht ∈ RN×E is a collection of node 
embeddings at the t-th step, where H0 is initialized as H. It is worth noting that node embeddings are iteratively 
updated by their neighboring nodes, which expands the influence range in each independent step.

BioBERT
BioBERT11 shares the same structure with BERT, a novel contextual representation method based on a pre-
training procedure on Transformers9. BERT uses a masked language model that predicts randomly masked 
words in a sequence, making it suitable for learning bidirectional representations. BERT has shown prominent 
performance on many natural language processing (NLP) tasks.15 showed that this augmentation is also suitable 
for biomedical text mining, owing to the similarly complex relationships among biomedical terms.

Approach
The elaborate architecture of our model is exhibited in Fig. 3. We feed the adjacent matrix in Fig. 2 and its reverse 
version into the BiGCN module. It encodes the dictionary-based matching graph information in both forward 
and backward directions. T is a hyper-parameter indicating the number of layers in BiGCN and is determined 
according to the experiments. A residual connection is introduced to BiGCN to maintain the original hidden 
outputs of BiLSTM.

Problem definition
Given an input text sequence X = {w0,w1, ...} , the system is required to output the corresponding label sequence 
Y = {y0, y1, ...} . Each word is annotated with a specific tag in the BIOES tag-set. For example, the output of ‘Wilms 
’ tumor suppressor gene’ should be ‘B-disease I-disease E-disease O O’, where ‘O’ means a non-entity token and 
‘disease’ indicates a disease type.

BioBERT and BiLSTM encoder
Biomedical Bidirectional Encoder Representations from Transformers (BioBERT) have already shown great 
ability in providing contextual representations for multiple tasks in different domains. We use the PieceTokenizer 
to further tokenize words into subwords. These subwords are later combined to reconstruct the original words 
by applying a sum operation over their corresponding subword representations.

We use wj to represent the j-th word. Assume that all tokens are already processed by BioBERT, then bj denotes 
the j-th word BioBERT embedding. Bidirectional LSTMs16,17 are applied for the next encoder. L is the number 
of input words. Then, we can get the output states by following procedure:

(2)ft = sigmoid(Wf [ht−1, xt ] + bf )

(3)ot = sigmoid(Wo[ht−1, xt ] + bo)

(4)h̃t = Tanh(Wh[ht−1, xt ] + bh)

(5)ct = ft ∗ ct−1 + it ∗ h̃t

(6)ht = ot ∗ Tanh(ct)

(7)Ht+1 = Tanh(
1

|D|
DHtW)

(8)h
f
i = LSTMforward([bi , h

f
i−1])
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Let i ∈ [1, L] be the index of the word, where L is the length of the input sequence. We use LSTMforward and 
LSTMbackward to represent two LSTMs with opposite directions, which process the input sequence in the forward 
and backward directions, respectively. At each position i, the concatenation of the i-th forward and backward 
hidden states, denoted as hi = [h

f
i , h

b
i ] , is used as the i-th output state. The collection of all output states is denoted 

by H = {h1, ..., hL}.

Bidirectional Graph Convolutional Network (BiGCN)
As shown in Fig. 2, the spans of entities appearing in the dictionary can be transformed into connections of a 
directional graph. We can thus obtain the adjacent matrix and feed it to BiGCN to encode the graph informa-
tion. We use both forward and backward directions to encode the start and end information of each word when 
forming an entity.

BiGCN Dictionary-based matching graph in Fig. 2 defines the connection paths among the words. We design 
a bidirectional GCN to encode the graph information in both directions instead of a single GCN that ignores the 
connection direction . The whole computation are formulated as two following GCNs:

Aout is the main adjacent matrix in Fig. 2, and Ain is the reverse version of Aout . Hi ∈ RL×h is initialized by 
H0 = H , which are the outputs of BiLSTM. t is the current time step. Qt

out and Qt
in are forward and backward 

intermediate node embeddings of the t-th step, respectively. |...| means normalize function.

BiGCN denotes the overall procedure of Equations (4)–(6). We merge the representation of two directions in 
each iteration, while other similar methods conduct the merging only in the last iteration. Win,Wout ,WO are 
all trainable coefficients. We also introduce residual connection to Eq. (6), considering the original encoding 
information of H.

Loss function
We can get HT from Eq. (7) after T iterations, where T also indicates the layer size of BiGCN. HT can be decom-
posed as {hT1 , ..., h

T
L } , where hTi  represents the i-th word graph embedding of T-th time step. The loss function 

is formulated as follows:

(9)h b
i = LSTMbackward([bi , h

b
i+1])

(10)Qt
out = Relu

(

1

|Aout |
AoutHtWout

)

(11)Qt
in = Relu

(

1

|Ain|
AinHtWin

)

(12)Ht+1 = Norm(Ht + Relu([Qt
out ,Q

t
in]WO))

(13)Ht+1 = BiGCN(Ht)

Figure 3.   (a) A brief demonstration of our model. BiLSTM and BioBERT are utilized as basic encoders, 
dictionary-based matching graph and its reverse version are encoded by BiGCN. This module can be repeated 
for multiple times. (b) A more detailed demonstration of matching graph and BiGCN, two GCNs (blue and red 
ones) have completely reverse graphs.
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X is the input text and Wp is a trainable parameter. yi indicates the label of the i-th token. p(yi|X) ∈ RC indicates 
the label probability distribution of the i-th token, where C is the label number. yli denotes the golden label of the 
i-th token. Our main goal is to minimize loss function using the stochastic gradient descent (SGD) algorithm.

Experiments
Datasets
We conduct our experiments on five mainstream biomedical datasets from18. The overall detailed statistics 
are listed in Table 1. BIOES tag-set19 is introduced to annotate golden entities for these datasets. For example, 
B-Disease indicates a beginning token of a disease entity. I-Disease indicates an inner token of a disease entity. 
O indicates a non-entity token. E-Disease indicates the end token of a disease entity. S-Disease indicates a single 
token of an entire disease entity. We briefly describe those five datasets as follows:

BC2GM This is the BioCreative II gene mention recognition task aimed at identifying the genes and proteins.
BC4CHEMD This is the BioCreative IV chemical entity mention recognition task aimed at identifying the 
genes and proteins.
BC5CDR This is the most recent BioCreative V chemical and disease mention recognition task as a combina-
tion of BC5CDR-chem and BC5CDR-disease datasets.
NCBI-Disease The NCBI disease dataset was initially introduced for disease name recognition and normaliza-
tion. It has been widely used for a lot of applications.
JNLPBA This is the 2004 JNLPBA shared task on biomedical entity (gene/protein, DNA, RNA, cell line, cell 
type) recognition.

Experiment setup
We denote our model as dictionary-based matching graph network (DBGN). We gatherer biomedical entity dic-
tionaries for three entity types (i.e. genes/proteins, chemicals and diseases) from the Comparative Toxicogenom-
ics Database (CTD)20 and the biomedical dataset website (https://​github.​com/​cambr​idgel​tl/​MTL-​Bioin​forma​tics-​
2016). We compare our model with several competitive methods, i.e. MTM21, CollaboNet22, BERT23, BioBERT11, 
and BioBERT with masked manner. Our constructed dictionary consists of 62,351 biomedical domain-specific 
entities. Note that all methods are already enhanced by conditional random field (CRF)24.

Parameter settings
All the neural network models are trained on one GeForce GTX2080Ti GPU. We use BioBERT pre-trained on 
PubMed for 1M steps, which is referred as BioBERT v1.1 (+ PubMed). It contains 12 hidden layers and 768 
hidden units for each layer. We use Adam25 as the optimizer for BioBERT and our model with the learning rate 
initialized by 0.00001 and 0.001, respectively. Decay rate of the learning is set to 0.98. Except for the influence 
of decay rate, the learning rate decreases dynamically according to the current step number. Batch shuffling is 
also applied to the training process.

The hidden size of our basic BiLSTM is 256 and the size of all word embeddings is set to 100. The vocab size 
of BioBERT is 30,522. The batch size of all model is set to 50. As for regularization, dropout function is applied 
to word embeddings and the dropout rate is set as 0.1. Besides, we perform L2 constraints over the soft-max 
parameters and L2-norm regularization is set as 0.0001. We train our model for max to 50 epochs and conduct 
the same experiment for 10 times with random initialization. We follow the experimental setup in Lee et al. 11 
and report the average value for all metrics on testing set, where Precision, Recall and Macro-Averaged F1 are 
adopted as the evaluation metrics. The layer size of BiGCN is set to 2 for all experiments.

(14)p(yi|X) = softmax(hTi Wp)

(15)loss =

L
∑

i=1

−log(p(yi = yli |X))

Table 1.   Biomedical NER datasets used in our experiments.

Dataset Train Dev Test Entity types

BC2GM 12574 2519 5038 Gene/Protein

BC4CHEMD 30682 30639 26364 Chemical

BC5CDR 4560 4581 4797 Chemical, disease

NCBI-Disease 5424 92 940 Disease

JNLPBA 18534 1932 4243 Gene/protein, cell

https://github.com/cambridgeltl/MTL-Bioinformatics-2016
https://github.com/cambridgeltl/MTL-Bioinformatics-2016
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Metrics
We report the performance on testing set. Predicted entities are thought as correct predictions only if they exactly 
match the golden ones. Based on this principle, we compute Precision, Recall and F1 in a macro-averaged way 
on all entity types.

i is the sample index. pi denotes the number of predicted entities, and gi denotes the number of golden entities 
for the i-th sample. ci represents the number of correctly predicted entities.

Results
Benchmark performance
In Table 2, the following observations can be obtained: (1). Original BERT does not Lead to a significant improve-
ment in performance. (2). BioBERT improves the performance of all five datasets due to its domain-specific 
representation ability. (3). The performance improvement of the masked biomedical dictionary approach is 
minimal because it cannot handle complex situations such as overlapping and nested matching entities. (4). Our 
model significantly improves the performance and outperforms all other competitive alternatives on BC2GM, 
BC4CHEMD, BC5CDR, and NCBI-Disease, owing to the application of dictionary-based matching graph. (5). 
CollaboNet achieves the best performance on JNLPBA because of the employment of external sources. Although 
BERT and BioBERT cost much time owing to the complex structure, they achieve considerable performance 
improvements. Our method requires significantly less training time, except for BioBERT which we use as the 
base encoder.

Layer size study
Figure 4 shows that the model achieves the best performance with a layer size of two for BC2GM, BC4CHEMD, 
and BC5CDR, and three for NCBI-Disease. We exclude JNLPBA from this analysis as its performance variance 
is not obvious. If the layer size is too low, the information may not be fully propagated. Conversely, if the layer 
size is too large, the model may overfit. Therefore, the layer size should be determined based on the specific 
experimental results.

(16)P =

∑

ci
∑

pi

(17)R =

∑

ci
∑

gi

(18)Macro− F1 =
2PR

P + R

Table 2.   Performance and average training time of the baseline neural network models and the proposed 
model DBGN. Scores in the asterisked (*) cells are obtained in the experiments that we conducted, and these 
scores are not reported in the original papers. The best scores from these experiments are in bold, TS means 
training speed.

Dataset Metrics MTM CollaboNet BERT BioBERT BioBERT+Masked DBGN

BC2GM

P 82.1 80.5 81.1 84.3 84.8 85.7

R 79.4 79.0 82.4 85.1 85.4 90.1

F1 80.7 79.7 81.8 84.7 85.1 87.9

BC4CHEMD

P 91.3 90.8 91.2 92.8 93.3 92.0

R 87.5 87.0 88.9 91.9 92.1 96.1

F1 89.4 88.9 90.0 92.4 92.7 94.0

BC5CDR

P 89.1 *91.2 *87.5 *91.0 91.4 92.4

R 88.5 *90.3 *88.7 *92.9 93.3 94.5

F1 88.8 *90.7 *88.1 *91.9 92.3 93.4

NCBI-Disease

P 85.9 85.5 84.1 88.2 88.7 90.3

R 86.4 87.3 87.2 91.3 91.6 93.2

F1 86.1 86.4 85.6 89.7 90.1 91.7

JNLPBA

P 70.9 74.4 69.6 72.2 72.4 72.9

R 76.3 83.2 81.2 83.6 83.9 84.3

F1 73.5 78.6 74.9 77.5 77.7 78.2

TS Time(s/b) 1.4 2.0 2.7 2.7 2.8 3.1
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Ablation study
There are four major ablation conditions used in Table 3: -BiGCN, -Residual Connection (RC), -Fuse Layer 
(FL) and -BiLSTM. -BiGCN means that we remove the backward graph and use only a single GCN. -RC means 
that we remove the residual connection for every GCN layer. -FL means that we remove the fuse layer for two 
GCNs and only combine them in the last GCN layer. -BiLSTM means that we remove the BiLSTM layer and only 
use BioBERT to encode input tokens. As shown in Table 3, we can conclude that BiGCN accounts for the most 
significant performance improvement, owing to its ability to capture both forward and backward information. 
FL also contributes to the performance, demonstrating that fusing two GCNs in every GCN layer is better than 
using them separately. RC, on the other hand, does not noticeably improve the results, but it can significantly 
reduce the training epoch number required to reach convergence, BiLSTM improves predictive performance 
through its ability to better capture bidirectional long-range dependencies in sequences.

Case study
Table 4 reports three typical cases. In case 1, masked manner and our model output right label sequences owing 
to the fact that ‘T-PLL’ is in the dictionary. In case 2, masked manner obtains an overlong and wrong entity 
owing to an incorrect mask sequence. In case 3, only our model produces the right output. BioBERT generates a 
relatively short entity due to the lack of the dictionary information, while masked manner produces an overlong 
entity due to the misleading of the longest masked sequence.These results demonstrate that our method not only 
leverages dictionary information but also intelligently selects appropriate sub-matching entities to avoid mistakes 
caused by complex matching situations.

Conclusions
We propose a dictionary-based matching graph network for biomedical named entity recognition. The proposed 
approach utilizes the dictionary-based matching graph instead of a simple masked manner, and outperformed 
state-of-the-art systems and several strong neural network models on benchmark BioNER datasets. We also 
demonstrate detailed analysis that the strong performance is achieved by the BiGCN module with only a slight 

Figure 4.   A performance curve by the layer size of BiGCN on four datasets.

Table 3.   The statics of four ablation results on five datasets. RC means Residual Connection and FL means 
Fuse Layer.

Dataset DBGN –BiGCN (only GCN) –RC –FL –BiLSTM

BC2GM 87.9 85.8 87.6 86.7 87.3

BC4CHEMD 94.0 92.8 93.8 93.2 93.5

BC5CDR 93.4 92.4 93.3 92.8 92.5

NCBI-Disease 91.7 90.2 91.5 90.8 91.2

JNLPBA 78.2 77.7 78.2 77.9 78.0
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increase in training time, and demonstrate that the large performance gains of our approach mainly come from 
the matching graph.

Finally, we highlight several possible directions to improve our model in future works. First, this method is 
actually suitable for many similar NLP applications, such as relation extraction and question answering. We can 
improve the performance of other tasks by applying this method accordingly. Second, by further resolving the 
entity boundary and type conflict problems, we could build a coherent system for recognizing multiple types of 
biomedical entities with high performance and efficiency.

Data availability
Our dataset access is open. Details of the dataset can be found online at https://​github.​com/​cambr​idgel​tl/​MTL-​
Bioin​forma​tics-​2016/​tree/​master/​data.
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