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Numerical investigation 
of a typhoid disease model in fuzzy 
environment
Fazal Dayan 1, Nauman Ahmed 2,3,4, Ali Hasan Ali 5,6*, Muhammad Rafiq 3,7 & Ali Raza 3,4,8

Salmonella Typhi, a bacteria, is responsible for typhoid fever, a potentially dangerous infection. 
Typhoid fever affects a large number of people each year, estimated to be between 11 and 20 million, 
resulting in a high mortality rate of 128,000 to 161,000 deaths. This research investigates a robust 
numerical analytic strategy for typhoid fever that takes infection protection into consideration and 
incorporates fuzzy parameters. The use of fuzzy parameters acknowledges the variation in parameter 
values among individuals in the population, which leads to uncertainties. Because of their diverse 
histories, different age groups within this community may exhibit distinct customs, habits, and 
levels of resistance. Fuzzy theory appears as the most appropriate instrument for dealing with these 
uncertainty. With this in mind, a model of typhoid fever featuring fuzzy parameters is thoroughly 
examined. Two numerical techniques are developed within a fuzzy framework to address this model. 
We employ the non-standard finite difference (NSFD) scheme, which ensures the preservation of 
essential properties like dynamic consistency and positivity. Additionally, we conduct numerical 
simulations to illustrate the practical applicability of the developed technique. In contrast to many 
classical methods commonly found in the literature, the proposed approach exhibits unconditional 
convergence, solidifying its status as a dependable tool for investigating the dynamics of typhoid 
disease.

Typhoid is a result of typhus, a condition with identical symptoms. This endemic illness is brought on by the 
extremely pathogenic bacteria Salmonella typhi. This bacterium was disseminated by polluted water and other 
carriers. Typhoid is characterized by a persistent fever, a very poor appetite, vomiting, a very bad headache, 
and exhaustion. The incubation period for typhoid is 7 to 14 days. The patient’s intestine, which is where the 
germ naturally dwells, serves as its home. There is an increase in the number of mononuclear phagocytic cells 
in the blood. The patient’s blood culture is a key factor in determining how to treat typhoid. Chloramphenicol is 
ingested if the strain is amoxicillin sensitive. The oral dose of ciprofloxacin or norfloxacin is used to eradicate the 
issue in the asymptomatic carrier. Due to multi-drug resistance bacteria, antibiotic treatment has grown more 
challenging globally. In many nations, eliminating the disease will only be possible with the provision of clean, 
safe, and sanitary living circumstances, wholesome food, and the aforementioned medical services. These actions 
may lessen or eradicate the condition, though it is difficult to reach this goal. Following the implementation of 
health education initiatives that alter behavior toward illness prevention and treatment, the public can be made 
more aware. Every year, typhoid affects millions of people throughout the world. Typhoid is currently treated 
with oral and injectable vaccines, however, these two are insufficient to eradicate the illness. The length of the 
sickness can be shortened if a drug-resistant strain is used to treat the infected person1,2.

The dynamics of infectious diseases have been studied and explained using a variety of mathematical models3. 
To investigate the spread of infection at various endemicity levels, Cvjetanovic et al. built a mathematical model 
for typhoid disease. The model was used to predict the likely impact of typhoid fever prevention strategies, such 
as mass vaccination campaigns and sanitation programs, on a chosen population in terms of illness prevention as 
well as in terms of relative costs and benefits4. In order to examine the dynamics of typhoid fever sickness while 
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including infection resistance, Nthiiri et al. developed a mathematical model. Using the next-generation matrix 
technique, the model’s stable states are identified and the reproduction number is calculated. The model’s stability 
is analyzed to identify the factors that contribute to the disease’s spread within a specific community5. The dynam-
ics of the typhoid fever model were investigated, as well as the existence and uniqueness of the solution, by Peter 
et al. For the model, stability analysis is also carried out6. Bakach et al. reviewed some mathematical models of 
typhoid7. Karunditu et al. formulated a mathematical model of typhoid fever incorporating unprotected humans. 
The local and global stability of equilibrium points is also studied8. A mathematical model for the transmission of 
typhoid was developed by Nyaberi and Musaili, and it examines the effects of treatment on the dynamics of the 
illness9. Birger et al. studied mathematical models of typhoid transmission by considering FQNS and multidrug 
resistance separately. The effect of vaccination was predicted on the basis of forecasts of vaccine coverage10. A 
mathematical model for typhoid fever spread in a population is formulated. The equilibrium points of the model 
and their stabilities are investigated11. By utilizing several optimal control strategies, Wameko et al. established a 
mathematical model to look into the dynamics of typhoid disease. Typhoid disinformation among the population 
is reduced when the three control techniques are quickly implemented, as demonstrated12.

Due to population-wide variations in susceptibility, exposure, infectivity, and recovery, the parameters 
employed in epidemic models are imprecise. If different age groups, population groups, and resistance patterns 
are taken into account, differences may result. To take into consideration these varying degrees of persons, more 
realistic models are required. Mishra et al. claim that due to the high level of uncertainty, epidemic systems, 
particularly those involving infectious diseases, require a new approach13. Fuzzy sets and fuzzy logic have been 
extensively utilized to tackle real-world problems across diverse domains, encompassing medicine, engineering, 
economics, and numerous other fields where human decision-making plays a pivotal role in assessment and 
logical reasoning14–18, just to mention a few. Moreover, scholars have harnessed this theoretical framework in 
epidemiology as well. Incorporating fuzzy theory and treating the transmission coefficient as a fuzzy set, Bar-
ros et al. suggested a SI model19. Fuzzy logic was used by Ortega et al. to predict issues with infectious disease 
epidemiology. A rabies model in dogs with incomplete vaccinations was discussed20.

Mondal et al. developed an SIS model for investigating the plague using the fuzzy set theory21. Das and Pal 
developed a SIR model and studied it mathematically and numerically22. Sadhukhan et al. conducted research on 
harvesting optimization in a food chain model in a fuzzy environment23. To capture the dynamics of coronavirus 
illness, Li et al. developed a fuzzy SEIR model supplemented by confidence index theory24. Abdy et al. presented 
an SIR model that incorporated fuzzy parameters to depict the dynamics of COVID-1925. Furthermore, Allehi-
any et al. explored a fuzzy SIR model employing Euler, RK-4, and NSFD methods26. The NSFD approach, first 
described by Micken27, has been used by a number of researchers for solving systems of differential equations28–30, 
to name a few. Adak and Jana investigated an SIS model involving treatment control with the utilization of fuzzy 
numbers31.

The existing mathematical models of typhoid are insufficient for the advancement of fuzzy numerical and 
mathematical procedures. We investigated a typhoid model with fuzzy parameters with this in mind. We can 
cope with the difficulties of uncertainty quantification in mathematical disease modeling by using fuzzy theory. 
As a result, the introduction of fuzzy parameters aids in our ability to comprehend the dynamics of typhoid 
transmission. Even the biological factors employed in mathematical models are not always constant because 
each community changes as the environment change. The majority of the issues linked to the rise in the earth’s 
average temperature are caused by global warming. The rate at which the virus spreads throughout the popula-
tion is also impacted by temperature changes. Fuzzy mathematical models are more insightful than crisp models 
in this regard. The creation, use, and analysis of first order explicit numerical techniques in fuzzy non-standard 
finite difference situations are novel aspects of the current work.

The rest of this study is organized as follows: The formulation of the fuzzy model is discussed in the following 
section. Within the same section, we discuss equilibrium analysis, stability analysis, and the fuzzy basic repro-
duction number. Following that, in the numerical modeling section, we elaborate on the creation of the forward 
Euler scheme and NSFD schemes for the examined model. This section also includes an assessment of the NSFD 
scheme’s stability and consistency. The next part displays numerical simulations involving the developed tech-
niques. Finally, in the final section, we summarize concluding observations and outline future research directions.

Typhoid fever model with fuzzy parameters
We examined the mathematical model previously discussed by Arif et al.2

Here, T1 represents the proportion of humans who are protected, T2 represents the proportion of humans who 
are susceptible, T3 signifies the fraction of humans who are currently infected, and T4 indicates the fraction of 

(1)
dT1

dt
= αµ− (γ + µ)T1,

(2)
dT2

dt
= (1− α)µ+ γT1 − θT2T3 − µT2,

(3)
dT3

dt
= θT2T3 − (δ + β + µ)T3,

(4)
dT4

dt
= βT3 − µT4.
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humans receiving treatment. The rate at which humans receiving treatment transitions from the fraction of 
infected humans is denoted as β . The variable α represents the rate at which individuals enroll in the protected 
human compartment against typhoid, while (1− α) denotes the rate of individuals who remain susceptible 
to the virus, δ signifies the rate at which individuals experience a transient phase due to typhoid fever, and θ 
reflects the per capita rate at which susceptible individuals contract typhoid fever infection. Lastly, µ represents 
the natural rate of human death and birth. The depiction of the communication dynamics in the typhoid fever 
model is presented in Fig. 1.

The fuzzy representation of the model mentioned above can be expressed as follows:

We assume that susceptible humans contract typhoid fever infection at a per capita rate denoted by θ(�) and 
the fraction of treated humans stemming from infected individuals, β(�) , are represented as fuzzy numbers, 
contingent upon the individual’s virus load. The variable θ(�) can be defined as19

The θ(�) reaches its peak when � is at its maximum value, and it becomes insignificant when � is at its minimum. 
�min represents the minimum virus load required for disease transmission, and disease transmission is at its 
highest when � equals �M , reaching a value of 1. Similarly, β(�) can be defined as32

where β0 > 0 is the minimum treatment rate.

Equilibrium analysis
The analyzed model possesses a disease-free equilibrium point (DFE) and two endemic equilibrium points (EE). 

Case 1.	� If � < �min and β(�) > 0 then θ(�) = 0 and we obtain, 

 In this scenario, the human population remains free from typhoid, and this state is referred to as the DFE. From 
a biological perspective, typhoid disease is considered eradicated when the disease concentration within the 
population falls below the minimum threshold required for its sustained existence.

(5)
dT1

dt
= αµ− (γ + µ)T1,

(6)
dT2

dt
= (1− α)µ+ γT1 − θ(�)T2T3 − µT2,

(7)
dT3

dt
= θ(�)T2T3 − (δ + β(�)+ µ)T3,

(8)
dT4

dt
= β(�)T3 − µT4.

(9)θ(�) =







0, � < �min,
�−�min
�M−�min

, �min ≤ � ≤ �M ,

1, �M < �,

(10)β(�) =

{

β0−1

�M
�+ 1, 0 ≤ � ≤ �M ,

T0(T0
1 ,T

0
2 ,T

0
3 ,T

0
4 ) =

(

αµ

γ + µ
,
(γ + µ)(1− α)+ γα

γ + µ
, 0, 0

)

.

Figure 1.   Flowchart of the model.
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Case 2.	� If �min ≤ � ≤ �M and β(�) > 0 then θ(�) = �−�min
�M−�min

 and we obtain, 

 where 

 and 

Case 3.	� If �M < � and β(�) > 0 then θ(�) = 1 , and we obtain 

 where 

 and 

The points T∗ and T∗∗ represent situations where the prevalence of typhoid disease exceeds the minimum 
threshold necessary for its propagation, resulting in the persistence of typhoid within the human population.

Stability analysis
To check the stability, let us assume the following system:

and

The Jacobian of the system (11)–(14) can be represented as:

The Jacobian at the DFE is

T∗ = (T∗
1 ,T

∗
2 ,T

∗
3 ,T

∗
4 ),

T∗
1 =

αµ

γ + µ
,

T∗
2 =

δ + β(�)+ µ

θ(�)
,

T∗
3 =

(γ + µ)(1− α)µθ(�)+ γαµθ(�)− µ(δ + β(�)+ µ)(γ + µ)

θ(�)(γ + µ)(δ + β(�)+ µ)
,

T∗
4 =

β(�)

(

(γ + µ)(1− α)µθ(�)+ γαµθ(�)− µ(δ + β(�)+ µ)(γ + µ)

)

θ(�)(γ + µ)(δ + β(�)+ µ)
.

T∗∗ = (T∗∗
1 ,T∗∗

2 ,T∗∗
3 ,T∗∗

4 ),

T∗∗
1 =

αµ

γ + µ
,

T∗∗
2 =

δ + β(�)+ µ

θ(�)
,

T∗∗
3 =

(γ + µ)(1− α)µθ(�)+ γαµθ(�)− µ(δ + β(�)+ µ)(γ + µ)

θ(�)(γ + µ)(δ + β(�)+ µ)
,

T∗∗
4 =

β(�)

(

(γ + µ)(1− α)µθ(�)+ γαµθ(�)− µ(δ + β(�)+ µ)(γ + µ)

)

θ(�)(γ + µ)(δ + β(�)+ µ)
.

(11)A1 = αµ− (γ + µ)T1,

(12)A2 = (1− α)µ+ γT1 − θ(�)T2T3 − µT2,

(13)A3 = θ(�)T2T3 − (δ + β(�)+ µ)T3,

(14)A4 = β(�)T3 − µT4.

J =











∂A1

∂T1
∂A1

∂T2
∂A1

∂T3
∂A1

∂T4
∂A2

∂T1
∂A2

∂T2
∂A2

∂T3
∂A2

∂T4
∂A3

∂T1
∂A3

∂T2
∂A3

∂T3
∂A3

∂T4
∂A4

∂T1
∂A4

∂T2
∂A4

∂T3
∂C4

∂T4











,

J =







−(γ + µ) 0 0 0

γ − (θ(�)T3 + µ) − θ(�)T2 0

0 θ(�)T3 θ(�)T2 − (δ + β(�)+ µ) 0

0 0 β(�) − µ






.
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The local asymptotic stability of the steady-state is confirmed when the absolute eigenvalues of the Jacobian 
matrix mentioned earlier having negative real parts. Analyzing the Jacobian matrix, we find that the eigenvalues 
are as follows: �1 = −(γ + µ) , �2 = �4 = −µ , and �3 = −(δ + β(�)+ µ) . The fact that all of these eigenvalues 
having negative real parts validates the desired result.

Fuzzy basic reproductive number Rf

t

Using the next-generation matrix technique, we calculated the reproductive number, denoted as Rt.

Verma et al.33 examined different scenarios by manipulating the parameters and, in each case, determined the 
reproduction number to assess whether the virus spread was effectively managed.

Now, Rt , being a function of the typhoid disease, can be analyzed as follows34: 

Case 1.	� If � < �min and β(�) > 0 then θ(�) = 0 and Rt(�) = 0.
Case 2.	� If �min ≤ � ≤ �M and β(�) > 0 then θ(�) = �−�min

�M−�min
 and Rt(�) =

θ(�)(γ+µ−αµ)
(γ+µ)(δ+β(�)+µ)

.
Case 3.	� If �M < � and β(�) > 0 then θ(�) = 1 and Rt(�) =

γ+µ−αµ
(γ+µ)(δ+β(�)+µ)

 . The disease-dependent func-
tion Rt(�) correlates positively with the disease parameter � , and its definition includes a fuzzy vari-
able. As a result, the expected value of Rt(�) is well defined, and its representation can be written as 
a triangular fuzzy number, as follows: 

 Now, Rf
t  can be found as 

 and therefore, 

Numerical modeling
Forward Euler scheme
The Forward Euler scheme is a well-known explicit first-order numerical approach for solving ordinary dif-
ferential equations. It is computationally efficient and provides a rapid estimation of the behavior of solutions 
over time.

 

Case 1.	� If � < �min and β(�) > 0 then θ(�) = 0 and 

Case 2.	� If �min ≤ � ≤ �M and β(�) > 0 then θ(�) = �−�min
�M−�min

 and the Euler scheme becomes 

J =







−(γ + µ) 0 0 0

γ − µ 0 0

0 θ(�)T3 − (δ + β(�)+ µ) 0

0 0 β(�) − µ






.

(15)Rt =
θ(�)(γ + µ− αµ)

(γ + µ)(δ + β(�)+ µ)
.

(16)Rt(�) =

(

0,
θ(�)(γ + µ− αµ)

(γ + µ)(δ + β(�)+ µ)
,

γ + µ− αµ

(γ + µ)(δ + β(�)+ µ)

)

.

(17)R
f
t = E[Rt(�)],

(18)R
f
t =

(γ + µ− αµ)(2θ(�)+ 1)

4(γ + µ(δ + β(�)+ µ)
.

(19)Tn+1
1 = Tn

1 + h[αµ− (γ + µ)Tn
1 ],

(20)Tn+1
2 = Tn

2 + h[(1− α)µ+ γTn
1 − θ(�)Tn

2T
n
3 − µTn

2 ],

(21)Tn+1
3 = Tn

3 + h[θ(�)Tn
2T

n
3 − (δ + β(�)+ µ)Tn

3 ],

(22)Tn+1
4 = Tn

4 + h[β(�))Tn
3 − µTn

4 ].

(23)Tn+1
1 = Tn

1 + h[αµ− (γ + µ)Tn
1 ],

(24)Tn+1
2 = Tn

2 + h[(1− α)µ+ γTn
1 − µTn

2 ],

(25)Tn+1
3 = Tn

3 − h[(δ + β(�)− µ)Tn
3 ],

(26)Tn+1
4 = Tn

4 + h[β(�))Tn
3 − µTn

4 ].
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Case 3.	� If �M < � and β(�) > 0 then θ(�) = 1 and 

Non‑standard finite difference (NSFD) scheme
The NSFD scheme is a class of numerical methods for approximating solutions to differential equations. These 
approaches differ from traditional finite difference methods in their approach to discretizing the domain and 
approximating derivatives. It has the potential to improve accuracy in the solution of differential equations. The 
NSFD numerical model is formulated based on the NSFD theory introduced by Mickens35.

 

Case 1.	� If � < �min and β(�) > 0 then θ(�) = 0 and the NSFD scheme becomes 

Case 2.	� If �min ≤ � ≤ �M and β(�) > 0 then θ(�) = �−�min
�M−�min

 and the NSFD Scheme becomes 

(27)Tn+1
1 = Tn

1 + h[αµ− (γ + µ)Tn
1 ],

(28)Tn+1
2 = Tn

2 + h[(1− α)µ+ γTn
1 − θ(�)Tn

2T
n
3 − µTn

2 ],

(29)Tn+1
3 = Tn

3 + h[θ(�)Tn
2T

n
3 − (δ + β(�)+ µ)Tn

3 ],

(30)Tn+1
4 = Tn

4 + h[β(�))Tn
3 − µTn

4 ].

(31)Tn+1
1 = Tn

1 + h[αµ− (γ + µ)Tn
1 ],

(32)Tn+1
2 = Tn

2 + h[(1− α)µ+ γTn
1 − Tn

2T
n
3 − µTn

2 ],

(33)Tn+1
3 = Tn

3 + h[Tn
2T

n
3 − (δ + β(�)+ µ)Tn

3 ],

(34)Tn+1
4 = Tn

4 + h[β(�))Tn
3 − µTn

4 ].

(35)Tn+1
1 =

Tn
1 + hαµ

1+ h(γ + µ)
,

(36)Tn+1
2 =

Tn
2 + h((1− α)µ+ γTn

1 )

1+ h(θ(�)Tn
3 + µ)

,

(37)Tn+1
3 =

Tn
3 + hθ(�)Tn

2T
n
3

1+ h(δ + β(�)+ µ)
,

(38)Tn+1
4 =

Tn
4 + hβ(�)Tn

3

1+ hµ
.

(39)Tn+1
1 =

Tn
1 + hαµ

1+ h(γ + µ)
,

(40)Tn+1
2 =

Tn
2 + h(1− α)µ+ γTn

1 )

1+ hµ
,

(41)Tn+1
3 =

Tn
3

1+ h(δ + β(�)+ µ)
,

(42)Tn+1
4 =

Tn
4 + hβ(�)Tn

3

1+ hµ
.

(43)Tn+1
1 =

Tn
1 + hαµ

1+ h(γ + µ)
,

(44)Tn+1
2 =

Tn
2 + h(1− α)µ+ γTn

1 )

1+ h(θ(�)Tn
3 + µ)

,
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Case 3.	� If �M < � and β(�) > 0 then θ(�) = 1 and the scheme becomes 

Consistency analysis
To check the consistency of the proposed scheme, we start by taking Eq. (35), and we have

Taking into account the Taylor’s series expansion for Tn+1
1 ,

Substituting the value of Tn+1
1  in Eq. (51), we get

Taking h → 0 , we get

or

From Eq. (36), we have

Taking into account the Taylor’s series expansion for Tn+1
2 ,

Substituting the value of Tn+1
2  in Eq. (56), we get

Taking h → 0 , we get

From Eq. (37), we have

(45)Tn+1
3 =

Tn
3 + hθ(�)Tn

2T
n
3

1+ h(δ + β(�)+ µ)
,

(46)Tn+1
4 =

Tn
4 + hβ(�)Tn

3

1+ hµ
.

(47)Tn+1
1 =

Tn
1 + hαµ

1+ h(γ + µ)
,

(48)Tn+1
2 =

Tn
2 + h(1− α)µ+ γTn

1 )

1+ h(Tn
3 + µ)

,

(49)Tn+1
3 =

Tn
3 + hTn

2T
n
3

1+ h(δ + β(�)+ µ)
,

(50)Tn+1
4 =

Tn
4 + hβ(�)Tn

3

1+ hµ
.

(51)Tn+1
1 [1+ h(γ + µ)] = Tn

1 + hαµ.

(52)Tn+1
1 = Tn

1 + h
dT1

dt
+

h2

2!

d2T1

dt2
+

h3

3!

d3T1

dt3
+ . . . .

(53)
(

Tn
1 + h

dT1

dt
+

h2

2!

d2T1

dt2
+

h3

3!

d3T1

dt3
+ . . .

)

[

1+ h(γ + µ)
]

= Tn
1 + hαµ.

(54)
dT1

dt
+ (γ + µ)Tn

1 = αµ,

(55)
dT1

dt
= αµ− (γ + µ)T1.

(56)Tn+1
2 [1+ h(θ(�)Tn

3 + µ)] = Tn
2 + h((1− α)µ+ γTn

1 ).

(57)Tn+1
2 = Tn

2 + h
dT2

dt
+

h2

2!

d2T2

dt2
+

h3

3!

d3T2

dt3
+ . . . .

(58)
(

Tn
2 + h

dT2

dt
+

h2

2!

d2T2

dt2
+

h3

3!

d3T2

dt3
+ . . .

)

[

1+ h(θ(�)Tn
3 + µ)

]

= Tn
2 + h((1− α)µ+ γTn

1 ).

(59)(θ(�)Tn
3 + µ)Tn

2 +
dT2

dt
= (1− α)µ+ γTn

1 ,

(60)
dT2

dt
= (1− α)µ+ γTn

1 − (θ(�)Tn
3 + µ)Tn

2 .
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Similarly, taking into account the Taylor’s series expansion for Tn+1
3 ,

Substituting the value of Tn+1
3  in Eq. (61), we get

Simplifying Eq. (63) and taking h → 0 , we get

or

Similarly, we can get

by applying Taylor’s series on Eq. (38). Hence, we can conclude that our proposed scheme exhibits first-order 
consistency.

Stability of the NSFD scheme
To study the stability analysis, let us assume the following system:

The Jacobian matrix corresponding to the system (67)–(70) is

Jacobian at the DFE is

Eigenvalues of the above Jacobian matrix are �1 = 1
1+h(γ+µ)

< 1 ,  �2 = �4 =
1

1+hµ < 1 and 
�3 =

1
1+h(δ+β(�)+µ)

< 1 . Because all eigenvalues are less than one, this validates the desired outcome that the 
NSFD scheme is stable at the DFE36. NSFD schemes do not constitute a singular category of numerical methods. 
Numerous researchers have expanded upon the Mickens theory. For instance, Gurski37 introduced a straightfor-
ward mathematical framework for NSFD schemes, specifically tailored for small systems of nonlinear differen-
tial equations. This approach leverages conventional techniques used in approximating differential equations, 
including the incorporation of artificial viscosity and the implementation of a predictor-corrector scheme. In 
their work, they examined both the NSFD scheme proposed by Mickens and the one developed by Erdogan and 
Ozis for first-order equations.

(61)Tn+1
3 (1+ h(δ + β(�)+ µ)) = Tn

3 + hθ(�)Tn
2T

n
3 .

(62)Tn+1
3 = Tn

3 + h
dT3

dt
+

h2

2!

d2T3

dt2
+

h3

3!

d3T3

dt3
+ . . . .

(63)
(

Tn
3 + h

dT3

dt
+

h2

2!

d2T3

dt2
+

h3

3!

d3T3

dt3
+ . . .

)

(1+ h(δ + β(�)+ µ)) = Tn
3 + hθ(�)Tn

2T
n
3 .
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dT3

dt
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3 = θ(�)Tn
2T

n
3 ,

(65)
dT3

dt
= θ(�)T2T3 − (δ + β(�)+ µ)T3.

(66)
dT4

dt
= β(�)T3 − µT4

(67)Tn+1
1 = C1 =
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Numerical simulations
In this section, we present the simulation results of the performance of Euler method illustrated in Fig. 2a–f, and 
the simulation results obtained using the NSFD method illustrated in Fig. 3a–f.

The graphical representations of the performance of Euler method are illustrated at various step sizes in 
Fig. 2a–f. Initially, at a small step size h = 1 , the method exhibits stability, positivity, and convergence. However, 
as the step size is slightly increased to h = 5 , the method begins to oscillate and generates negative values in all 
three cases. In models like this, negative values are not meaningful since all compartments represent populations, 

Figure 2.   The portions of sub populations using Euler method at different step sizes.
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and negativity is not feasible. Consequently, it can be deduced that this method is not a dependable tool for 
describing such models. In Fig. 3a–f, we present the simulation results obtained using the NSFD method. This 
time, the method demonstrates stability, both at smaller and larger step sizes, and an increase in the step size 
does not adversely affect its convergence and positivity, which are crucial characteristics for modeling disease 
dynamics. The method consistently displays stable and convergent behavior across all three cases, underscoring 
its reliability for studying disease dynamics in such conditions. It is worth noting that many classical numerical 
schemes and their fuzzy counterparts tend to lose their convergence and positivity and struggle to maintain 

Figure 3.   The portions of sub populations using NSFD method at different step sizes.
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stability as the step size increases. In contrast, the proposed method proves to be more efficient and capable of 
addressing such issues. We provide the convergence analysis for proposed NSFD scheme analytically and then 
verify it numerically in numerical simulations section. It can be noted here that the proposed NSFD scheme gives 
unconditional convergence and remains consistent with the continuous dynamical system. Figure 3a–f show the 
convergence of NSFD scheme to true equilibria, retaining all the essential features of continuous model unlike 
the Euler scheme which fails to do so (see Fig. 2a–f).

Conclusions
In this study, we have considered a typhoid model with fuzzy parameters. We assumed that the infection does 
not transmit equally among the individual of the populations. Similarly, the treatment rate is also not the same 
for each individual. As a function of the virus concentrations, we treated the typhoid transmission rate θ(�) and 
the treatment rate β(�) as fuzzy variables. In deterministic models, these parameters are fixed and independent 
of the viral load. As a result, it may be said that the fuzzy model is more adaptable and balanced than the crisp 
system. Fuzzy theory is used to address uncertainty quantification difficulties in mathematical disease modeling. 
We examined it for various virus loads because fuzzy variables are functions of virus load that depend on virus 
levels. In light of this, we addressed the studied model’s fuzzy equilibrium points while taking the population’s 
virus levels into account. We established that the disease-free equilibrium point is reached if the virus concentra-
tion is lower than the minimal concentration necessary for disease transmission in the population. When the 
population’s viral levels exceeded the bare minimum needed for disease transmission, we reached the endemic 
equilibrium points. For various viral concentrations, the basic reproduction rate is examined. We employed the 
expected value of a fuzzy number to ascertain the fuzzy basic reproduction number. Two numerical schemes are 
developed for the approximate solution of the studied model. The developed schemes are analyzed for different 
amounts of virus. The suggested numerical algorithms must maintain the positive nature of the solutions of such 
dynamic population models. The Euler method preserved this for only small values of the step sizes and generated 
negative values by increasing the step size. On the other hand, the NSFD preserved this for all large values of the 
step size too for different amounts of virus. Additionally, the convergence and consistency of the NSFD scheme 
are analyzed, demonstrating that the suggested approach is unconditionally convergent and consistent of order 
1. The creation, application, and analysis of a non-standard finite difference technique for the numerical analysis 
of a typhoid illness model with fuzzy parameters are the main foci of the current work. Future developments 
may include fuzzy stochastic, fuzzy delayed, or fuzzy fractional dynamic senses. Age-structured fuzzy epidemic 
models could potentially be modeled using the NSFD modeling theory. This research focuses mostly on using 
triangular fuzzy numbers as membership functions. In the future, we may investigate the use of various fuzzy 
numbers as potential membership functions, such as trapezoidal, pentagonal, hexagonal, and so on.

Data availability
The datasets analyzed during the current study are available from the corresponding author upon reasonable 
request.
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