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Improving portable 
low‑field MRI image quality 
through image‑to‑image 
translation using paired low‑ 
and high‑field images
Kh Tohidul Islam 1*, Shenjun Zhong 1,5, Parisa Zakavi 1, Zhifeng Chen 1,2, Helen Kavnoudias 3,4, 
Shawna Farquharson 5, Gail Durbridge 6, Markus Barth 7, Katie L. McMahon 8, 
Paul M. Parizel 9,10, Andrew Dwyer 11, Gary F. Egan 1, Meng Law 3,4 & Zhaolin Chen 1,2

Low-field portable magnetic resonance imaging (MRI) scanners are more accessible, cost-effective, 
sustainable with lower carbon emissions than superconducting high-field MRI scanners. However, the 
images produced have relatively poor image quality, lower signal-to-noise ratio, and limited spatial 
resolution. This study develops and investigates an image-to-image translation deep learning model, 
LoHiResGAN, to enhance the quality of low-field (64mT) MRI scans and generate synthetic high-field 
(3T) MRI scans. We employed a paired dataset comprising T1- and T2-weighted MRI sequences from 
the 64mT and 3T and compared the performance of the LoHiResGAN model with other state-of-
the-art models, including GANs, CycleGAN, U-Net, and cGAN. Our proposed method demonstrates 
superior performance in terms of image quality metrics, such as normalized root-mean-squared 
error, structural similarity index measure, peak signal-to-noise ratio, and perception-based image 
quality evaluator. Additionally, we evaluated the accuracy of brain morphometry measurements 
for 33 brain regions across the original 3T, 64mT, and synthetic 3T images. The results indicate that 
the synthetic 3T images created using our proposed LoHiResGAN model significantly improve the 
image quality of low-field MRI data compared to other methods (GANs, CycleGAN, U-Net, cGAN) and 
provide more consistent brain morphometry measurements across various brain regions in reference 
to 3T. Synthetic images generated by our method demonstrated high quality both quantitatively 
and qualitatively. However, additional research, involving diverse datasets and clinical validation, is 
necessary to fully understand its applicability for clinical diagnostics, especially in settings where high-
field MRI scanners are less accessible.

Magnetic resonance imaging (MRI) is a non-invasive medical imaging modality that can comprehensively visu-
alize tissues and organs, exhibits superior soft-tissue contrast relative to alternative imaging modalities and can 
demonstrate subtle pathologies1. MRI utilises a strong magnetic field, radiofrequency pulses, and sophisticated 
computational algorithms to collectively generate diagnostic images of many body regions, including the brain, 
spine, organs, and joints. A notable feature of MRI is its absence of ionizing radiation, which is associated with 
reduced radiation-related risks2. Low-field MRI provides opportunities to develop a more compact, cost-effective, 
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and portable system in comparison to current clinical MRI scanners ( ≥1.5T field strengths)3. Although low-field 
MRI images suffer from reduced signal-to-noise ratio (SNR) compared to their high-field counterparts, low-field 
MRI is of potential interest for a number of imaging applications, including musculoskeletal and neuroimaging. 
Point of care (POC) MRI for use in the emergency department (ED) or intensive care unit (ICU) settings could 
serve as a viable alternative in remote or economically challenged areas in the world4–8.

The recent advent of portable low-field MRI scanners, such as the 64mT Hyperfine Swoop, holds significant 
promise for reducing MRI access inequality with acceptable diagnostic quality9–15. However, the limited spatial 
resolution and SNR of low-field MRI precludes using traditional image analysis tools, such as the FMRIB auto-
mated segmentation tool, FSL-FAST16,17. As a result, there has been a growing interest to determine whether novel 
methods can translate images acquired with low-field POC MRI scanners to be comparable to those obtained 
with high-field scanners18,19. The method, known as image-to-image translation, holds potential to improve the 
diagnostic value of images acquired using low-field scanners. Recently, deep learning-based (artificial intel-
ligence) approaches, have shown significant promise for medical image synthesis20–24. Several state-of-the-art 
methods previously used for natural image-to-image translation have been adapted to perform low-field to high-
field MRI image-to-image translation9,17,25,26. These include generative adversarial networks (GANs), CycleGAN, 
U-Net, multi-scale fusion networks, conditional generative adversarial networks (cGAN), and Pix2Pix27–31.

Based on U-Net29, Iglesias et al.9 proposed a state-of-the-art synthetic super-resolution method called 
SynthSR. The method employs a network to generate 1 mm isotropic T1-weighted structural images from clini-
cal MRI scans with varying orientation, resolution (including low-field), and contrast. This innovative approach 
can potentially advance quantitative neuroimaging in both clinical care and research settings32. Subsequently, 
Iglesias et al.33 provided a proof-of-concept (SynthSeg) for applying the SynthSR method to perform quantitative 
brain morphometry analysis on low-field MRI data. The results demonstrate that portable low-field MRI can 
be enhanced with SynthSR to yield brain morphometric measurements that correlate with those obtained from 
high-resolution images. More recently, a robust version of the Iglesias et al.33 method called SynthSeg+ , with 
robustness for any MRI resolution and contrast, was proposed by Billot et al.34 who subsequently investigated its 
performance on clinical scans35. Similarly, Laguna et al.17 introduced an image-to-image translation architecture 
inspired by CycleGAN28, which integrates denoising, super-resolution, and domain adaptation networks to 
address the challenges of portable low-field MRI in terms of resolution and signal-to-noise ratio.

The aforementioned adaptive methodologies motivate the current investigation into the performance of 
advanced image-to-image translation models for low-field MRI applications with a particular focus on their 
ability to maintain diagnostic integrity and preserve essential medical information without the introduction 
of image artifacts. Specifically, we investigated the GANs, CycleGAN, U-Net, cGAN, and our (LoHiResGAN) 
image-to-image translation model’s effectiveness in generating synthetic 3T MR images from the 64mT images. 
The brain morphometry was compared between the synthetic 3T images, the paired 3T, and the original 64mT 
images. Our findings indicate a high-level agreement between 3T and synthetic 3T brain morphometry measures, 
that provides more consistent results when compared with measures made using 3T and 64mT images.

Materials and methods
Data collection
Institutional ethics and institutional review board (IRB) approvals were obtained from Monash University 
Human Research Ethics Committee, and written informed consent was acquired from all participants involved 
in the study. All experiments were performed in accordance with relevant guidelines and regulations. The study, 
conducted between October 2022 and June 2023, involved 92 healthy individuals (mean age 44; range 18–81; 
SD = 17, 42 males). Each participant was scanned at Monash Biomedical Imaging using both Hyperfine Swoop 
(64mT) and Siemens Biograph mMR (3T) imaging systems. While the Hyperfine Swoop is designed to function 
in unshielded environments, leveraging its proprietary electromagnetic interference (EMI) removal technique, we 
encountered an EMI warning during our operations5. Consequently, we judiciously repositioned the scanner to a 
location where such warnings were no longer present. During recruitment, a 60-year-old female participant had 
a history of cerebral haemorrhage and subsequent development of a cerebrospinal fluid (CSF)-filled cavity, and 
this participant was excluded during model training but was subsequently used to test the model’s performance 
as an out-of-distribution sample. Table 1 provides the scanning parameters including voxel resolution, matrix 
size, and scan duration for both T1- and T2-weighted scans of both systems.

In choosing the imaging sequences for this study, various factors were taken into consideration. For the 
Siemens Biograph mMR (3T) imaging system, we opted for a 2D T2-weighted TSE sequence over the more avail-
able 3D T2 SPACE. This decision was based on several grounds. First, the 2D T2-weighted TSE sequence offers 
faster scanning times compared to its 3D counterparts, ensuring efficiency and minimizing patient discomfort 
during imaging. Moreover, the 2D T2-weighted sequence is a cornerstone in many clinical protocols, and its 

Table 1.   Details of the scanning parameters for 64mT and 3T MRIs.

Scan type Voxel resolution (mm3) Matrix size Scan duration

64mT T1-weighted (AXI) 1.60× 1.60× 5.00 112× 138× 36 6.17 min

64mT T2-weighted (AXI) 1.50× 1.50× 5.00 120× 146× 36 6.30 min

3T T1-weighted MP-RAGE 1.00× 1.00× 1.00 256× 256× 176 5.30 min

3T T2-weighted TSE 0.43× 0.43× 4.00 512× 512× 29 1.50 min
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results are well-established in the medical community36. Thus, leveraging this sequence ensured that our find-
ings had immediate clinical relevance. Furthermore, the field of view for our 2D T2-weighted acquisition was 
meticulously crafted to align with the 64mT image acquisition, ensuring consistency across different imaging 
modalities within our study.

Data pre‑processing
The SynthSeg+ method34 was used to resample the datasets to 1 mm3 isotropic resolution, and FSL-FAST was 
used for bias field correction without referencing an external atlas for spatial information16. To prepare the 
data for deep learning methods, paired training was performed by co-registering the 64mT and 3T scans using 
FMRIB’s linear image registration tool (FLIRT)37. Finally, the dataset was randomly divided into training (n = 37), 
validation (n = 5), and testing (n = 50) sets, to ensure the network was trained, validated, and tested on different 
participant data. Also, where applicable, the relevant checklist for good machine learning practices (GMLPs) has 
been considered38. To prepare for the SynthSR32 method, we used the FLIRT registration method to co-register 
T1-w and T2-w images without resampling those to 1 mm3 isotropic resolution. Once we had the SynthSR T1-w 
image, we resampled and co-registered with 3T (T1-w) images for further comparison.

Model architecture
Our proposed method (LoHiResGAN, which signifies the low-field to high-field translation task and the use 
of ResNet components in a GAN architecture) was inspired by cGAN and Pix2Pix models, where the ResNet’s 
downsample and upsample blocks were used instead of standard U-Net39. The following Table 2 provides a 
detailed breakdown of the architectural components and their functions within the proposed LoHiResGAN 
model, highlighting the structure of both the generator and the discriminator. To empirically evaluate the effec-
tiveness of the ResNet components in our LoHiResGAN model, we undertook experiments comparing its per-
formance with architectures devoid of these components. Our findings supported the incorporation of ResNet, 
showing that its components contributed significantly to the improved translation of low-field MRI images to 
high-field MRI images. These experiments thereby validate the advantage of integrating ResNet components 
into our architecture.

As this study focused on translating low-field MRI to high-field MRI containing different domain informa-
tion, we hypothesized that incorporation of the structural similarity index measure (SSIM) as an additional loss 

Table 2.   Summary of the Architecture of the LoHiResGAN Model: A ResNet-based Generative Adversarial 
Network (GAN) for Efficient Translation of Low-Field to High-Field MRI Images. LoHiResGAN is a GAN-
based architecture that leverages ResNet components for efficient translation of low-field MRI images to 
high-field MRI images, which achieves improved image quality and structural preservation. Replacement of 
the U-Net downsampling and upsampling blocks with the ResNet counterparts in a modified U-Net generator 
can improve performance by leveraging the ResNet ability to capture long-range dependencies and preserve 
fine-grained details.

Component Details

Generator

 Encoder (Downsampler)

  Layers 8

  Filter sizes 64, 128, 256, 512, 512, 512, 512, 512

  Components Convolutional layers, batch normalization, ReLU activation, residual blocks

  Function Reduces spatial dimensions of the input image, increase the number of feature maps

 Decoder (Upsampler)

  Layers 7

  Filter sizes 512, 512, 512, 512, 256, 128, 64

  Components Transposed convolutional layers, batch normalization, ReLU activation, residual blocks, dropout layers (first 
three layers, dropout rate of 0.5)

  Function Increases spatial dimensions, decreases the number of feature maps

  Output Image of the same size as input, produced by a final transposed convolutional layer with a tanh activation 
function

Discriminator

 Architecture PatchGAN-based

 Function Classifies whether input image patches are real or generated

 Inputs Input image, target image (same size)

 Downsampling Layers 3

 Filter sizes 64, 128, 256

 Components Convolutional layers, batch normalization (except the first layer), LeakyReLU activation functions

 Function Reduces spatial dimensions of input, increases the number of feature maps

 Output 30× 30 map, each value corresponds to classification of a 70× 70 patch in the input image
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could provide more information for the overall loss calculation. While mean absolute error (MAE) and binary 
cross-entropy (BCE) losses measure different aspects of the generated output, they do not consider the percep-
tual similarity between the generated and target images. In contrast, the SSIM loss is a metric that captures the 
similarity between two images based on the luminance, contrast, and structure, and has been shown to be more 
closely aligned with human perception of image quality than traditional pixel-wise error metrics like MAE. By 
incorporation of SSIM as an additional loss term, the overall loss function considered not only the accuracy of 
the generated image but also its similarity to the target image in terms of structure and texture. This may lead to 
improved perceptual quality in the generated images. To test the efficacy of our approach, we conducted experi-
ments comparing the results with and without the inclusion of SSIM loss. Our findings indicated that integrating 
SSIM into the loss function indeed favored the production of images with enhanced perceptual quality, validat-
ing our hypothesis and underscoring its potential utility in tasks involving image translation between domains.

where x is the input image, y is the target image, z is the noise vector, D is the discriminator, G is the generator, 
�1 = 100 (as per the original Pix2Pix40) and �2 = 1 are used as the weighting factors for the L1 loss and the SSIM 
loss respectively. T is the total objective function that aims to optimize during training.

In the context of the LoHiResGAN network, Eq. (1) represents the LoHiResGAN loss function that the gen-
erator, G, aims to minimize against an adversarial discriminator, D, which seeks to maximize it. This function 
comprises two components: one estimating the likelihood of the discriminator correctly identifying real image 
pairs and the other estimating the likelihood of identifying fake pairs generated by G. Equation (2) denotes the 
L1 loss function, which measures the expected absolute difference between the target image, y, and the image 
produced by the generator, G(x, z). This function aims to bring the generated images closer to the target images. 
Equation (3) describes the Structural Similarity Index Measure (SSIM) loss for the generator, G. This metric 
calculates the expected structural similarity between the target and generated images, considering elements like 
structural information, luminance, and contrast. Finally, Eq. (4) encapsulates the overall objective function the 
LoHiResGAN seeks to optimize. This function is a combination of the LoHiResGAN loss, L1 loss, and SSIM 
loss, weighted accordingly. The ultimate goal is to find the optimal G and D that minimize and maximizes these 
objectives, respectively.

We employed the end-to-end machine learning platform TensorFlow to perform training, validation, and 
testing. We applied several pre-processing steps to prepare the dataset for training different models, including 
input normalization within desired intensity ranges using minimum and maximum, random flipping, rotation 
and cropping. The Adam optimizer was selected based on its superior performance to other optimizers using 
the trial-and-error method. The training hyperparameters included a learning rate of 2e−3 , β1 = 0.5 , β2 = 0.999 , 
350 epochs, batch size 1, and shuffle after every epoch. Model training, testing and performance analysis were 
performed on a Ubuntu LTS (ver 20.04.5) operating system with the NVIDIA A40 GPU.

Image quality assessment and statistical evaluation
The performance of image-to-image translation models was evaluated using quantitative metrics (Eqs. 5–7), 
namely, normalized root-mean-squared error (NRMSE), structural similarity index measure (SSIM), peak signal-
to-noise ratio (PSNR), and perception-based image quality evaluator (PIQE)41. These metrics provide different 
perspectives on the quality of the predicted image relative to the 3T images. Post-processing steps (segmentation 
and statistical analysis) were employed to conduct a comparative analysis of brain morphometry across the 3T, 
64mT, and synthetic 3T MRI scans. In addition to the previously mentioned metrics, the Sørensen-Dice similarity 
coefficient (DICE) was used to measure the overlap between the predicted segmentation and the ground truth 
(Eq. 8). This provides a quantitative evaluation of how accurate the image-to-image translation models are at 
preserving the morphological details of the structures of interest in the synthetic 3T MRI scans. The performance 
of these models was analyzed across the 3T, 64mT, and synthetic 3T MRI scans to conduct a comparative analysis 
of brain morphometry. The Dice coefficient can range from 0 to 1, where 1 indicates perfect overlap (i.e., the 
predicted segmentation is identical to the ground truth), and 0 indicates no overlap.

(1)LLoHiResGAN (G,D) =Ex,y[logD(x, y)] + Ex,z[log(1− D(x,G(x, z))].

(2)LL1(G) =Ex,y,z[||y − G(x, z)||1].

(3)LSSIM(G) =Ex,y,z[SSIM(y,G(x, z))].

(4)T =min
G

max
D

LLoHiResGAN (G,D)+ �1LL1(G)+ �2LSSIM(G).

(5)NRMSE(I ,K) =

√

1
N

∑N
i=1(Ii − Ki)

2

max(I)−min(I)

(6)SSIM(I ,K) =
(2µIµK + c1)(2σIK + c2)

(µ2
I + µ2

K + c1)(σ
2
I + σ 2

K + c2)

(7)PSNR(I ,K) =20 log10

(

MAXI√
MSE(I ,K)

)
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where I and K are two vectorised, non-negative matrices representing two images of same size, and N is the 
number of elements in I or K. µI and µK are the average of I and K, respectively; σI and σK are the standard 
deviation of I and K; σIK is the covariance of I and K. c1 = (k1L)

2 and c2 = (k2L)
2 are two variables to stabilize 

the division with weak denominator; L is the dynamic range of the pixel-values. For PIQE, consider the original 
article41. A and B are, respectively, the set of pixels in the predicted segmentation and the ground truth. |A ∩ B| 
is the cardinality of the intersection of A and B. |A| and |B| are the cardinalities of A and B, respectively.

In the present investigation, skull-stripping was conducted using a brain extraction tool as reported by 
Jenkinson et al.42. Specifically, T1-weighted images from 3T were employed to generate binary brain masks for 
subsequent scans. Also, the one-way ANOVA tests conducted to compare the brain volume measurements of 
33 regions between the original 3T, 64mT, SynthSR, and LoHiResGAN scans. The one-way ANOVA test was 
chosen due to its suitability for multiple group comparisons, mild assumptions (normality tested by Shapiro-
Wilk and equal variance tested by Levene’s tests), simultaneous group comparison capability, and provision 
for effect size and post-hoc analysis. Finally, the findings were statistically analysed by using the Tukey HSD 
(honestly significant difference) test, which was performed to conduct post-hoc pairwise comparisons between 
the means (33 regions) of different MRI modalities (3T, 64mT, SynthSR, and LoHiResGAN) and control the 
family-wise error rate.

Results
Image quality metrics
Table 3 compares the overall performance of various image-to-image translation models on two different MRI 
sequences, T1- and T2-weighted. This comparison is based on four key metrics: NRMSE, PSNR, SSIM, and PIQE. 
LoHiResGAN displays the lowest NRMSE and PIQE values and the highest PSNR and SSIM values, outperform-
ing other methods across all metrics.

Qualitative image comparison
Figure  1 shows substantial qualitative disparities between representative 64mT and 3T images in both 
T1-weighted and T2-weighted modalities. These visual differences among the 64mT, GANs, CycleGAN, U-Net, 
and cGAN images are minimized by LoHiResGAN. An absolute difference image is also computed for each 
method’s output, demonstrating the variation in translation results between these methods. This shows the 
residual signal error compared to 3T and is clearly lowest for LoHiResGAN.

Brain parcellation (by SynthSeg+ ) for different methods in 33 brain regions is shown in Fig. 2. The SynthSeg+ 
model is publicly accessible and designed for user-friendly interaction. We used the pre-trained SynthSeg+ model 
to evaluate our proposed method’s performance without any additional fine-tuning on our low-field MRI data. 
Qualitative analysis of segmented masks for 64mT, 3T, SynthSR, and LoHiResGAN brain regions shows large 
errors in CSF segmentation of the lateral ventricles, Sylvian fissures, and sulci at 64mT. Differences are also 
evident in the hippocampus, cerebral white matter, cortex, and deep brain structures with erroneous labeling 
between grey and white matter. Whilst SynthSR improves the visual appearance, there is significant smoothing 
and no improvement in the segmentation of CSF spaces. The segmentation of LoHiResGAN shows high visual 
similarity to that of 3T.

(8)DICE(A,B) =
2|A ∩ B|
|A| + |B|

Table 3.   Comparison of normalized root-mean-squared error (NRMSE), peak signal-to-noise ratio (PSNR), 
structural similarity index measure (SSIM), and perception-based image quality evaluator (PIQE) with other 
state-of-the-art methods for T1- and T2-weighted (mean ± standard deviation).

Sequence Method NRMSE↓ PSNR↑ SSIM↑ PIQE↓

T1

64mT 0.432± 0.025 21.638± 1.148 dB 0.856± 0.015 71.820± 1.969

GANs 0.140± 0.029 31.330± 1.381 dB 0.948± 0.004 60.896± 1.791

CycleGAN 0.132± 0.022 31.820± 1.262 dB 0.948± 0.003 62.130± 1.851

U-Net 0.126± 0.009 30.683± 1.210 dB 0.936± 0.005 61.423± 1.729

cGAN 0.125± 0.023 32.302± 1.529 dB 0.946± 0.004 62.479± 1.731

LoHiResGAN 0.104 ± 0.007 33.842± 1.311 dB 0.959± 0.004 55.293± 1.476

T2

64mT 0.379± 0.026 22.289± 0.406 dB 0.883± 0.012 69.366± 1.999

GANs 0.115± 0.012 32.319± 1.019 dB 0.954± 0.003 54.532± 1.261

CycleGAN 0.112± 0.011 32.457± 0.885 dB 0.948± 0.003 56.773± 1.242

U-Net 0.131± 0.010 31.558± 0.542 dB 0.941± 0.004 57.185± 1.539

cGAN 0.113± 0.011 32.977± 0.967 dB 0.954± 0.003 56.570± 1.058

LoHiResGAN 0.110± 0.010 33.127 ± 0.824 dB 0.965± 0.003 55.336± 1.193
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Figure 1.   Comparison of T1-weighted and T2-weighted images (32-year-old male participant) and their 
absolute difference (plotted in the range of [0, 1]) with respect to 3T reference images across various state-of-
the-art image-to-image translation techniques. From left to right: 64mT, 3T, GANs, CycleGAN, U-Net, cGAN, 
and LoHiResGAN.

Figure 2.   Brain regions visualised using orthogonal views (T1-weighted): Sagittal, Coronal, and Axial for 3T 
(first row), 64mT (second row), SynthSR (third row), and LoHiResGAN (fourth row).
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Quantitative regional brain volume
Figure 3 compares brain volume measurements for four different datasets: 3T, 64mT, SynthSR, and LoHiResGAN. 
Each plot corresponds to one of the 33 brain regions analyzed, with the width of each plot indicating the data 
distribution and the mean and inner quartiles marked by horizontal lines. In reference to 3T images, the 64mT 
images demonstrate large errors across multiple brain regions with differences in mean volume for cerebral cortex 
( ≈ 30% underestimate), hippocampus ( ≈ 30% underestimate), and CSF ( ≈ 30% overestimate), whereas changes 
of only ≈5.6-6.8% have been shown to have clinical significance in patients with hydrocephalus. SynthSR images 
show marked improvements in quantitative brain volume accuracy in all brain regions compared to the 64mT 
images. In comparison, LoHiResGAN consistently improves the accuracy across all brain regions. Specifically, 

Figure 3.   Comparative analysis of brain volume measurements (33 regions) across 3T (1, blue), 64mT (2, 
green), SynthSR (3, red) and LoHiResGAN (4, orange).
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LoHiResGAN reduces the underestimation observed in regions like the ventricle, cerebellum cortex, and hip-
pocampus, while also attenuating the overestimation present in white matter (WM) and CSF.

The Tukey HSD test of the difference in mean volumes is presented in Table 4. There is a statistically significant 
difference in mean volumes when comparing 3T versus 64mT and also comparing 3T versus SynthSR measure-
ments. However, there is no statistically significant difference in volumes comparing 3T versus LoHiResGAN 
measurements, confirming their close similarity. The test provides mean differences, adjusted p-values, and 
confidence intervals and indicates whether the null hypothesis is rejected for each pairwise comparison.

Further, we employ a linear regression model to ascertain the measured volumetric accuracy from different 
imaging techniques, specifically focusing on gray matter (GM), WM, and CSF (Fig. 4). The comparison is made 
among four methodologies: 3T, 64mT, SynthSR, and LoHiResGAN. When comparing the CSF measurements, the 
relationship between 3T and 64mT yields an R2 value of 0.6122, and for SynthSR, an R2 value of 0.8226, marking 
a notable moderate to strong linear correspondence. The comparative analysis between 3T and LoHiResGAN 
results in an R2 value of 0.9885, emphasizing an excellent linear association. Delving deeper into GM measure-
ments, the interrelation between 3T and 64mT shows a significant R2 value of 0.9848, and for SynthSR, the R2 
value is 0.9830. This association is further strengthened in the 3T and LoHiResGAN proximity, which registers 
an R2 value of 0.9966. Turning to WM measurements, a robust linear correlation is observed between 3T and 
64mT with an R2 of 0.9734 and an R2 of 0.9930 for SynthSR. Notably, this relationship reaches its peak when 3T 
is paired with LoHiResGAN, yielding an R2 of 0.9989. These findings collectively underscore the precision and 
reliability inherent in the LoHiResGAN method.

Quantitative segmentation
For structural overlap of the segmentations, the DICE similarity coefficient between the reference (3T) seg-
mentation and the segmentations generated using 64mT, SynthSR, and LoHiResGAN images is shown in Fig. 5 
for each brain region across all subjects. Using LoHiResGAN, the DICE similarity coefficient for synthetic 3T 
improves compared to the original 64mT across all brain regions, achieving scores mostly > 0.9 (where 1 indicates 
perfect agreement) and shows notably substantial improvement in important clinical and research regions such 
as the cerebral cortex, hippocampus, and CSF. SynthSR alone shows milder improvement in DICE similarity 
coefficient and critically performs worse than native 64mT for CSF volume. The observed variability in DICE 
scores across different brain regions can be attributed to several factors, including the inherent complexity of the 
region’s anatomy, tissue contrast with surrounding tissues, and the effectiveness of the segmentation algorithm in 
delineating the boundaries of these structures. The Dice coefficient is highly related to a structure’s size given its 
sensitivity to errors at the surface of a structure43. As such, smaller structures tend to show lower Dice coefficients, 
limiting its use when comparing between different structures. The quantitative analysis of the mean DICE scores 
highlights the improved segmentation quality achieved by the synthetic 3T MRI compared to the 64mT MRI.

In Fig. 6, T1-weighted images provide a detailed visualization of three specific neural regions-the caudate 
nucleus (depicted in the first row), brain stem (shown in the second row), and globus pallidus (featured in the 
third row). Their 3D renderings, based on data from a 26-year-old male participant, further elucidate their struc-
tural nuances. A pronounced disparity is evident in the pallidum region between the 64mT and LoHiResGAN 
images. In contrast, the brain stem and caudate showcase minimal differences across the modalities. Importantly, 
when focusing on image quality, LoHiResGAN images bear a closer resemblance to the original 3T images, 
underlining their diagnostic potential.

In addition to the in-distribution testing, we further explore the performance of the models in out-of-dis-
tribution scenarios, specifically focusing on the ability to capture and represent abnormal pathological areas. 
Preliminary results reveal that the abnormal pathological areas are clearly discernible in both T1-weighted and 
T2-weighted sequences of the synthetic 3T images. This is showcased in Fig. 7, which demonstrates superior 
consistency between the synthetic images and the corresponding acquired 3T images.

Discussion
This study presents a new deep learning-based image-to-image translation model, LoHiResGAN, to enhance the 
quality of low-field (64mT) MRI scans and generate synthetic high-field (3T) MRI scans from low-field scans.

Comparative assessment of multiple state-of-the-art deep learning-based methods for T1-weighted and 
T2-weighted image quality assessments shows all achieve significantly better SNR and SSIM than the original 
64T scans. GAN-based methods, including LoHiResGAN, outperform the UNet model in including NRMSE, 
PSNR, SSIM, and PIQE metrics, particularly for T2-weighted images. This superior performance highlights 

Table 4.   Tukey HSD test results.

Group 1 Group 2 Mean Diff. p-adj. Lower bound Upper bound Reject

3T 64mT − 981.5509 0.0002 − 1537.5353 − 425.5665 True

3T LoHiResGAN − 382.2771 0.2688 − 938.2615 173.7073 False

3T SynthSR 16.4986 0.9998 − 539.4857 572.483 False

64mT LoHiResGAN 599.2738 0.0303 43.2895 1155.2582 True

64mT SynthSR 998.0495 0.0001 442.0652 1554.0339 True

LoHiResGAN SynthSR 398.7757 0.2351 − 157.2086 954.7601 False
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the potential of deep learning techniques, particularly GAN-based methods like LoHiResGAN, for improving 
image quality of low-field MRI.

Brain regions show discrepancies in volume measurements at 64mT when compared to the reference 3T 
scans. Such discrepancies highlight the challenges faced in relying solely on low-field MRI scans for clinical 
diagnosis and planning. For instance, the overestimation of certain measurements in 64mT images may have 
significant clinical implications, especially in conditions like hydrocephalus. The need for more accurate recon-
struction models is evident, emphasizing the potential role of deep learning solutions in improving the image 
quality of low-field MRI scans. LoHiResGAN, as one such solution, appears promising in addressing some of 
these challenges. However, it’s crucial to acknowledge that no method is infallible. Despite the improvements 
brought about by LoHiResGAN, there remains a spectrum of inconsistencies it has yet to fully address. This 
suggests that there is room for further optimization and refinement. Interestingly, while some imaging methods 
seem to align in their representation of particular brain regions, detailed examination brings to light potential 
mislabeling issues, such as the misidentification of grey matter and white matter. Such nuances underscore the 
challenges in achieving a truly accurate representation of brain anatomy through imaging. It’s imperative for 
future research to focus on these challenges. By refining these methods, we can ensure that they not only improve 
the visual quality of MRI scans but also provide data that clinicians and researchers can rely upon for accurate 
interpretations and decisions.

The results highlight the efficacy of LoHiResGAN in enhancing the DICE similarity coefficient for synthetic 
3T MRI, particularly when compared against the original 64mT MRI. This is especially pertinent in regions 

Figure 4.   Comparative linear regression analysis of GM, WM, and CSF measurements among 3T, 
64mT, SynthSR, and LoHiResGAN MRIs with 50 observations. Slope equations are as follows: GM 
measurements: 3T vs. 64mT ( y = 0.96x + 29748.69 ), 3T vs. SynthSR ( y = 0.98x + 38928.24 ), 3T vs. 
LoHiResGAN ( y = 0.97x + 34891.68 ). WM measurements: 3T vs. 64mT ( y = 0.88x + 56356.04 ), 3T 
vs. SynthSR ( y = 0.92x + 38242.40 ), 3T vs. LoHiResGAN ( y = 0.99x + 10595.62 ). CSF measurements: 
3T vs. 64mT ( y = 0.65x + 135787.85 ), 3T vs. SynthSR ( y = 0.78x + 90147.75 ), 3T vs. LoHiResGAN 
( y = 0.96x + 24091.23 ). The R2 values and the slope equations emphasize the precision and reliability of the 
LoHiResGAN method.
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pivotal for both clinical diagnoses and research, like the cerebral cortex, hippocampus, and CSF. While SynthSR’s 
capabilities seem to be more moderate, it’s concerning that it sometimes underperforms compared to the native 
64mT, raising questions about its utility for certain applications. The variability in DICE scores across regions 
underscores the multifaceted challenges in MRI segmentation. The anatomy’s inherent complexity, the varied 
tissue contrasts, and the proficiency of the segmentation algorithms all play roles in these discrepancies. Notably, 

Figure 5.   Comparison of mean DICE scores for synthetic 3T MRI (LoHiResGAN), 64mT MRI, and SynthSR 
segmentations across different brain regions versus 3T ground truth segmentation (without total ICV). Note, 
higher DICE scores indicate better agreement with the 3T ground truth segmentation.

Figure 6.   T1-weighted images showcasing the caudate nucleus, brain stem, and globus pallidus in rows one, 
two, and three, respectively, with their 3D renderings from a 26-year-old male.
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the Dice coefficient’s particular sensitivity to structural boundaries, especially for smaller anatomical features, 
reminds the need for caution when employing this metric across diverse structures. Further, evaluations on 
varying orientations observed consistent results. Such insights emphasize the importance of refining segmenta-
tion tools and methodologies, particularly as we navigate the nuances of different brain structures. The benefits 
of synthetic 3T MRI show that tools like LoHiResGAN could be beneficial when traditional methods are not 
available, emphasizing the importance of further development in this area.

The out-of-distribution test in a patient with focal encephalomalacia highlights the potential of advanced 
image-to-image translation techniques to enhance diagnostic accuracy in pathologic cases, despite the model 
being exclusively trained on data from healthy subjects. Notably, however, the signal of the abnormality in this 
case remains CSF. Further research involving a more extensive and diverse dataset, including patients with vari-
ous neurological pathologies, is needed to determine the clinical utility, accuracy, and ultimately contribute to 
the development of more robust image-to-image translation models.

Despite the encouraging findings, our proposed study has limitations. Generalisability is constrained by the 
relatively small sample size, which consists solely of healthy subjects. This is especially true for patterns not within 
the training data set. Nonetheless, for the purposes of volumetry, the sample spans patients with a broad range 
of ages and parenchymal volumes. A smoothing effect emerges during the analysis of generated images and may 
diminish the ability to resolve small structures. The underlying performance of the image segmentation method 
itself is not taken into account when conducting volumetric comparisons in our study. This oversight can lead 
to biased segmentation outcomes, although the automated results are concordant with visual inspection. Future 
research should address these limitations to further enhance the validity and reliability of the study findings.

Several future directions are worth exploring to enhance further the performance of image-to-image transla-
tion models for low-field to high-field MRI translation. Firstly, incorporating larger and more diverse datasets, 
including individuals with various neurological disease conditions, will help improve the generalizability and 
robustness of the model for clinical diagnostic purposes. This would ultimately contribute to better diagnostic 
accuracy and more targeted treatment planning in clinical settings. Secondly, exploring the combination of 
multiple image-to-image translation models, or even developing novel models tailored to specific brain regions 
or conditions, may yield further improvements in image quality and accuracy of brain morphometry measure-
ments for different experimental settings. Lastly, integrating advanced generative deep learning techniques such 
as transformer models, diffusion deep learning models, and unsupervised learning approaches could potentially 
enhance the performance of image-to-image translation models in low-field to high-field MRI translation tasks 
by capturing more complex patterns and dependencies in the data.

In conclusion, the findings of this study demonstrate the substantial clinically significant limitations in native 
64mT data and suggest that the application of image-to-image translation models, such as LoHiResGAN, can 
substantially improve the quality with synthetic high-field images approaching 3T quality. If shown to be repro-
ducible across a range of brain pathologies, this will have significant implications for clinical and research 
settings, particularly in resource-limited settings where access to high-field MRI scanners may be limited. The 
spectrum of findings emphasizes the importance of considering similarity across different brain regions when 
evaluating the performance of image translation models. Further investigation into the factors contributing to 
regional discrepancies will enhance our understanding of the challenges associated with accurate brain structure 
measurements. Finally, by further exploring and refining these models, we can continue advancing the medical 
imaging field and contribute towards a more accurate and reliable assessment of brain structures and functions.

Data availibility
The datasets generated and/or analysed during the current study are not publicly available due to confidential-
ity agreements with participants but are available from the corresponding author upon reasonable request. The 
code used for our tests is publicly available at https://​github.​com/​khtoh​iduli​slam/​LoHiR​esGAN for evaluation.

Figure 7.   T1-weighted images (columns 1-3) and T2 weighted images (columns 4-6) using 64mT MRI scan, 3T 
MRI scan, and LoHiResGAN respectively in a 60-year-old female with focal encephalomacia. The second row of 
images displays the region of interest extracted from corresponding images.

https://github.com/khtohidulislam/LoHiResGAN
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