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Advancing diabetes prediction 
with a progressive self‑transfer 
learning framework for discrete 
time series data
Heeryung Lim 1, Gihyeon Kim 2 & Jang‑Hwan Choi 1*

Although diabetes mellitus is a complex and pervasive disease, most studies to date have focused 
on individual features, rather than considering the complexities of multivariate, multi‑instance, and 
time‑series data. In this study, we developed a novel diabetes prediction model that incorporates 
these complex data types. We applied advanced techniques of data imputation (bidirectional 
recurrent imputation for time series; BRITS) and feature selection (the least absolute shrinkage 
and selection operator; LASSO). Additionally, we utilized self‑supervised algorithms and transfer 
learning to address the common issues with medical datasets, such as irregular data collection and 
sparsity. We also proposed a novel approach for discrete time‑series data preprocessing, utilizing 
both shifting and rolling time windows and modifying time resolution. Our study evaluated the 
performance of a progressive self‑transfer network for predicting diabetes, which demonstrated a 
significant improvement in metrics compared to non‑progressive and single self‑transfer prediction 
tasks, particularly in AUC, recall, and F1 score. These findings suggest that the proposed approach can 
mitigate accumulated errors and reflect temporal information, making it an effective tool for accurate 
diagnosis and disease management. In summary, our study highlights the importance of considering 
the complexities of multivariate, multi‑instance, and time‑series data in diabetes prediction.

Diabetes mellitus is a significant global health issue. Approximately one in 11 adults are affected worldwide, and 
90% of the cases are type 2 diabetes mellitus (T2DM)1. Diabetes-associated mortality rates have increased by 
3% across all age groups from 2000 to 2019, as reported by the World Health Organization (WHO)2. Diabetes 
and its complications are leading causes of disability and mortality. Early diagnosis is crucial for effective disease 
management and improving the life quality of the  patients3. Accordingly, several trials have been conducted to 
predict the development of diabetes  accurately4–6.

Despite the multifactorial nature of diabetes development, few studies have focused on predicting diabetes 
using multivariate, multi-instance, and time series data. The irregular visit patterns of patients (varying fre-
quency and stay length) and the diversity of individual pathologies make collecting and organizing time series 
data  challenging7. Statistical methods such as time series regression and dimension reduction have traditionally 
been used for disease  prediction8. However, the recent development of deep learning algorithms has enabled the 
application of deep neural architectures in diverse research tasks, including medical data with high correlations 
and  dimensions9. For instance, the first investigation of diabetes multivariate time series prediction using deep 
learning  models7 introduced the possibility of applying long short-term memory (LSTM) and gated-recurrent 
unit (GRU) on clinical data. The PIMA Indian dataset (PID), provided by the National Institute of Diabetes and 
Digestive and Kidney Diseases (NIDDK), is one of the most widely used datasets for diabetes prediction. This is 
because the dataset has a high prevalence of diabetic outbreaks and includes several important features. Various 
approaches, including artificial neural networks (ANN), naive bayes (NB), decision trees (DT), and deep learning 
(DL), have been explored to provide an effective prognostic tool for healthcare  professionals5. Recent approaches 
have successfully incorporated CNN, CNN-LSTM, and CNN-BiLSTM, significantly enhancing the metrics on a 
large  scale10,11. Most studies on the Korean Genome and Epidemiology Study (KoGES) dataset have focused on 
identifying correlations between certain factors and diabetes development using statistical  methods12–15. These 
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studies have demonstrated correlations between diabetes development and factors such as waist  circumference12, 
prehypertension, hypertension, and glycated hemoglobin  levels13. However, the only application of time series 
prediction of diabetes using deep learning models based on the KoGES dataset thus far has been limited to a 
vanilla LSTM model that does not reflect the characteristics of this data in its  structure16. Additionally, there is 
a need for a novel method that can enhance disease prediction in more imbalanced datasets with a significantly 
larger number of features and instances. Therefore, we have developed a sophisticated deep learning framework 
that can detect dynamic temporal patterns in feature combinations and label properties, enhancing diabetes 
development prediction performance. This framework includes adequate data preprocessing methods, such 
as feature selection and data imputation. Using the KoGES Ansan and Ansung dataset, we aimed to improve 
diabetes prediction using multivariate, multi-instance, and time series data.

Time series analysis is a commonly used technique in various fields where the collected data has temporal 
dimensions. In such cases, time series classification frequently benefits from the enhancement of convolutional 
neural networks (CNNs)17,18. Unlike conventional statistical methods relying on variance distribution, such 
as correlation  analysis8, deep learning algorithms have been developed and applied successfully to time series 
analysis after the recent advances in artificial intelligence (AI)9. Disease prediction is a domain where time series 
analysis has been applied, targeting specific features or the overall condition of the patient. Active research 
related to chronic diseases including diabetes and hypertension has been conducted due to the growing size of 
the affected populations and the social interest in these conditions. For example, recent studies have addressed 
the application of deep neural networks (DNNs) in  hypertension19, as well as the use of LSTM and multi-layer 
perceptrons (MLPs) in heart  disease20. Furthermore, the recent Corona virus 2019 (COVID-19) epidemic has led 
to various time series prediction tasks, including the use of deep learning algorithms such as LSTM, GRU and bi-
LSTM21,22. Since many researchers continue to focus on data engineering and the optimization of existing models, 
there should be attempts to develop more sophisticated deep learning frameworks for novel insights. Meanwhile, 
recent research in time series prediction in the medical domain has focused on self-supervised algorithms to 
overcome the problems associated with inadequately labeled and incompletely collected data. These algorithms 
aim to capture temporal dynamics and enable early intervention for  patients23. However, inherent difficulties in 
detecting the progression of associated features still pose problems, including multiple covariates, progression 
heterogeneity, and data storage  issues24. Despite these challenges, time series prediction research continues to 
advance in the medical field, with potential for significant improvements in disease diagnosis and management.

Transfer learning is a methodology used to convey information across data in neural networks. The three 
major approaches of developing the model algorithm scheme are what, how, and when to transfer, with the selec-
tion of information boundaries for the target task, knowledge transfer, and tuning methods, such as pruning 
and layer freezing, determining transfer learning  performance25. Therefore, careful consideration of the details 
of transfer learning implementation is necessary. One of the methods of transfer learning involves model weight 
initialization, where the knowledge acquired from the source domain is transferred to the target domain by 
initializing model weights, alleviating the performance of the target task. Recent research in transfer learning 
investigates diverse forms of datasets, including time series data, image data, and text  data26–28. In time series 
prediction, studies have focused on multimodal data, multitask learning, and self-supervised approaches for the 
informative fusion of available datasets, providing appropriate task  results28,29. Additionally, researchers have 
explored the selection of appropriate source domains among diverse datasets to overcome problems frequently 
encountered in time series datasets, such as missing  labels30. However, shortages of large general datasets remain 
a challenge for future studies. Humans perceive most time series data not only sequentially but also as a whole. 
Motivated by this idea, the application of transfer learning and self-supervised learning in this study focuses 
on ongoing temporal self-data addition and the implementation of the idea into the model structure, where the 
data is in the same feature space. This approach is expected to improve the performance of time series prediction 
models in various applications.

Here, we present a novel approach to time series disease prediction by adjusting time series data through 
the modification of time windows and time resolutions in a manner similar to data masking in self-supervised 
learning. Our proposed model framework transfers information, including the unseen patterns of variables and 
the temporal properties of labels, to predict diabetes development in each individual. We also apply ensemble 
techniques to calibrate multiple learners, demonstrating the potential applications of AI tools in the early predic-
tion of diabetes. Our contributions include:

• The introduction of a novel progressive self-transfer framework for time series disease prediction, which 
effectively teaches dynamic temporal patterns via downstream classifiers.

• The introduction of efficacious methods to process discrete time series data, such as shifting and rolling 
window and modifying time resolution. By doing so, the total number of model training to learn important 
representative features was increased.

• Extensive training and evaluation of our method using a large dataset that is multivariate, multi-instance, 
and in time series. Given its ability to handle diverse datasets beyond our current study, our approach has 
potential extensibility.

Overall, our proposed approach has significant potential to improve the accuracy of diabetes prediction and 
may have broader implications for other time series prediction tasks in the medical domain.
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Results
Results are presented in the order of experimental complexity and in the order in which they were conducted. 
We begin by presenting the results of the baseline experiments, which serve as a reference for comparison with 
the proposed downstream classifiers. Following this, we present the results of the single progressive self-transfer 
networks, which function as downstream classifiers. Finally, we introduce the ensemble results, which combine 
multiple classifiers.

Non‑progressive self‑transfer network
Non-progressive self-transfer networks are used as a baseline model for comparison before estimating the per-
formance of each progressive self-transfer network. In this study, we introduce four downstream classifiers, 
called submodels, and the four non-progressive self-transfer networks are used to predict whether each patient, 
distinguished by their own code, experiences diabetes at the last time-step of the dataset. Despite having data 
for every time-step, we preprocessed the data dimensions to match the final prediction task of the four single 
progressive self-transfer networks. The descriptions of the four non-progressive baseline predictions, which are 
the output of the last time-step of the dataset and serve as the baseline output of the four progressive self-transfer 
networks, are shown in Table 1. Our evaluation of the baseline models revealed that, in four of the five evaluation 
categories (accuracy, AUC, precision, and F1 score), the best performance was observed when most of the data 
was used for training. However, we also observed that the best recall was obtained when only two time steps were 
used, indicating that the rest of the baseline model did not show a significant performance loss.

Single progressive self‑transfer network
In this stage of our study, we applied progressive self-transfer learning to our model for each task in sequence. 
Each network had its own first task, which was designed based on the time series data preprocessing methods. 
These first tasks served as a foundation for the sequential learning tasks that followed. In this sequential stage, 
the knowledge from the previous learning step was transferred to the next learning step through weight ini-
tialization. This approach allowed the transfer of information in a progressive manner over time, resulting in 
what we call progressive self-transfer networks. Table 2 displays the results of the single progressive self-transfer 
networks. Our progression approach was implemented using two methods: (1) shifting and rolling window and 
(2) modifying time resolution. The first two models were designed using the shifting and rolling window method, 
while the next two models were preprocessed using the method of modifying time resolution. We found that 
the results of submodel 1 were significantly better than those of the other models in four of the five evaluation 
metrics. However, the evaluation performance of the other models also showed similar superiority. Additionally, 
comparing these results to those in Table 1, we observed a progression in performance in most of the evaluation 
metrics, especially in accuracy, area under the curve (AUC), and recall.

Multiple progressive self‑transfer ensemble network
The final stage of our study involved the application of ensemble techniques to integrate the results of the single 
progressive self-transfer networks. As we had four different networks (submodel 1–4), we experimented with 
every possible combination of ensemble networks to identify the trends in the results. Submodel 1 and submodel 
2 were downstream classifiers that processed time series data using the shifting and rolling window method, 

Table 1.  Ten iterations of the four non-progressive self-transfer models results. tn, the name of the time-step in 
every two years; t7, the data collected from 2017 to 2018, the label of which is to be predicted. AUC, area under 
the curve. Data are reported as the mean ± SD. The highest performance values for each evaluation metric are 
indicated in bold.

Data Prediction Accuracy AUC Recall Precision F1 score

t1–t6 t7 83.85 ± 1.35 92.07 ± 0.08 84.49 ± 2.59 51.17 ± 2.39 63.37 ± 1.34

t4–t6 t7 82.76 ± 1.38 91.65 ± 0.07 84.45 ± 2.58 49.48 ± 2.20 61.88 ± 1.11

t2, t4, t6 t7 82.35 ± 0.84 91.16 ± 0.13 84.47 ± 2.14 48.36 ± 1.48 61.17 ± 0.80

t3, t6 t7 81.30 ± 1.22 90.76 ± 0.12 85.34 ± 1.67 46.78 ± 1.75 60.10 ± 1.17

Table 2.  Ten iterations of the four single progressive self-transfer models results. Submodel 1, submodel 2, 
submodel 3, and submodel 4 are the downstream classifiers. The best performance in each evaluation metric 
among single progressive self-transfer networks is indicated in bold. Data are reported as the mean ± SD.

Accuracy AUC Recall Precision F1 score

Submodel 1 83.66 ± 0.83 92.07 ± 0.08 84.56 ± 1.16 50.68 ± 1.33 63.07 ± 0.97

Submodel 2 83.32 ± 0.84 91.75 ± 0.13 85.49 ± 1.99 49.98 ± 1.55 62.81 ± 0.77

Submodel 3 81.50 ± 1.08 91.18 ± 0.16 85.58 ± 1.36 46.97 ± 1.44 60.36 ± 1.03

Submodel 4 81.38 ± 0.66 90.94 ± 0.13 85.51 ± 1.63 46.65 ± 0.83 60.14 ± 0.51
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while submodel 3 and submodel 4 were downstream classifiers that processed time series data by doubling and 
tripling the time resolution.

Table 3 shows the ensemble results of every combination of the four models among single progressive self-
transfer networks. The first two rows display the results of the ensemble for only two downstream classifiers. The 
experiments were conducted for only submodel 1 with submodel 2 and submodel 3 with submodel 4, based on 
the time series data processing method used. The next four rows show the ensemble results of the three down-
stream classifiers. AUC, recall, and F1 score indicated improved performance in all ensemble results compared 
to the single downstream classifier results described in Table 2. The last row displays the ensemble results of all 
four downstream classifiers. Four of the five evaluation metrics outperformed the results of all four downstream 
classifiers, except for precision. Furthermore, Fig. 1 illustrates the schema of all experimental cases described in 
Table 3. This figure focuses on AUC, which served as our criterion for determining the best epoch of each stage.

We found that the combination of submodel 1, submodel 2, and submodel 4 produced the best performance 
in terms of AUC and other metrics overall. Thus, we conducted additional experiments to thoroughly inspect 
the validity of the combinations. Table 4 shows the ensemble results of every possible combination among 
submodel 1, submodel 2, and submodel 4. The best performance in AUC was obtained with the combination 
of submodel 1, submodel 2, and submodel 4, which outperformed the ensemble results of all four downstream 
classifiers in Table 3.

Furthermore, the experimental results were compared to the baseline models: LSTM, GRU, and RNN. Table 5 
displays the performance metrics obtained from each case. The first three rows present the metrics of the baseline 
models, which utilized the same dataset and hyperparameter settings as the proposed model for comparison. The 
last row showcases the metrics of the proposed model, referring to the combination of submodel 1, submodel 2, 
and submodel 4, which exhibited the best AUC performance as shown in Table 3. Overall, the proposed model 
outperformed all the baseline models in terms of AUC and recall. Considering the highly imbalanced label 
ratio, we can observe an improvement in the ability to detect diabetes patients on a larger scale. Additionally, 
given that our proposed model is based on a multilayered LSTM, which demonstrates the best AUC among the 
baseline models, we can also see that the model exhibits similar patterns in accuracy, precision, and F1 score 
when compared to the baseline LSTM model.

The performance of the proposed model is presented in Fig. 2. A gradual improvement in model performance 
was noted across the evaluation metrics, highlighting the effectiveness of the proposed approach. Furthermore, 
the interactions between the single progressive self-transfer networks were also observed. For instance, the 
accuracy of submodel 4 improved significantly, surpassing submodels 1 and 2. The ensemble approach enhanced 
the accuracy of all four submodels, particularly that of submodel 4. Additionally, an increase in recall is crucial 
in medical domains as it prevents missing potential patients, and the proposed model showed promising results 
in improving recall.

Discussion
Given the complexity of the disease and unknown interactions between related factors, the accurate prediction 
of diabetes development is crucial. In this study, we proposed a progressive self-transfer network that incor-
porates time series data preprocessing methods, shifting and rolling window and modifying time resolution, 
to reflect feature representations in multivariate and multi-instance time series analysis. The proposed method 
also accounts for dynamic temporal patterns, including temporal imbalance of the label, which is common in 
medical data. The gradual improvement of the metrics performances shown in Fig. 2 indicates that the progres-
sive self-transfer network followed by ensemble method efficiently integrates and employs information added 
over time, enabling each downstream classifier to interpret the dataset from their own perspective. The results 
demonstrate that the proposed method can effectively recognize previously unseen data patterns and transfer 
the acquired knowledge as background information to the sequential tasks. Therefore, the model can now detect 
more patients earlier than before, enabling early diagnosis and intervention.

Furthermore, our study contributes to the field by utilizing deep learning methods for time series prediction 
tasks on the KoGES dataset. To the best of our knowledge, there have been limited studies on this dataset using 
deep learning techniques. Previous studies have used conventional algorithms and primarily focused on identify-
ing the association of a single or a few factors with the development of diabetes. In contrast, our approach consid-
ers multiple relevant features to predict diabetes development, providing a more comprehensive understanding 

Table 3.  Ten iterations of the ensemble results. Each result is from the multiple progressive self-transfer 
network, which consists of downstream classifiers described. The best AUC performance among ensemble 
results is indicated in bold. Data are reported as the mean ± SD.

Downstream classifiers Accuracy AUC Recall Precision F1 score

2
Submodel 1, Submodel 2 84.15 ± 0.35 92.29 ± 0.10 85.30 ± 1.16 51.29 ± 0.61 63.90 ± 0.38

Submodel 3, Submodel 4 82.28 ± 0.73 91.78 ± 0.09 86.30 ± 1.97 48.02 ± 1.09 61.52 ± 0.79

3

Submodel 1, Submodel 2, Submodel 3 83.68 ± 0.28 92.33 ± 0.08 85.64 ± 0.86 50.32 ± 0.51 63.27 ± 0.32

Submodel 1, Submodel 2, Submodel 4 83.99 ± 0.40 92.47 ± 0.07 86.07 ± 0.60 50.93 ± 0.71 63.86 ± 0.52

Submodel 1, Submodel 3, Submodel 4 83.46 ± 0.65 92.26 ± 0.06 86.48 ± 0.85 49.95 ± 1.08 63.18 ± 0.75

Submodel 2, Submodel 3, Submodel 4 83.21 ± 0.36 92.26 ± 0.07 86.53 ± 1.13 49.46 ± 0.54 62.82 ± 0.33

4 Submodel 1, Submodel 2, Submodel 3, Submodel 4 83.71 ± 0.35 92.43 ± 0.04 86.30 ± 0.64 50.35 ± 0.57 63.48 ± 0.42
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of the disease. As such, our study offers a significant contribution to the field of diabetes prediction using time 
series analysis and deep learning methods.

In order to optimize the LSTM model used in this research, we conducted a series of experiments adjusting 
various parameters. These experiments were performed across all stages, including the non-progressive self-
transfer networks, single progressive self-transfer networks, and their ensemble applications. We tested LSTM 
models with different numbers of layers, and found that the model with five layers performed slightly better than 
the four-layer model in some metrics, but with a significant increase in standard deviations. We also manually 

Figure 1.  Trends in the evaluation metrics, particularly the AUC, are depicted for all experiments described.
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adjusted the dropout rate and input unit size. Additionally, we optimized the methods used to modify the time 
series data, including the initial window size and the expansion of time intervals. Since we had a limited number 
of discrete time steps, we chose to double or triple the time resolution, which allowed us to finalize the structure 
of the input and output data.

It is important to note that our study may have potential bias or human error issues, which can arise in 
discriminative supervised models. One potential source of human error is in the labeling process, which can be 
influenced by misreported survey responses or biases introduced during clinical measurements. Moreover, our 
study did not discriminate between type 1 diabetes mellitus (T1DM) and T2DM, which limits our understand-
ing of the participants’ diabetes mellitus development. To address these limitations, future studies could focus 
on disease-specific data collection to improve the reliability of the labels and allow the discrimination between 
T1DM and T2DM. Additionally, incorporating genetic information such as single nucleotide polymorphisms 
(SNPs) could enhance the model’s background knowledge and enable personalized patient care. SNPs, in com-
bination with lifestyle habits, could serve as key factors in diabetes development and support more effective 
patient interventions.

Conclusions
In conclusion, our study presents a novel progressive self-transfer learning network that integrates information 
over time to predict diabetes development at a target time-step with remarkable performance. Our method 
has several advantages, including mitigating the problem of accumulated error in recursive neural networks, 
predicting multiple timepoints and utilizing each result in sequence, and improving the learning of important 
representative features through the modification of time series data. Our findings have implications for the field of 
digital healthcare for chronic diseases, particularly in the potential of AI to improve clinical efficiency and aid in 
early diagnosis and intervention for diseases like diabetes mellitus. Indeed, as the proposed model helps to detect 
more patients with improved metrics, our findings can significantly enhance the opportunity for early detection. 
With these promising results, our method can contribute to the development of digital healthcare and preventa-
tive medicine, enhancing the expertise of healthcare providers and improving the health outcomes of patients.

Methods
The Korean Genome and Epidemiology Study
The Korean Genome and Epidemiology Study (KoGES) Ansan and Ansung dataset was used in this research. 
The KoGES consortium aims to investigate the genetic–environmental factors and interactions in common and 
complex diseases in Koreans. The study is an ongoing community-based cohort study conducted by the Korea 
Disease Control and Prevention Agency (KDCA) and the Ministry of Health and Welfare. The dataset contains 
biannual medical checkup and survey data of participants (40–69 years old) from 2001 to 2018, residing in 
either urban (Ansan) or rural (Ansung) areas. The cohort baseline with 10,030 participants was established in 
2001–2002, and 6157 participants attended the last time-step in 2017–2018. The objective of the study was to 
predict whether each participant would develop diabetes at the last time-step. The American Diabetes Associa-
tion (ADA) guidelines were followed, and a participant was considered to have diabetes if they fulfilled at least 
one of the criteria listed in Table 6. In other words, labels for each time-step were generated by considering both 
inspection features, which are based on ADA criteria, and survey features, which strongly indicate whether the 
participant was diagnosed with diabetes in the preceding 2 years. The label creation is based on the assumption 

Table 4.  Ten iterations of the ensemble results of the combinations of submodels 1, 2, and 4. The best AUC 
performance among ensemble results is indicated in bold. Data are reported as the mean ± SD.

Downstream classifiers Accuracy AUC Recall Precision F1 score

2

Submodel 1, Submodel 2 84.15 ± 0.35 92.29 ± 0.10 85.30 ± 1.16 51.29 ± 0.61 63.90 ± 0.38

Submodel 1, Submodel 4 83.70 ± 0.76 92.21 ± 0.11 86.08 ± 0.72 50.51 ± 1.21 63.49 ± 0.88

Submodel 2, Submodel 4 83.39 ± 0.48 92.22 ± 0.10 86.54 ± 1.09 49.82 ± 0.80 63.10 ± 0.50

3 Submodel 1, Submodel 2, Submodel 4 83.99 ± 0.40 92.47 ± 0.07 86.07 ± 0.60 50.93 ± 0.71 63.86 ± 0.52

Table 5.  Ten iterations of the baseline models and comparison with the proposed model. The best 
performance in each evaluation metric among single progressive self-transfer networks is indicated in bold. 
Data are reported as the mean ± SD.

Accuracy AUC Recall Precision F1 score

LSTM 83.85 ± 1.35 92.07 ± 0.08 84.49 ± 2.59 51.17 ± 2.39 63.37 ± 1.34

GRU 87.72 ± 0.51 91.63 ± 0.10 73.19 ± 2.64 61.00 ± 1.72 66.00 ± 0.84

RNN 87.49 ± 0.41 91.62 ± 0.08 73.35 ± 1.81 60.21 ± 1.47 65.63 ± 0.80

Proposed model 83.99 ± 0.40 92.47 ± 0.07 86.07 ± 0.60 50.93 ± 0.71 63.86 ± 0.52
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that data at a specific time step influences subsequent diabetes cases after two years, aligning with the interval 
of the KoGES dataset.

Table 7 presents the labels used in the study for each time-step, where “label 1” indicates diabetic participants 
and “label 0” indicates non-diabetic participants. The labels were generated based on specific criteria as described 
in Table 6 and were inferred from the data collected at each time-step t. Out of the 3995 participants who par-
ticipated in every time-step, 3379 were included in the proposed network analysis after excluding those who 
already had diabetes at the first time-step. Table S1 provides a detailed description of the data used in the study. 

Figure 2.  Trends in the evaluation metrics. Accuracy, AUC, precision, recall, and F1 score for non-progressive 
self-transfer models, single progressive self-transfer networks, and ensemble results of submodel 1, submodel 2, 
and submodel 4 are descripted.

Table 6.  Criteria for diabetes development. OGTT, oral glucose tolerance test.

Selected Attribute Criterion Remark

Inspection

HbA1C  >  = 6.5% Whole blood

Fasting Glucose  >  = 126 mg/dL Plasma

Glucose OGTT (120 min)  >  = 200 mg/dL Plasma

Survey

Experience of Diabetes diagnosis Yes Last 2 years

Ongoing treatment of Diabetes Yes Last 2 years

Ongoing insulin therapy Yes Last 2 years
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Notably, the ratio of diabetic (label 1) to non-diabetic (label 0) participants shows a gradual increase (Table 7), 
more than quadrupling from the first to the last time-step. Furthermore, the proposed framework utilized tn-1 
data to generate a label for tn data for early prediction of the next time-step and used the latest six time-step sets 
of the data as an input for the proposed framework.

LASSO feature selection
Feature selection is a crucial step in network training to ensure optimal model performance and  efficiency31. In 
this study, we employed the least absolute shrinkage and selection operator (LASSO) feature selection to identify 
the most relevant features for the proposed classification task. First, we sorted all variables and participants in 
every time-step, resulting in a dataset of 3379 participants and 850 features. We then selected only continuous 
features with less than 80% missing values in each time-step, resulting in a final dataset of 3379 participants and 
56 features. The missing values in the dataset were imputed using bidirectional recurrent imputation for time 
series (BRITS). LASSO feature selection was then applied to the final dataset to select the most relevant features 
for the network training process.

After performing basic preprocessing steps, LASSO was adapted for feature selection. LASSO is a type of 
regularized linear regression that controls the penalty strength to shrink insignificant coefficients to zero, reduc-
ing dimensionality and minimizing the number of features relevant to the labels  simultaneously32. Grid search 
was applied to find the most suitable penalty coefficient, resulting in the selection of 48 features with positive 
or negative correlation to each label data. The coefficients of the 48 selected features are displayed in Fig. 3. 
Creatinine in blood serum, hemoglobin in whole blood, body fat, body mass index (BMI), and subscapular 
measurement  (3rd) were identified as the top five features with the largest coefficients in magnitude. The larger 
the coefficient magnitude, the more effective the explanatory  variables33. Additionally, the sign of the coefficient 
indicates a positive or a negative correlation with the label  data33. The total demographic information of the 
selected 48 features is described as descriptive statistics in Table S1, and the detailed information of the features 
with LASSO coefficients is shown in Table S2.

Table 7.  Label information of every time-step. Label at tn refers to the diabetes development information at 
the time-step tn. For instance, the column t1 lists the label information inferred by the data of 2005–2006 and 
the column t2 by that of 2007–2008. The numbers, except those in the last row, indicate number of people.

t1 t2 t3 t4 t5 t6 t7
Label 0 (non-diabetic) 3249 3180 3111 3076 3026 2939 2824

Label 1 (diabetic) 130 199 268 303 353 440 555

Label 1 (%) 3.85 5.89 7.93 8.97 10.45 13.02 16.42

Figure 3.  Diagram of the LASSO coefficients of the selected 48 features. The coefficients are sorted in 
descending order based on the absolute value.
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BRITS imputation
BRITS is a powerful algorithm that leverages a bidirectional recurrent neural network (BRNN) to impute miss-
ing values in multivariate time series data, taking advantage of feature means, standard deviations, and  trends34. 
Notably, BRITS can perform imputation and classification or regression tasks concurrently, acting as a versatile 
multi-task learning algorithm. In our study, we utilized BRITS imputation twice. First, we applied BRITS impu-
tation before the LASSO feature selection step to mitigate any potential biases and to ensure proper selection of 
appropriate features for the model. Second, we applied BRITS imputation before training the proposed network, 
but only for the selected 48 features instead of the entire feature set. The BRITS algorithm treats missing values as 
variables within the bidirectional RNN graph, performing missing value imputation and classification/regression 
applications simultaneously. Consequently, the combination of variables can impact the accuracy of imputation. 
Thus, the second application of the BRITS imputation helps to exclude less important features from the process, 
allowing only relevant features to be incorporated into the progressive self-transfer architecture. Figure 4 presents 
the schematic diagram of the BRITS applications as described above.

Progressive self‑transfer framework
The proposed progressive self-transfer framework was implemented using PyTorch libraries and trained on 
a Linux Intel(R) Core (TM) i7-9700 CPU with a Nvidia GeForce RTX 2070 SUPER GPU environment. The 
network was trained and tested with a batch size of 32, a dropout rate of 0.2, and binary cross entropy loss with 
sigmoid function as the loss function. The experiments were repeated 10 times to obtain the means and standard 
deviations of the results.

Figure 5 illustrates the proposed framework, which includes multiple submodels and utilizes an ensem-
ble method to soft vote the classification scores of the sub-classifiers for final prediction. The submodels are 

Figure 4.  Schematic diagram of the BRITS applications.

Figure 5.  The overall architecture of the progressive self-transfer network. Submodels 1–4 are the examples of 
the downstream classifiers.
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multilayered LSTM-based self-transfer networks that train and test in a sequential manner. The introduction of 
the multilayered LSTM aims to fully capture and address the dynamic temporal patterns in the data. The forget, 
input, and output gates of LSTM control the unit cell, effectively resolving the vanishing gradient and short-
term memory issues of traditional RNNs. The forget gate decides which information from the previous cell state 
can be discarded. The input gate determines which new information should be added to the cell state. Finally, 
the output gate identifies the most significant information from the current cell state to determine the value of 
the next hidden state. The purpose of the submodels is to capture the dynamic characteristics of the time series 
data, such as the varying label imbalance among the time steps. The framework is designed to process training 
and testing data in a sequential manner, as humans perceive time series data not only in sequence but also as 
a whole simultaneously. The progressive self-transfer learning scheme allows for the former learning step to 
provide information to the latter learning process in a sequential manner. Meanwhile, baseline models were 
introduced to verify and explain the performance of the proposed model. To fully consider the uniqueness of 
each submodel and track the improvement in evaluation metrics, non-progressive self-transfer networks were 
used as a baseline model for the four progressive self-transfer networks. Additionally, we compared our experi-
mental results against three well-known recurrent neural networks: LSTM, GRU, and RNN. These models can 
capture temporal patterns in sequential data. RNN is a traditional recurrent model in which the output of the 
former step becomes the input of the current stage, especially suited for data with relatively short time-steps. 
However, as the sequence length of the data increases, issues like gradient vanishing or exploding may occur at 
times. GRU is similar to the LSTM described above; however, it consists of two gates: an update gate and a reset 
gate. The update gate determines how much information from the previous time step is updated to the current 
state, while the reset gate decides which information to disregard.

Figure 6 illustrates an example of the progressive self-transfer submodel used in the study. The network has 
48 input dimensions, which were selected in the LASSO feature selection step. The model consists of sequential 
tasks, where the first task is to predict whether the participants will develop diabetes at the time step t4 using the 
data from the time steps t1 to t3. The second task is to predict the same at the time step t5 using the data from 
the time steps t1 to t4. The sequential progress is achieved by gradually adding time steps, and the best epoch’s 
weight is transferred to the consequent tasks via weight initialization. The preprocessing methods shifting and 
rolling window and modifying time resolution will be discussed in the next section.

Self-supervised learning and transfer learning are the key concepts behind the proposed network. Self-
supervised learning is a technique where the labels are acquired from the data itself, and the data is partially 
used to predict the other parts of the  data35. A pretext task is a task designed to improve the performance of the 
target prediction. In this study, the pretext task was the binary prediction of diabetes, formulated according to 
two time series data processing methods. Self-supervised sequences were carried out using transfer learning, 
which efficiently improved the performance of the pretext tasks over time. Only some finetuning was necessary 
without changes to the model architecture. Furthermore, the proposed framework increased the total number 
of model training iterations compared to single whole-data training, enabling the model to better perceive the 
self-data. In other words, the progressive self-transfer network transferred knowledge in sequence to capture 
high-level information of the self-data.

Time series data preprocessing: shifting and rolling window
Following the feature-level data preprocessing, we performed data preprocessing at the time-step level to enable 
sequential inputs for the proposed model framework. As the KoGES Ansan and Ansung study provides discrete 
time series data, we had explicit and repeated time intervals by the inspections. Based on a time window interval 
of two years, we adopted a modification technique that involves changing the window size or rolling the time 
window gradually. The first method we used is the shifting and rolling window approach. We applied this method 

Figure 6.  An example of the progressive self-transfer submodel. The model is trained and tested in a sequential 
flow. The LSTM boxes with dotted lines represent the learning steps the weights of which are transferred from 
the former learning step.
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in submodels 1 and 2, as shown in schematic diagrams A and B in Fig. 7. In submodel 1, the length of the time 
window gradually increased as the tasks proceeded. Training began with a window size of six years, which refers 
to the first three time steps, since the length of a single window is two years. For submodel 2, the length of the 
time window was fixed, and it was rolled as the tasks proceeded. Consequently, sequential inputs were progres-
sively provided by the time series data. The following formula defines the model input for each sequence, which 
is formed by shifting and rolling the time window of the original data:

(1)I =
{(

dx , dy
)

|dxi ∈ X; dyi ∈ Y; i = 1, 2, . . . , p
}

(2)Xsubmodel1 =

{

dx|dxi =

i−n+1
∑

t=1

xt , 1 ≤ i ≤ N − n

}

Figure 7.  A schematic illustration of the submodels employed in the proposed progressive self-transfer 
network. Each submodel consists of sequential tasks, and modified time series data is used as input of the 
network in a specific order. (A) Submodel 1. (B) Submodel 2. (C) Submodel 3. (D) Submodel 4.



12

Vol:.(1234567890)

Scientific Reports |        (2023) 13:21044  | https://doi.org/10.1038/s41598-023-48463-0

www.nature.com/scientificreports/

The input data of the model, represented by I, is defined in Eq. (1), which consists of the pairs of dx and dy . 
Each of the dxi and dyi are feature and label data of participants in an appropriate format for training sequence 
i. These pairs of data are composed of xt and yt , which represent data in the time step t. The sequential training 
is performed p times, and X and Y are the generalized expressions of dxi and dyi . However, since the time series 
data preprocessing methods of submodel 1 and submodel 2 are different, the expressions of X are diversified as 
shown in Eqs. (2) and Eq. (3). Here, N represents the number of total time steps in the data, and n represents the 
width of the initial time window, which is increased or rolled over the training sequence.

Time series data preprocessing: modifying time resolution
Modifying time resolution is another method for creating sequential inputs in time series data preprocessing. 
This approach involves zooming in and out of the data to inspect information from different perspectives. 
In this study, as the data was collected every two years, the minimum time resolution is two years. To reflect 
both micro and macro aspects of the data, we doubled or tripled the time resolution of the dataset. Submodel 
3 (Fig. 7c) doubles the time resolution, simulating window intervals of four years and creating four sequential 
inputs. Submodel 4 (Fig. 7d) triples the time resolution, simulating window intervals of six years and creating 
three task inputs. The following formula is used to define the sequential input, which is developed by varying 
the time resolution of the original data:

The structure of the input I follows the same formula as mentioned earlier. However, the variables X and Y 
are dependent on the skipping series of the time window intervals w, as shown in Eqs. (5) and Eq. (6). ‘Skipping 
series’ refers to an input dataset configured to exclude data from specific time windows, in accordance with 
changes in time resolution. For instance, if w = 1, this sets the skipping interval at 1. Consequently, the skipping 
series is created by omitting every other data point, starting from the end and moving backwards until the first 
time-step is reached. The value of w is specific to each submodel, with submodel 3 using a skipping interval of 1 
and submodel 4 using a skipping interval of 2. The value of w is determined based on the total number of time 
steps in the data.

Ensemble
The final step of the proposed framework involves ensembling the classification scores of the submodels. This 
step aims to compensate for the imbalanced labels and variable feature properties and to prevent overfitting of 
the prediction results. Since each submodel has its own unique learning strategy and perspective on the data, we 
concatenate these perspectives via soft voting to calculate the mean probability. The weights of all perspectives 
are considered equal. To find the best combination of multiple learners, we ensemble diverse combinations of 
the submodels (submodel 1–4) to find the best evaluation performances.

Evaluation
In this study, a five-fold cross-validation was used to validate the model and to prevent overfitting. The dataset 
of 3379 participants was divided into five folds based on the binary labels of the last time step. Each fold was 
used as a validation set in consecutive order, and the mean metrics of the validation sets were used to evaluate 
the model performance. Accuracy, AUC, recall, precision, and F1 score were considered for the overall binary 
classification evaluation. All models, including the non-progressive single self-transfer network and ensemble 
results, were compared based on these five metrics. In the submodel performance evaluation, AUC was con-
sidered the most important metric to determine the best epoch and continue training in sequence, as it reflects 
the classification performance for all classes. The weight of the best epoch was then transferred to the following 
similar tasks based on AUC.

Data availability
The KoGES dataset utilized in this research is open to the public and available via registration to the Korean 
National Institute of Health (https:// nih. go. kr/ ko/ main/ conte nts. do? menuNo= 300578).
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(3)Xsubmodel2 =

{

dx|dxi =

i−n+1
∑

t=1

xt −

i−2n+1
∑

t=1

xt , 1 ≤ i ≤ N − n

}

(4)Y =
{

dy|dyi = yi+n, 1 ≤ i ≤ N − n
}

(5)X =

{

dx|dxi =
∑

s=0

xi+(1−s)(w+1), 1 ≤ i ≤ N − w − 2

}

(6)Y =
{

dy|dyi = yi+w+2, 1 ≤ i ≤ N − w − 2
}
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