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A mathematical model 
of Bacteroides thetaiotaomicron, 
Methanobrevibacter smithii, 
and Eubacterium rectale 
interactions in the human gut
Melissa A. Adrian 1,3*, Bruce P. Ayati 1 & Ashutosh K. Mangalam 2

The human gut microbiota is a complex ecosystem that affects a range of human physiology. In order 
to explore the dynamics of the human gut microbiota, we used a system of ordinary differential 
equations to model mathematically the biomass of three microorganism populations: Bacteroides 
thetaiotaomicron, Eubacterium rectale, and Methanobrevibacter smithii. Additionally, we modeled 
the concentrations of relevant nutrients necessary to sustain these populations over time. Our 
model highlights the interactions and the competition among these three species. These three 
microorganisms were specifically chosen due to the system’s end product, butyrate, which is a short 
chain fatty acid that aids in developing and maintaining the intestinal barrier in the human gut. The 
basis of our mathematical model assumes the gut is structured such that bacteria and nutrients 
exit the gut at a rate proportional to its volume, the rate of volumetric flow, and the biomass or 
concentration of the particular population or nutrient. We performed global sensitivity analyses using 
Sobol’ sensitivities to estimate the relative importance of model parameters on simulation results.

The human gut microbiota is the collection of microorganisms located in the stomach, large intestines, and 
small intestines, and this system plays an important role in sustaining overall human health. Each individual’s 
gut composition is unique, and, besides their genetic makeup, their long-term dietary patterns, specifically 
concerning the types and amounts of carbohydrates, proteins, and fats consumed, affect its  composition1,2. 
Specifically, gut microbiota have been shown to be in involved in numerous physiological processes, such as 
digestion of undigested food (complex starch), development and regulation of immune system, blocking growth 
of pathogens, and generation of neurotransmitter and vitamins. Thus, any changes in environmental conditions 
in this gut ecosystem (microbiota) can result in a shift in its composition, which can predispose and/or worsen 
chronic inflammatory diseases such as inflammatory bowel diseases, multiple sclerosis, rheumatoid arthritis 
and neurological diseases like Alzheimer’s disease, Parkinson disease and  autism3–5. Though the changes in the 
microbial composition of the human gut microbiota have been shown to be associated with rapid changes in 
metabolism and overall health, the underlying interactions among species within this microbiota are not yet well 
 understood2. Among all the factors linked with regulation of gut microbiota, diet has emerged as the strongest as 
it can override genetic influences on  microbiota6,7. A better understanding of the microbial dynamics, particularly 
mathematical approaches, may elucidate the role that the gut microbiota plays in human  diseases1.

Common approaches to analyzing the human gut microbiota for its diversity and composition include, but are 
not limited to, next-generation sequencing, metatranscriptomics, culturomics, and mass spectrometry  analyses2,8. 
These approaches give little insight as to how species interact amongst themselves and with the human  host2. 
Mathematical modeling, however, attempts to answer such questions and can supplement the knowledge gained 
from these common approaches. Mathematical models can provide evidence to strengthen a hypothesis about 
these interactions and offer guiding principles for further study of a  phenomenon9.

We use ordinary differential equation (ODE)-based modeling as the main tool for our analysis, which tracks 
information about biomass and concentration levels over time rather than genomic information as in the case 
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of genetically engineered mouse (GEM) models. In this so-called dynamical system approach, we can identify 
the system’s driving parameters and analyze its stability. Despite the advantage of having easily interpretable 
terms in the model’s equations, this approach still has some key drawbacks, specifically the determination of 
unknown parameters.

The parameters used in biological models like ours include substrate conversion rates, utilization rates, and 
cellular death rates, which typically can be determined and validated by laboratory experiments. However, some 
gut microorganisms are unable to be cultivated in a laboratory setting, leaving specific information about these 
species’ metabolic activity unknown. Additionally, ODE models are often used to track only a small subset of 
species within a community. While this is often due to the difficulty of determining a larger number of param-
eters when the system is  expanded8, focusing on a few subspecies at a time may aid in identifying the dominant 
relationships in that subsystem.

Despite the impracticality of ODE-based modeling for some very large systems, ODE models paired with 
other types of modeling, such as agent-based modeling, can provide an insightful understanding of the gut 
microbiota’s dynamics and  interactions8. As a first step in our modeling efforts with its limitations in mind, we 
consider an ODE-based modeling approach for a small-scale system of three abundant microorganisms in the 
human gut microbiota. Our ODE model is based on those of chemostats in that we include inflow and outflow 
terms in the equations that are missing in batch models, by their nature. Chemostats are idealized laboratory 
systems for microbial ecology that have a long history of mathematical modeling behind  them10,11.

Similar approaches to ours, such as those for continuously stirred tank reactor (CSTR) models for anaerobic 
digestion, have been under development for some time. One example of such a model is the IWA Anaero-
bic Digestion Model No.1 (ADM1), which provides a modeling foundation for generalized biochemical and 
physio-chemical systems for anaerobic  digestion12. Additionally, Godon et al.13 outlines an overview of anaerobic 
digestion modeling schemes for organ types for a wide variety of animals, humans included. In particular, it is 
suggested that the stomach can be reasonably represented as a CSTR, and the large intestine can be represented 
as a series of  CSTRs13. More recently, Jegatheesan and  Eberl14 created a CSTR model of microbial functional 
groups and their metabolic products. This model includes a main compartment, referred to as a lumen, in which 
substrates and microorganisms interact, and a diffusion compartment, referred to a mucus, in which nutrients 
are uptaken by the  host14.

We continue this emphasis currently in the literature on the vital role of the inflows and outflows in the human 
gut ecosystem in our modeling approach. As a first modeling step with our chosen subsystem of the human gut 
microbiota, we consider a single chemostat, which is a bioreactor subvariant of generalized CSTRs.

Our representation of the human gut microbiota considers a subset of this system, namely the three micro-
organisms Bacteroides thetaiotaomicron, Eubacterium rectale, and Methanobrevibacter smithii. These species 
represent the three main phyla in the human gut: Bacteroidetes, accounting for 17–60% of the total biomass; 
Firmicutes, 35–80% of the biomass; and Euryarchaeota the bulk of the  remainder15. The system’s main product, 
butyrate, is of specific interest due to its role in sustaining human health. Butyrate provides energy to colono-
cytes, affects overall energy homeostasis, and inhibits histone deacetylase, which is an enzyme that directly 
affects colorectal  cancer15. Along with butyrate, other notable intermediates and products in this system include 
acetate, propionate, glutamine, carbon dioxide (CO2 ), hydrogen (H2 ), and methane (CH4 ). Acetate, propionate, 
and butyrate, which are short chain fatty acids, are absorbed in the gut’s epithelial cells and regulate an indi-
vidual’s immune system and  metabolism15. Individually, acetate acts as a substrate for cholesterol synthesis and 
 lipogenesis15; propionate regulates gluconeogenesis and cholesterol  synthesis15; glutamine fuels the metabolism 
and maintains the intestinal  barrier16; and the gases CO2 , H 2 , and CH4 are products of bacterial fermentation that 
can cause intestinal discomfort in  excess17. As for the microorganisms themselves, M. smithii removes hydrogen 
gas, which affects bacterial fermentation and energy gathering, and produces methane  gas15; E. rectale produces 
butyrate, which is beneficial to the gut’s epithelial  cells15; and B. thetaiotaomicron utilizes dietary polysaccharides 
and indirectly facilitates butyrate production with its  outputs2.

In our model, we represent the interactions of these three short-chain fatty acid producing/utilizing gut 
microorganisms (see Fig. 1) and their metabolites. B. thetaiotaomicron is an abundant bacterial species in the 
human gut microbiome whose main function is the utilization of  polysaccharides2,18. Through polysaccharide 
degradation, B. thetaiotaomicron contributes to the overall ecosystem diversity in the colon, which is its regular 
 environment19. B. thetaiotaomicron can survive solely on the uptake of carbon-rich  polysaccharides20; however, its 
growth is enhanced in the presence of inorganic ammonia due to inorganic ammonia’s contribution of nitrogen to 
B. thetaiotaomicron’s  metabolism21. Through the utilization of inorganic ammonia, B. thetaiotaomicron can syn-
thesize all amino acids that are essential to human  health2, which makes this bacteria a key interest in our study.

When both E. rectale and B. thetaiotaomicron are present in an environment, B. thetaiotaomicron up-regulates 
gene expression for starch utilization and the degradation of specific glycans that E. rectale is unable to utilize. 
Simultaneously, E. rectale down-regulates the genes associated with glycan degradation even though it cannot 
grow efficiently without a carbohydrate source. Previous research on the interactions of these two species suggests 
that the presence of B. thetaiotaomicron enhances E. rectale’s ability to uptake  nutrients22. E. rectale shifts from 
uptaking polysaccharides to utilizing amino acids, such as glutamine, when B. thetaiotaomicron is  present2. This 
reciprocal response suggests that these two gut microorganisms may adapt their metabolic strategies in the pres-
ence of one another to reduce competition for the same nutrients and optimize their use of available  resources20.

M. smithii, which is one of the main methanogenic archaeon in the human gut, improves the productivity 
of carbohydrate metabolism by utilizing H 2 from E. rectale and formate from B. thetaiotaomicron to produce 
methane gas. This process prevents the environment from becoming too saturated with B. thetaiotaomicon 
and E. rectale’s by-products, which consequently improves carbohydrate metabolism. Additionally, M. smithii 
removing H 2 in this environment allows for B. thetaiotaomicron to generate NAD+ , which is used for glycolysis, 
a fundamental process in producing cellular  energy22.
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M. smithii is known to use substrates, including hydrogen and carbon dioxide, for methane  production20. The 
availability of amino acids produced by B. thetaiotaomicron can serve as alternative carbon and energy sources, 
which may compete with these traditional  substrates20. If B. thetaiotaomicron-produced amino acids are abun-
dant, M. smithii may favor their utilization over other substrates, potentially reducing methane  production20.

The information known about these three species’ interactions is translated into a graphical representation 
in Fig. 1. This schematic highlights the competition among these species, specifically between E. rectale and M. 
smithii and between B. thetaiotaomicron and E. rectale.

The results of our modeling effort suggest the efficacy of a relatively simple ODE approach in understanding 
and potentially predicting the dynamics of important subsystems in the larger human gut ecosystem.

Results
Using our mathematical model of B. thetaiotaomicron, E. rectale, and M. smithii and their metabolites in Eqs. (2) 
and (3), we present numerical results, estimation of key parameters, and sensitivity analysis. The code used to 
generate our results can be found at our GitHub page: https:// github. com/ Melis sa3248/ gut_ micro biota.

Numerical results
Using the set of parameter estimates in Table 2, the solutions to our model are given for the dynamics of B. 
thetaiotaomicron, M. smithii, and E. rectale in Fig. 2, for acetate in Fig. 3, for CO2 and H 2 in Fig. 4, and for 
polysaccharides in Fig. 5. These plots show the solutions to our system of ODEs in Eqs. (2) and (3) from 9900 
to 10,000 h. This time range was selected in order to allow for a sufficient amount of time to pass in order for 
the system to converge to a regular oscillation. The center values of the oscillations are represented by dotted 
lines in each plot. We note in Fig. 2 that the mean of three bacterial species was fitted to match the experimental 
biomass sum instead of individually. This choice was made given the data availability; the data available reported 
the sum of the biomass. We note that there can be many different combinations of individual biomass for the 
three species that lead to this specific sum. We emphasize that the fact that we found a set of parameters that 
allow for the species to coexist long term provides some validation of our model since we know these species 
coexist naturally in the gut.

In Figs. 3, 4, and 5, the data values given in Supplementary Table 1 are superimposed on their respective plots 
as dashed lines in order to provide a visual representation of the error between the mean of the regular oscilla-
tion and the observed data. Despite some error in the center value of the ODE solutions compared to the data, 
the observed data values for acetate, polysaccharides, and the gases CO2 and H 2 are contained in the oscillation 
range of the ODEs’ numerical solutions, so we conclude that our parameter estimates sufficiently fit the data. 
Thus, the relatively simple model we have presented here is consistent with the data in our literature review. 
Further details on our parameter estimation process can be found in Supplementary Information Appendix B.

Sensitivity analysis
Based on the fitted parameter values and the available data from the literature, we analyzed our model’s sensitiv-
ity to its parameters. In order to identify the parameters in the model that have the greatest effect on the model 

Figure 1.  Graphical representation of the interactions of the three species, B. thetaiotaomicron, E. rectale, 
and M. smithii, and their metabolites. Each microorganism or substance given a letter is included in the 
mathematical model equations. This figure was developed from information presented in Ji and  Nielsen2, Shoaie 
et al.15, and Adamberg et al.19. We emphasize that B. thetaioaomicron’s products acetate and the gases CO2 and 
H 2 cannot be produced without the presence of polysaccharides.

https://github.com/Melissa3248/gut_microbiota
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output, we conducted sensitivity analysis on our model by computing the first- and total-order effects based on 
Sobol’ indices.

Sensitivity analysis can be defined as the study of how uncertainty in the model input propagates into uncer-
tainty in the model  output23. Once parameters are estimated, sensitivity analysis can be used to identify the 
driving parameters of the system that contribute to the most variability in the model’s output. Sensitivity analy-
sis tests the robustness of the model, identifies if the model relies on weak assumptions, and allows for model 
 simplification23. The results of our sensitivity analysis using the methods described in the section titled “Sensitiv-
ity analysis methods” are given in Figs. 6 and 7.

Figure 2.  Plot of the solutions to Eqs. (2a), (2b), and (2c) using the observed data in Supplementary Table 1 
over the time interval 9900 to 10,000 hours. Based on Supplementary Table 1, the sum of the three species’ 
biomass should be 0.001412 gDW. The middle of the solutions to the ODEs using the parameter estimates in 
Table 2 for all three species sums to 0.001277 gDW, resulting in an error of—enter of acetate’s oscillatio0.000135 
gDW, or a −9.5  % error.

Figure 3.  Plot of the solutions to Eq. (3a) using the observed data in Supplementary Table 1 over the time 
interval 9,900 to 10,000 hours. Based on Supplementary Table 1, the center of acetate’s oscillations should be 
9.71 μM. The middle concentration of the ODE solutions for acetate is 9.66 μM, resulting in a − 0.05 μM error, 
or a − 0.5% error.
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We obtained first- and total-order Sobol’ indices results, shown in Figs. 6 and 7. Based on Fig. 6 of the first-
order Sobol’ indices, βB is an influential parameter for B. thetaiotaomicron’s output variance; βp and µpE for E. 
rectale’s variance, γa and q for acetate’s variance, and q and βB for polysaccharide’s variance.

Based on Fig. 7 of the total-order Sobol’ indices, we can qualitatively see that parameters that we would bio-
logically expect to be relevant to the variance of corresponding output are in fact relevant. Specifically, βB has a 
higher order effect on the output variance of polysaccharide’s (p), the consumption term µpE has a higher order 
effect on the output variance of E. rectale, βB has a higher order effect on the output variance of B. thetaiotaomi-
cron, etc. Based on the changes in the estimated indices from first-order to total-order indices, there appears to 
be a higher-order interaction among model parameters for E. rectale’s, M. smithii’s, acetate’s, CO2 and H 2’s, and 

Figure 4.  Plot of the solutions to Eq. (3b) using the observed data in Supplementary Table 1 over the time 
interval 9900 to 10,000 hours. Based on Supplementary Table 1, the center of CO2 and H 2 ’s oscillations should 
be roughly 7.96 μM. The middle concentration of the ODE solutions for CO2 and H 2 is 8.03 μM, resulting in a 
0.07 μM error, or a 0.9% error.

Figure 5.  Plot of the solutions to Eq. (3c) using the observed data in Supplementary Table 1 over the time 
interval 9900 to 10,000 hours. Based on Supplementary Table 1, the center of polysaccharides’ oscillations 
should be roughly 32.06 µ M. The middle concentration of the ODE solutions for polysaccharides is 32.1 μM, 
resulting in a 0.05 μM error, or a 0.2% error.
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polysaccharides’ output variance. We note that observing Sobol’ indices whose sum is greater than 1, as seen in 
Fig. 7, is evidence of potentially correlated inputs in the  model24.

Discussion
We suggest and illustrate that a mathematical representation using inflow and outflow terms, such as those 
used in models of chemostats, is a natural way to capture the effects of the inflow and outflow in the gut on its 
microbial dynamics. The use of inflow and outflow terms in our approach differentiates our model from many 
other dynamical systems representations, such as batch models. One difference is that in a chemostat model with 
inflows and outflows, persistence of all species is possible, whereas this would usually not be the case in batch 
models, even with otherwise identical representations of the cellular and chemical interactions.

The three species in our model, B. thetaiotaomicron, E. rectale, and M. smithii, play an important role in 
polysaccharide degradation and the production of butyrate, which both aid in the human gut’s ability to absorb 
nutrients through the epithelial  cells15. The system of the three microbial species has been considered in previous 
 works2,15, which largely informed our knowledge of this system. By creating a mathematical model based on the 
interactions of these species, we have analyzed their interactions and identified aspects of this system that should 
be further explored through empirical investigation.

When dealing with observed phenomena, it is often the case that several different mathematical representa-
tions can mimic those observations. Models, even simplified and abstracted models like ours, contain critical 
assumptions concerning the relationships between constituent parts. The implications of these assumptions 
are at least somewhat illuminated by parameter sensitivity analyses, which can identify the most impactful 
relationships.

Due to the limited availability of data for a more rigorous parameter estimation, our sensitivity analysis 
took on additional importance. Through the results of the sensitivity analysis using first- and total-order Sobol’ 
indices, we more narrowly identified specific links in the microbial food web that would be fruitful targets for 
additional empirical work. Specifically, we identified the growth rate coefficients βB , βE1 , βE2 , βM1

 , βM2
 , βp , µpB , 

µpE and the scaled volumetric flow q as being largely significant in contributing to the variance of the model 
output, including higher-order interactions among these parameters. With these results, we suggest that estimates 
of these significant parameters be obtained through laboratory experimentation in order to capture these values 
to a higher degree of precision and accuracy.

The significant growth rate coefficients ( β parameters) correspond to the growth rates of the three microor-
ganisms when supported on a medium containing specific nutrients. Experiments should focus on cultivating 
these microorganisms in isolation in germ-free mice with only one  nutrient15. Despite the fact that these micro-
organisms are able to be cultured in isolation of other microorganisms, they may not be able to be sustained on 
one single nutrient, but rather require the presence of additional substrates. In this case, nonlinear effects from 
these secondary nutrients would factor in to the resulting estimates of the growth parameters. Table 1 provides 
a general outline of the the specific nutrient and microorganism necessary to estimate each parameter. For 
example, the growth rate coefficient for B. thetaiotaomicron ( βB ) can be experimentally estimated by cultivating 
B. thetaiotaomicron in a medium containing only polysaccharides. Additionally, experiments approximating the 
rate of flow of the digestive system’s fluids would largely inform the estimate for the true value of the volumetric 
flow rate parameter q.

Due to the possibility of correlation among model parameters, variance-based sensitivity analyses specifi-
cally for correlated parameters should be explored and applied to this system, such as the methods discussed in 
Iooss and  Prieur24 and  Rabitz25. In regards to specifying the prior distributions on parameters, further analyses 
should include testing differing prior parameter distributions in order to compute the Sobol’ indices, especially 
to explore the amount of variability in results based on the chosen parameter  distributions23.

Our main suggestion for future work is to collect more complete longitudinal data on this biological system, 
including for all three species B. thetaiotaomicron, E. rectale, and M. smithii and its relevant substrates. With this 
experimental data, more precise estimates of the model parameters can be achieved. With this approach, par-
ticular attention can be paid to estimating the parameters that were identified as sensitive by the Sobol’ indices.

Additionally, further extensions of our model may include relaxing some of the volumetric flow assumptions. 
Specifically, the rate of volumetric flow through the gut can be generalized to reflect aspects of the natural flow of 
the gut, such as periodically restricted flow, and the framework of a single vessel representation can be extended 
to consider additional compartments to mimic the system of digestive organs in the human body. More details 

Table 1.  Table of microorganism growth rate parameters suggested to be estimated experimentally.

Parameter Microorganism Nutrient

βB B. thetaiotaomicron Polysaccharides

βE1 E. rectale Acetate

βE2 E. rectale Polysaccharides

βM1 M. smithii Acetate

βM2 M. smithii CO2 and H 2
µpB B. thetaiotaomicron Polysaccharides

µpE E. rectale Polysaccharides
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about a chemostat framework and existing theory can be found in Smith and  Waltman10 and Harmand et al.11. 
Future implementations of a similar model can account for absorption rates of additional substrates within the 
gut, particularly amino acids. With these potential improvements of our baseline model, additional aspects about 
the dynamics of this biological system can be uncovered, and these improvements to our model could fuel further 
research directions related to this system.

Our model has relevance to human microbiome studies as it can be used to test the significance of clinical 
findings. For example, microbiome studies for human autoimmune disease, such as multiple sclerosis, have 
shown modulation of butyrate and methane-producing gut  bacteria26. This can be incorporated into our mod-
eling framework in combination with experimental studies to determine the mechanism through which gut 
bacterial modulate disease.

Methods
The key assumption underlying our mathematical model is that the human gut can be represented as a chemostat. 
A chemostat is a laboratory device used in the simulation and ecological study of populations, which provides an 
idealized representation of naturally occurring phenomena and has a rich history of mathematical representation. 
Though the conditions of a chemostat are simplified and controlled in a laboratory setting, a chemostat can be 
useful in the study of population dynamics and the underlying mechanisms of interactions among populations. 
Using aspects of a simple chemostat model is a first step in developing an initial theoretical framework, which 
can then be refined and extended.

In developing an ODE model to represent our chosen microbiota subsystem, we assume that the human 
gut has inflows and outflows in a manner similar to chemostat-like models. We utilize ODE-based dynamical 
systems modeling to track the changes in biomass of the three prevalent microorganisms, B. thetaiotaomicron, E. 
rectale, and M. smithii, as well as their chemical inputs, intermediates, and byproducts, with the goal of providing 
a better understanding of their interactions within this subsystem.

In order to supplement the knowledge gained from transcriptomic analysis and GEMs, we incorporate this 
information into our own mathematical interpretation of this small-scale system using ODEs. Throughout our 
model explanation, we present information learned through previous investigations of B. thetaiotaomicron, E. 
rectale, and M. smithii that we utilized in creating our mathematical model.

In constructing a first model, we assume that the contents of the vessel are well-mixed, the rate at which 
liquid enters the system equals the rate at which the well-stirred contents leave the compartment, and that some 
significant factors potentially affecting growth, such as temperature, are held  constant10.

For specificity we assume that microorganisms grow at a rate following the Monod form

where βX is the maximum birth rate of population X, u is the concentration of the nutrient population on which 
X’s growth depends, γ is the Michaelis-Menten constant, and X is the concentration of the  microorganism27. 
This form is commonly used, especially for a first effort. Other functional forms that could be used include Hill 
 functions28, which are generalizations of the Monod form, and S-forms29. The accompanying large increase in 
the number of parameters, and lack of data to capture the detail these parameters provide, means that they are 
less appropriate for our effort here than the Monod form.

Model variables
The variables in our model for the microbial and chemical species depend only on one independent variable, 
time, denoted by t. These dependent variables are

• B for B. thetaiotaomicron,
• E for E. rectale,
• M for M. smithii,
• a for acetate,
• h for CO2 and H 2,
• p for polysaccharides.

Model equations
The equations for the three microbial species are 

The equations for the three chemical species are 

(1)βX

(

u

u+ γ

)

X

(2a)
dB

dt
= βB�γp(p)B− qB,

(2b)
dE

dt
=

[

βE1�γa (a)+ βE2
(

1−�γB (B)
)

�γp(p)
]

E − qE,

(2c)
dM

dt
=

[

βM1
�γa (a)+ βM2

�γh(h)
]

M − qM.
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The � and q terms in these equations are defined by

In our model we assume that there is a high enough rate of turnover of fluids in the human gut such that these 
microorganisms are almost always flushed out of the system before their life expectancy, so death terms are 
neglected in these three equations. All three microorganism equations thus have the general format:

where �i is the rate of change of biomass for microorganism i, Pij is the rate at which microorganism i proliferates 
based on the availability of substance j, and Fi is the rate at which microorganism i is flushed out of the gut. In 
all three microorganism equations, the term Fi is the biomass of the given population multiplied by the constant 
q. The fixed quantity q is interpreted as the rate at which the contents of the gut leave the system as expressed in 
Eq. (5), where V is the volume of the gut and Q is the rate of volumetric flow within the gut.

In order for E. rectale to grow in biomass, acetate or polysaccharides need to be present in the  ecosystem15. 
We assume that E. rectale has different maximum growth rates depending on each nutrient, leading us to split βE 
into three different, related constants. Because E. rectale shifts to uptaking inorganic ammonia when B. thetaio-
taomicron is present, we included the term 

(

1−�γB (B)
)

 to reflect this shift. M. smithii depends on the presence 
of acetate and the gases CO2 and H 2 , which are both incorporated in the standard Monod form from Eq. (1). 
Again, we assume that M. smithii grows at different maximum growth rates in the presence of only one of these 
metabolites, which lead to the separation of βM into the constants βM1

 and βM2
.

The metabolite equations detail the rates of change over time for the intermediate substances produced and 
consumed by these three species, where the concentrations are tracked for acetate in Eq. (3a), CO2 and H 2 in 
Eq. (3b), and polysaccharides in Eq. (3c). These concentrations depend on the rate at which these metabolites are 
produced by the microorganisms or enter into the system, the rate at which they are flushed out of the system, 
and the rate at which they are consumed by surrounding microorganisms. All three metabolite equations are 
constructed in the general format:

where �j is the rate of change of metabolite j’s concentration, Pij is the rate at which metabolite j is produced by 
microorganism i or enters the system, Fj is the rate at which metabolite j is flushed out of the gut, and Cij is the 
rate at which the metabolite j is consumed by microorganism i. In this Cij term for metabolite j consumed by 
microorganism i, we have a yield constant µji , and in Eqs.  (3a) and (3b), �γj (j)Xi describes the contribution of 
metabolite j to microorganism i’s biomass, where this biomass is denoted by Xi . For polysaccharides in Eq. (3c), 
(

1−�γB (B)
)

�γj (j)Xi describes the contribution of metabolite j to microorganism i’s biomass depending on 
the biomass of B. thetaiotaomicron. We include the term 

(

1−�γB (B)
)

 in Eqs. (3b) and (3c) to denote E. rectale’s 
shift in utilization of polysaccharides and corresponding production of CO2 and H 2 when B. thetaiotaomicron 
is present.

Polysaccharides enter the human gut through diet, so we accounted for their addition to the gut through a 
sinusoidal function, 

(

cos(t)+ 1
)3 . This function attempts to account for the duration of time in between meals 

through the period of the curve. In addition, this function is defined to be a smooth curve to illustrate the gradual 
breakdown of food and release of nutrients in the gut. We note that the terms (cos(t)+ 1)3 is one possible choice 
of many for representing how polysaccharides enter the system. Future work can explore different reasonable 
choices of this term and the effects on the system parameters and sensitivities.

The forms for the rate functions in Eqs. (2) and (3) were chosen so that the system is mathematically conserva-
tive and thus meet the conservation criterion for a  chemostat10,11. Further reading of chemostat conservation 
principles and the construction of chemostat equations for competing species can be found in Harmand et al.11.

A mathematical model is a simplification and idealization. In our case, the three microbial species and their 
attendant chemical species are not an isolated system but rather part of a much larger ecosystem. In this larger 
ecosystem, other unaccounted for microorganisms and substrates interact with and affect the substrates and 
microorganisms we have considered. We note that it is often easier to investigate the dynamics and interactions 
of interest by focusing on and isolating the mechanisms within a relevant subsystem.

(3a)
da

dt
= βa�γp(p)B− qa− µaE�γa (a)E − µaM�γa (a)M,

(3b)
dh

dt
= βh1�γa (a)E + βh2�γp(p)B+ βh3(1−�γB (B))�γp (p)E − qh− µhM�γh(h)M,

(3c)
dp

dt
= βpq(cos(t)+ 1)3 − qp− µpB�γp(p)B− µpE(1−�γB (B))�γp (p)E.

(4)�γ (u) =
u

u+ γ
,

(5)q =
V

Q
.

�i = Pij − Fi ,

�j = Pij − Fj − Cij ,
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Table 2.  Table of fitted parameter values for Eqs. (2) and (3) based on the experimental data in Supplementary 
Table 1. In this table, we report rounded versions of the fitted parameter values.

βa 321,567 µM
gDW/L∗hour

βh2 32,572 µM
gDW/L∗hour

γB 11 gDW/L µhM 3310 μ µM
gDW/L∗hour

βB 1.277/hour βM1 0.750/hour γh 132 μM µpB 341,299 µM
gDW/L∗hour

βE1 0.849/hour βM2 0.456/hour γp 412 μM µpE 5,243,172 µM
gDW/L∗hour

βE2 0.523/hour βp 1064 μM/hour µaE 49,647 µM
gDW/L∗hour

q 0.054/hour

βh1 412 µM
gDW/L∗hour

γa 238 μM µaM 39,041 µM
gDW/L∗hour

βh3 10,029 µM
gDW/L∗hour

Figure 6.  Heatmap of model parameters’ estimated first-order Sobol’ indices for each output, B, E, M, a, h, and 
p, using N = 2

19 simulations.

Figure 7.  Heatmap of model parameters’ estimated total-order Sobol’ indices for each output, B, E, M, a, h, and 
p, using N = 2

19 simulations.
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Parameter estimation techniques
In our model, many of the parameter values are unknown or cannot be determined experimentally. In order to 
estimate these parameters mathematically, we searched for data tracking the biomass changes of B. thetaiotaomi-
cron, E. rectale, and M smithii in order estimating these parameters. This system as its written in Eqs. (2) and (3), 
however, does not account for all possible parameters that could potentially affect the fluctuations in biomass or 
substrate concentration. We provide a description of our data in Supplementary Information Appendix A. We 
emphasize that this data is limited in that it only contains information about one time point, which makes our 
parameter estimates highly uncertain.

By fitting the model parameters to the data shown in Supplementary Table 1, we obtained estimates of our 
model’s parameters, which are shown in Table 2. We obtained this set of parameters by optimizing Eq. (6) using 
the Nelder-Mead method. Optimization details can be found in Supplementary Information Appendix B.

where x̂t1:t2 =
[

1
3

(

B̂t1:t2 + Êt1:t2 + M̂t1:t2

)

, ât1:t2 , ĥt1:t2 , p̂t1:t2

]

 , xobs =
[

1
3
(Bobs + Eobs +Mobs), aobs, hobs, pobs

]

 , 
and x̂t1:t2 can be defined as x̂t1:t2 =

1
2

(

max(xt1:t2)+min(xt1:t2)
)

 . The matrix xt1:t2 ∈ R
4×(t2−t1)/�t corresponds 

the the ODE solutions of equations 2 and 3 between times t1 and t2 with a �t time step. This choice of x̂t1:t2 allows 
us to measure the discrepancy between the observed data and the center of the oscillations of the ODE solutions 
between times t1 and t2 . In our setting, we choose t1 = 1400 and t2 = 1500 to allow the ODE solutions to approach 
a steady state.

Sensitivity analysis methods
We utilized global sensitivity analysis in order to identify the driving parameters of our model. In this framework, 
which utilizes Monte-Carlo (MC) methods, each parameter is assigned a probability density function (pdf) based 
on a priori information known about the parameter. Samples are drawn from these probability density functions 
to evaluate the overall model output.

Because we are interested in detecting significant nonlinear interactions among the model parameters, imple-
mentations of global sensitivity analysis methods for linear relationships like the partial rank correlation coeffi-
cient (PRCC), the Pearson correlation coefficient (CC), and standardized regression coefficients (SRC) would not 
be useful in our case. Consequently, we employed the Sobol’ method, a variance-based decomposition  method30.

Sobol’ indices are a MC variance-based approach to calculating all first-order and total-effects indices in a 
model with k parameters. These sensitivity indices are computed based on model evaluations for N simulations. 
In order to improve the sensitivity estimates, the values tested for each parameter in the model are drawn from 
quasi-random number generators. Though the use of quasi-random numbers from a given distribution is not 
necessary, we incorporate this approach into our computations.

To compute the first- and total-order Sobol’ indices for our reduced model parameters, we specified prior 
distributions for each parameter from which to draw samples. Parameter samples are drawn using lattice rule 
samples on the interval [ ai,bi ] for i ∈ 1, . . . , 20 specified in Supplementary Table 3, using the QuasiMonteCarlo.jl31 
package. Additional details of our sensitivity analysis can be found in Supplementary Information Appendix B.

Data availability
The data used for our parameter estimation efforts is included in the Supplementary Information of this manu-
script, and the Julia code used for our simulations is included in our GitHub page: https:// github. com/ Melis 
sa3248/ gut_ micro biota.
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