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Develop the artificial neural 
network approach to predict 
thermal transport analysis 
of nanofluid inside a porous 
enclosure
Saleem Nasir 1,2*, Abdallah S. Berrouk 1,2*, Taza Gul 3 & Aatif Ali 4

This study explores the impacts of heat transportation on hybrid (Ag + MgO) nanofluid flow in a porous 
cavity using artificial neural networks (Bayesian regularization approach (BRT-ANN) neural networks 
technique). The cavity considered in this analysis is a semicircular shape with a heated and a cooled 
wall. The dynamics of flow and energy transmission in the cavity are influenced by various features 
such as the effect of magnetize field, porosity and volume fraction of nanoparticles. To explore the 
outcomes of these features on hybrid nanofluid thermal and flow transport, a BRT-ANN model is 
developed. The ANN model is trained using a dataset generated through numerical scheme. The 
trained ANN model is then used to predict the heat and flow transport characteristics for various input 
parameters. The accuracy of the ANN simulation is confirmed through comparison of the predicted 
results with the results obtained through numerical simulations. By maintaining the corrugated wall 
uniformly heated, we inspected the levels of isotherms, streamlines and heat transfer distribution. 
A graphical illustration highlights the characteristics of the Hartmann and Rayleigh numbers, 
permeability component in porous material, drag force and rate of energy transport. According to the 
percentage analysis, nanofluids (Ag + MgO/H2O) are prominent to enhance the thermal distribution of 
traditional fluids. The study demonstrates the potential of ANNs in predicting the impacts of various 
factors on hybrid nanofluid flow and heat transport, which can be useful in designing and optimizing 
heat transfer systems.
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Nhs	� Interface heat transfer parameter
δs	� Thermal conductivity ratio

Abbreviations
CVFEM	� Control volume finite element method
BRT-ANN	� Bayesian regularization technique of artificial neural network
AE	� Absolute error

Greek symbols
µ	� Dynamic viscosity (mPa)
ρ	� Density 

(

Kgm3
)

ε	� Porosity
β	� Thermal expansion
ξ	� Similarity variable
φ	� Nanoparticle volume fraction
θ	� Dimensional heat profiles
σ	� Electrical conductivity
ψ	� Stream function
γ	� Inclination

Subscripts
p	� Particles
hnf	� Hybrid nanofluid
nf	� Nanofluid
s	� Solid nanoparticles
f	� Base fluid

Improving the energy transmission rate of traditional base fluids is the primary issue faced by the contemporary 
disciplines of engineering and science. To promote the thermodynamic efficiency along with cooling processes, 
like energy transmission, cooling of electronics components and vehicle coolant with the highest thermal effi-
ciency, the reduction of heating and the implementation of the accurate procedure for achieving increased con-
stancy. Researchers and academics were therefore fascinated to examine why suspending solid’ atoms transferred 
energy as compared to more ordinary working liquids. Maxwell1 initially endeavored to improve the rate of heat 
transmission of common fluids by incorporating tiny particles. Following extensive research, Choi2 concluded 
that a particular kind of nano-sized particle dispersing, also known as a nanofluid, can be added to a base liquid 
to increase thermal efficiency. As a result of the discovery of this novel idea, scientists are now extremely inter-
ested in exploring the applications of nanofluids. A comprehensive parametric simulation was used by Wakif 
et al.3 to investigate various sophisticated applications of nanofluids. With the help of nanofluid flow, the heat 
exchange was improved in the study of Elnaqeeb et al.4. References5–7 further illustrate the potential uses of many 
nanostructures in science and innovation.

Scientists and engineers are attracted by the thermophysical features of nanocomposites due to the widespread 
utilization of nanofluids in advanced technology and industrial applications. The scattering of a unique nano-
composite, although does not offer the required heat transfer performance and has no applications in industrial 
or technological problems. So, hybrid nanofluid is working to guarantee adequate thermal properties. According 
to Makishima8, a hybrid nanofluid is created when two or more separate nanostructures are mixed with a single 
conventional fluid. A possible increase in the rate of heat transfer has been shown for hybrid nanocomposites, a 
fascinating class of nanofluids used in a range of refrigerants, heat exchangers, thermal generators, and techno-
logical problems. Xian et al.9 studied the thermophysical features and durability of hybrid composites and some 
of their advanced characteristics. Nanofluids can be implemented into several possible purposes, such as heating 
systems, due to their characteristics10,11, pharmaceutical processes12, energy13, engine cooling14,15, electronics16,17, 
food and cosmetics18. Several experimental and numerical studies on the energy transfer and vibrational charac-
teristics of NFs have been conducted, and the majority of these studies have shown that nanofluids can accelerate 
the rate of heat transfer because they have higher thermal conductivities19–21. On the other hand, research has 
demonstrated that the usage of permeable media has supplanted the dominant heat transfer22–24. A stable struc-
ture made up of interconnecting cavities or solid particles that are typically filled with liquid is referred to as a 
porous medium. Its wide contact area and tortuous shape are advantageous for accelerating heat transfer25,26. As 
a result, porous medium and nanofluids can be combined to improve heat transmission. As unique functional 
materials, porous media and nanofluids have important applications in improving heat transmission27,28. The use 
of both porosity and nanofluid has recently attracted a lot of interest and sparked in-depth research in this field. 
The area of contact between a liquid and a solid surface is increased by porous media, but heat conductivity is 
effectively increased by nanoparticles dispersed in nanofluid. So, it would seem that using both porous media 
and nanofluid might significantly boost the effectiveness of traditional thermal systems25,29.

In order to fulfill the requirements of both industrial and daily tasks, the researchers focused their efforts 
on exploring diverse and cost-effective energy sources, which encompassed sustainable energy alternatives. 
Nanocomposites are the key sources used for various applications including the improvement of heat transfer, 
energy transmission, medication, and solar disciplines. Generally, the researchers to improve the rate of energy 
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transportation in the exchangers used active and passive strategies. Passive processes demand surface models 
like a rough top and elongated interface of liquids, whereas active procedures need exterior forces like a spongy 
surface and permanent magnets30–32. The nanoparticles were subjected to an electrical force, which may have 
an impact on the nanofluid’s morphology and mobility, energy transmission is improved by an applied electric 
field33,34. The perks of such a modification involve modest design and control, and low energy consumption35,36.

Yang et al.37 employed an experimental method to determine presence of thermal waves in lagging proportion 
observations. They tackled a planner motion scenario by utilizing the Laplace transformation method, taking 
into account a tubular transmitter capable of heating an extensive volume with no apparent limit. They were 
used in trials to test the procedure, and it was discovered that the ratio in sand is lower than that in thin pork. 
Under appropriate scale uncertainty, the time delay rates for both intervals were just under 1, indicating that 
no thermal waves were generated. In a perforated aperture, the Sheikholeslami research38 modelled electrody-
namic nanocomposites. In the presence of thermal radiations and an electric field, CVFEM was used to assist 
the modeling. Additionally, as the buoyancy forces and radiation factors climbed, the Nusselt number grows 
as well. Hamida et al.39 used the Galerkin Finite Element Method (GFEM) to show heat transfer in a duct filled 
with hybrid nanofluids (HNFs) operating in an electromagnetic field.

This study, which was motivated by the aforementioned studies, clarifies the hydrothermal consequences of 
naturally occurring, laminar, magnetically driven Ag + MgO/H2O hybrid nanofluid flows inside of an enclosure. 
The inner circular boundary remains hot while the outside round boundary is turned frigid. The complete 
numerical simulation is carried out using the finite element method based on the control volume (CVFEM) 
which provide set of information for BRT-ANN. Analyze and evaluate the expected outcomes of BRT-ANNs 
that were developed using the training, testing and verification datasets with the recommended solutions pro-
vider. Both nanoparticles are used in various discipline like Nanocomposites are used in anti-cancer treatments, 
biosensors, heat exchangers, and other applications40,41, whereas MgO is used in a variety of other industries, 
including ceramics, electronics, petroleum products, catalysts, surface coating, and many more42. In this work 
Ag + MgO/H2O hybrid nanofluid has been permitted to grow the thermal performance. However, Ag + MgO 
resulted from the highest Nusselt number (φ = 0.05) among all experienced cases. The results also indicated that 
raising the concentration of nanoparticles by 0.01, together with increasing the voltage supplied for the electric 
field, could improve the Nusselt number by up to 5.19% and accelerate heat transfer in the channel, respectively. 
For the numerical solution in this study, MATLAB (version R2019b) is utilized. Major research challenges that 
should be investigated during the modelling are:

•	 How do the velocity distributions and rate of heat transfer are affected by the Hartmann number, porosity 
factor, Rayleigh number and nanoparticle concentrations?

•	 What elements substantially change the temperature of the hybrid nanofluid?
•	 How can we minimize/improve the other engineering quantities of interest with the suggested hybrid nano-

fluid flow while proactively estimating the wall concentration?
•	 How are the simulation model and ANN model successfully connected?

Description of the problem
To accomplish hybrid nanofluids, Ag and MgO are dissolved in water. In the presence of a magnetic field, the 
flow of a hybrid nanofluid is taken into consideration in an amorphous enclosure. In a perpendicular orientation, 
magnetization has been introduced. The interpretation of the sinusoidal wall pattern is

The boundary condition of flow and geometry is shown in Fig. 1a. The governing mathematical models for 
the temperature simulation using the Boussinesq-Darcy force and non-equilibrium thermal theory are as tries 
to follow:

where the relationship of hybrid nanofluids are defined as12:
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The kef , and µef  is

Here

The Koo-Kleinstreuer-Li model for kef  defines as follows43–45:
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Figure 1.   (a) Geometrical configuration and suppose boundary assumption using (b) A sampler triangular 
element and its associated volume control.
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Here bk , k = [0, 10] vary according to the nature of nanoparticles.
Employing the following variations38:

The dimensionless form of partial differential system is

where the non-dimensional factors are:

Given that the inner side is presumed to be heated, the boundary requirements are as follows:

Here the local and average Nusselt number, when the wall is cold:

CVFEM modelling and grid test
The suggested modeling approach shown in Eqs. (11–14) has been numerically solved using an advanced 
CVFEM procedure. The discrete form of partial differential equation is typically displayed in space using a 
globally determined coordinate system in the finite element approach. The proposed method uses hexahedral 
elements to discretize the physical domain. Elements are separated into smaller control volumes in the new 
destination. For excellent outcomes, it is important to consider the ideal grid design. The quantity of grids has 
a significant impact on the overall computational complexity and the reliability of model analyzed data. Adopt-
ing narrow grids, which result in significant discretization mistakes, causes inaccurate research outcomes. The 
round-off error, however, could grow to be much bigger than the truncation error if the grid is too narrow, which 
would produce less reliable results6. Therefore, choosing the appropriate quantity of grids is important7. In several 
CFD studies, the ideal grid size was determined through grid independence analysis. (Fig. 2) demonstrates the 
comparison between the current study and earlier available research showing a strong level of agreement which 
present the originality of the present research work. The grid independence test can identify which grid con-
figuration yields the best overall numerical results with the least quantity of grids by analyzing the mathematical 
data achieved with various grid dimensions and intensities. The proper mesh has been utilized in each scenario 
and the solution range is not just evaluated on the grid size in CVFEM code. For perfect precision in the case 
of high grids, a more sophisticated computer has been employed to locate the solution. Figure 3a, illustrates the 
grid presentation of the suggested model. In order to meet the requirements of the grid sensitivity test, 15920 
components are chosen for this mathematical calculation, as shown in Fig. 3b.
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For the outcomes of the model expression, the MATLAB software’s "CVFEM" function implements a numeri-
cal technique. The neural network is developed employing data source that considers variants connected to the 
proposed nanofluid movement mechanism in the regions 0 and 4. The CVFEM strategy, which utilizes con-
figuration settings for iterations, consistency objective, and acceptance rate for solving prevalent mathematical 
equations, is adapted in MATLAB software to support the proposed neural network approach.

Designation of artificial neural networks modeling
The NF-tool (neural network fitting tool) is then used on a sequence similar to that described in 46,47. A single 
neural network model is presented in Fig. 4a. The suggested network’s structure is presented in Fig. 4b and the 
BRT-ANN is constructed employing MATLAB’s NF tool with the appropriate settings of unseen neurons, testing 
datasets, training datasets, and validation datasets. Software is used to train a neural network’s weight function 
via Bayesian Regularization backpropagation. To achieve optimization, the suggested BRT-ANN incorporates a 
multi-layer neural network structure with Bayesian Regularization backpropagation. The BRT-ANN procedure 
was implemented to obtain the results of a hybrid nanofluid flow in a porous cavity system using the NF-tool 
with 5 neurons in the hidden layer by varying Da, Ra, Ha and δs for various values. The datasets for learning, 
verification and evaluation were allocated 70%, 15%, and 15%, respectively. Tan-Sig formulation was utilized for 
transmission in ANN models with hidden nodes along with Purelin function was used for output nodes48. The 
transfer function can be changed in the manner described below:

Figure 2.   Validation of current outcomes with previous work 38.

Figure 3.   (a) The grid presentation of the proposed model, (b) The grid test profile.
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Evaluating the predictive capability of ANN models is significant after the construction of ANN models and 
the obtaining of predicted results. The predictive performance of ANN models has been evaluated using the 
MSE (mean squared error), R (coefficient of determination) and error rate metrics. Below is a representation of 
the algorithms used to estimate the system performance49,50.

Results and discussion
A non-equilibrium simulation has been used to demonstrate how a magnetic field affects the mobility of hybrid 
nanofluids inside a perforated enclosure. For the high grid formulation, the computational technique (CVFEM) 
was employed. The results examine the impact of modifying the physical parameters like Rayleigh number, 
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Figure 4.   (a) A model configuration for singular neural networking, (b) Design of a planned neural network.
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porosity factor and the Hartmann number. The thermophysical data of nanocomposites are presented in Table 1. 
The profiles of velocity as well as their AE (absolute error) analysis graphs for two cases are shown in Figs. 5 
and 6 for the BRT-ANN findings of the present model for two cases. The geometrical configuration and sup-
pose boundary assumption and a sampler triangular element and its associated volume control are presented in 
Fig. 1a,b. Figure 2 and Table 2 illustrate how the results of the current study and previous research35 and36 have 

Table 1.   Ag and MgO nanoparticles thermophysical characteristics 21,22.

Properties Water Ag MgO

Density 
(

ρ = kg/m3
)

997.10 10500 3580

Heat capacity 
(

Cp = j/kgk
)

04179 00235 879

Thermal conductivity (k = W/m · k) 0.6130 00429 30

Thermal expansion 
(

β× 105 = K
−1

)

00021 5.4× 10−5 33.6× 10−6

Electrical conductivity 
(

σ =

s

m

)

5.5× 10−6 8.1× 10−4 8× 10−4

(

α =

m
2

s

)

1.47× 10−7 147× 10−3 95.3× 10−7

Figure 5.   Plots of mean square error results for Porous Cavity BRT-ANN model.

Figure 6.   The designed transition state for BRT-ANN model.
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been validated. Table 3 displays the collected data, which illustrate that the Nu variations dropped as the mesh 
quality grew, leading us to the conclusion that the highest grade, extra fine mesh guaranteed correct results. 
The numerical changes in Nuave against Ha for the various values of φAg and φMgO are shown in Table 4. The 
results of BRT-ANN for the flow model to solving various cases are presented in Table 5. This outcome presents 
that the attained finding is comparable to the available work considering common parameters. Figure 3a is the 
representation of the suggested model for the number of grids in smaller and higher while Fig. 3b signifies the 
grid test profile. The graphical representation in Fig. 5a,b depicts the training performance of BRT-ANN mod-
els of two slected cases. Initially, MSE (mean squared error) magnitude are greater, but as the quantity of train 
epochs improves, they decrease gradually. That is possible to see the convergence of the shapes generated via 
statistics from the BRT-ANN testing, verification and trained processes and the best line is indicated by dotted 
lines at epochs (164 and 702). Once theBRT-ANN achieves the value of lowermost mean square error at these 
epochs, signifying the conclusion of the training mood later several repetitions of epochs, the model’s training 
is deemed to be complete.Such strategy denotes that the superior concert training stage of ANN simulation has 
been successfully finalized. Figure 6a,b graphically illustrates the training states of BRT-ANN models, including 
the gradient coefficient, mu and validation checks for two cases. The graphs depict how the gradient coefficient 

Table 2.   Evaluation of present and reported outcomes.

Ha Nuave 38 Nuave 35 Nuave [Present]

1 2.5745 2.57959 2.5736

5 2.3985 2.3998 2.3976

10 2.2569 2.25793 2.2570

15 1.7786 1.7797 1.7791

Table 3.   Computational analysis of grid independence test. 

Mesh quality Nu Nu deviation (%)

0.8220 3.6 12.14

0.8825 4.24 7.25

0.8912 4.55 0.62

0.9002 4.72 –

Table 4.   Effect of Ha on Nuave for various values of φAg and φMgO. 

Ha φAg φMgO φ Nuave

10 0.01 0.01 0.02 23.3451

20 – – – 8.6732

30 – – – 4.4703

10 0.03 – 0.06 22.4527

20 – – – 8.2319

30 – – – 4.3226

10 0.01 0.03 0.06 22.03811

20 – – – 8.1910

30 – – – 4.0137

10 0.04 – 0.08 21.1830

20 – – – 5.7352

30 – – – 3.9071

Table 5.   The outcomes of BRT-ANN for the flow model.

Case Epoch

MSE

Performance Gradient Time MuTrain set Validating set Test set

1 164 1.272E−9 2.013E−8 3.221E−8 8.1174E−09 5.33E−06 0:00:21 1.00E−07

2 702 1.328E−7 1.280E−9 2.520E−9 8.2538E−11 2.51E−05 0:00:27 1.00E−11

3 125 2.710E−8 3.517E−8 2.291E−9 4.2073E−08 4.26E−04 0:00:10 1.00E−09
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varies with an increasing number of epochs, and demonstrate that the regression results for the final gradient 
are almost zero. Additionally, the graphs display fluctuations in the values of mu, that imitate changes in the 
BRT-ANN weights. The results represent that as the quantity of epochs rises, then the numbers of smallest 
gradient coefficient keep falling, eventually resulting in the adoption of the excellent and suitable levelsof errors 
from BRT-ANN models after several testing process. These outcomes show that the ANNs’ training operations 
were successfully finished. The training stages of BRT-ANN models are depicted in Fig. 7a,b, where the x-axis 
represents the target values and the y-axis displays the BRT-ANN predictions (output) for two cases. The solid 
compatibility (fit) line exhibits the graphical representation of the data points collected during the training 
process. The R value denotes the magnitude of the relationship between the target and output values, and the 
solid line shows the linear regression line that fits the target and output values. The computation of the regres-
sion analysis resulted in an R = 1, a precise linear correlation between the output and the targeted values.These 
findings demonstrate that the BRT-ANN models have effectively completed the trainings mood with minimal 
levels of error. Figure 8a illustrates how the velocity of the nanofluid decreases with an increase in φ1, φ2 due to 
an improvement in the nanoparticle volume fractionSuch findings suggest that the BRT-ANN simulation mag-
nificently ended the training stage with very little error. The impact of the magnetic component on the resulting 
nanofluid flow is depicted in Fig. 8b. Figure 8c the error analysis for distincet epochs. Actually, the graphs show 
that M has a diminishing impact on the dynamical profiles connected to nanofluid velocity. It is significant to 
analyze the error histogram to measure the efficiency of BRT-ANN models. Figure 9a,b provides a graphical 
representation of the predicted errors from multilayer perceptron network models by subtracting the outputs 
from the targets for two selected cases. The visualizations of the error histograms show that the errors from each 
stage of the BRT-ANN model are relatively small. It is clear that errors build up as they approach the zero-error 
line. As compared to the baseline error with surrounding errors, the average error bin for the developed BRT-
ANN models is 6.8× 10−7, 2.64× 10−6 respectively.

The influence of various model flow parameters such as Ra and Ha on the velocity filed in the axially and 
rotational magnitudes were shown in Figs. 10 and 11. The fluid flow pattern is defined by the Rayleigh number 
in regard to buoyancy-driven flow, commonly known as free convection. Since the conduction stage is steady 
and the convectional motion of fluid is minimal for low Rayleigh numbers, the energy trajectories have the same 
pattern. The thermal boundary layer on the surface of the inner wall thins as the Ra rises gradually ( Ra = 50, 100, 
150, and 200), as revealed in Fig. 10 a, b, c and d, suggesting that convectional is more important for heat trans-
fer at these maximum amounts. Also, the topmost portion of the internal spherical wall is starting to develop a 
cloud. A strong cloud is pushing the flow forcefully up against the top of the box at this point. The center of the 
primary vortices also keeps rising as the convection velocity rises. Thus, the Lorentz force, together with a rise 
in Rayleigh number and a drop in Hartmann number, confines the nanofluid movement as shown in Fig. 11a, 
b, c and d. In addition to the fact that conduction in the porous medium is significantly stronger than natural 
convection, the isotherms on permeable surfaces become more contorted as the flow quality improves. This is 
because there is more naturally occurring convection in the free flow. As a result, conductions and natural con-
vection have replaced heat transfer as the primary means of controlling energy transmission in porous surfaces. 
As shown in Fig. 11a, b, c and d the oppositional force can be used to block the passage of liquid more effectively 
as the amount of Hartmann number ( Ha = 5,10,15, and 20) rises. Therefore, a drop in average temperature at the 
porous medium’s interface results from the values of Ra enhancement. Figure 12a, b, c and d illustrates how the 

Figure 7.   The designed plots of Regression for BRT-ANN model.
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thermal cloud decreases when the quantity of ( Da = 5, 10, 15 and 20) rises. The boosting magnitude of porosity 
parameter improve the resistive forces to decline the fluid flow. The variations of Nuave with various values of φ 
are shown in Fig. 13. The Ra enhances the drag force for the high magnitude and such influence is extra apparent 

Figure 8.   Plots of the thermal profile produced by AE for varying (a) φ , (b) M and (c) error analysis with 
various epochs.
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in presence of hybrid nanofluid as demonstrated in Fig. 14a. Also, the increasing strengths of the Ha improve the 
drag force as shown in Fig. 14b. The rate of energy transportation enhances due to the increase in solid nanostruc-
ture as presented in Fig. 14c. The nanoparticle volume fraction increase demonstrates that hybrid nanofluids are 

Figure 9.   The error Histogram for designed BRT-ANN model.
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superior in the enhancement of energy transmission as presented in Fig. 14d. The percentage wise improvement 
demonstrates that hybrid nanocomposites are more successful in growing the energy transmission rate.

Conclusion
The hybrid nanofluids flow considering Ag, and MgO nanoparticles are used for the augmentation of energy 
transformation in a lid-driven permeable enclosure and are exhibited utilizing CVFEM strength of AI based 
computing with BRT (Bayesian Regularization technique) of artificial neural networks. Due to its superiority 

Figure 10.   Variation in different Rayleigh numbers for velocity profile.
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over conventional mathematical models and their newfound success, ANNs are one of the engineering tools that 
are widely employed by many scientists. Consequences are conveyed for different magnitudes of Ha , Da, Ra and 
φ . The following significant physical inferences can be extracted from the comprehensive computation studies 
carried out by CVFEM and BRT-ANNs for the system:

Figure 11.   Variation in different Hartmann numbers for velocity profile.



15

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21039  | https://doi.org/10.1038/s41598-023-48412-x

www.nature.com/scientificreports/

•	 The observations show that the velocity of the fluids (Ag + MgO/Water) greatly decreases toward the middle 
of vessel due to an enhancement in the magnitude of flow parameters Ra,Ha and φ.

•	 The temperature distribution for hybrid nanofluid seems to be consistently greater for traditional fluids.

Figure 12.   Variation in different porous parameters for velocity profile.
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•	 The cavity’s design has a small impact on the flow and heat transport mechanisms. The rate of energy trans-
mission is amplified in a cavity with sharper edges.

•	 The magnetic field’s influence gradually slows down the rate of energy transmission. The performance of 
hybrid nanocomposites as an energy transmission medium in the cavity is not significantly impacted through 
the inclination angle of the magnetic field.

•	 Thermal efficiency of hybrid nanofluids massively increase with a little increment in volume fraction.
•	 The MSE value, R value and average error rate for the ANN design model to predict the Nusselt number have 

been calculated as 1.13× 10−5 , 1 and 0.02%, respectively.
•	 In the upcoming analysis, research in the presented BRT-ANNs based single network might be performed to 

model the estimates of all benchmark results determined by the CVFEM procedure base numerical outcomes 
of various fluid models.

Figure 13.   Variations of Nuave with φ when Ra = 110,Da = 5,Ha = 10.
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