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Comprehensive analysis 
of necroptotic patterns 
and associated immune landscapes 
in individualized treatment of skin 
cutaneous melanoma
Bo Yang 1, Pan Xie 2, Hongyu Huai 3 & Junpeng Li 2*

Skin cutaneous melanoma (SKCM) constitutes a malignant cutaneous neoplasm characterized by an 
exceedingly unfavorable prognosis. Over the past years, necroptosis, a manifestation of inflammatory 
programmed cell demise, has gained substantial traction in its application. However, a conclusive 
correlation between the expression of necroptosis-related genes (NRGs) and SKCM patient’s prognosis 
remains elusive. In this endeavor, we have undertaken an integrative analysis of genomic data, aiming 
to provide an exhaustive evaluation of the intricate interplay between melanoma necroptosis and 
immune-infiltration nuances within the tumor microenvironment. Through meticulous scrutiny, we 
have endeavored to discern the prognostic potency harbored by individual necroptosis-associated 
genes. Our efforts culminated in the establishment of a risk stratification framework, allowing for the 
appraisal of necroptosis irregularities within each afflicted cutaneous melanoma patient. Notably, 
those SKCM patients classified within the low-risk cohort exhibited a markedly elevated survival 
quotient, in stark contrast to their high-risk counterparts (p < 0.001). Remarkably, the low-risk cohort 
not only displayed a more favorable survival rate but also exhibited an enhanced responsiveness 
to immunotherapeutic interventions, relative to their high-risk counterparts. The outcomes of this 
investigation proffer insights into a conceivable mechanistic underpinning linking necroptosis-related 
attributes to the intricacies of the tumor microenvironment. This prompts a conjecture regarding the 
plausible association between necroptosis characteristics and the broader tumor microenvironmental 
milieu. However, it is imperative to emphasize that the pursuit of discerning whether the expression 
profiles of NRG genes can indeed be regarded as viable therapeutic targets necessitates further 
comprehensive exploration and scrutiny. In conclusion, our study sheds light on the intricate 
interrelationship between necroptosis-related factors and the tumor microenvironment, potentially 
opening avenues for therapeutic interventions. However, the prospect of translating these findings 
into clinical applications mandates rigorous investigation.

Dysfunctions within the neuroendocrine and immune systems localized in the skin, the largest organ in the 
human body, can precipitate various disorders, including  melanoma1.Cutaneous melanoma represents a malig-
nant neoplasm originating from melanocytes and stands as the predominant subtype within the spectrum of 
melanoma. Despite accounting for less than 5% of all cutaneous malignancies, it emerges as the foremost con-
tributor to global skin cancer-related fatalities, assuming the position of the most lethal form of skin  cancer2,3. In 
the backdrop of an escalating mortality trend attributed to malignant melanoma in recent times, the prognostic 
outlook for patient survival exhibits notable heterogeneity contingent upon distinct melanoma classifications. 
Specifically, the 5-year survival rate for individuals afflicted with stage 0 cutaneous melanoma ascends to 97%, 
a stark juxtaposition to the mere 10% survival rate characterizing patients grappling with stage IV cutaneous 
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 melanoma4. While early-stage cutaneous melanoma can be effectively addressed through wide-ranging exci-
sion, the majority of diagnoses manifest at advanced stages, underscoring the urgency of early detection and 
 intervention5. Notwithstanding the current decline in melanoma-associated mortality attributed to modalities 
encompassing immune checkpoint therapy, targeted therapeutic approaches, radiotherapy, and  chemotherapy6, 
notably in the context of the B-Raf proto-oncogene serine/threonine kinase (BRAF) V600 (Val600) mutation, 
the application of select BRAF inhibitors in conjunction with schizogen-activated protein kinase inhibitors has 
evinced a substantial enhancement in treatment response and overall survival  rates7. However, the pervasive-
ness of primary or acquired resistance translates into a significant cohort of melanoma patients experiencing 
unresponsiveness or relapse in the face of anti-PD1 and CTLA-4 therapeutic regimens. This phenomenon not 
only signifies immunotherapeutic setbacks but also underscores the pressing imperative to ascertain more effica-
cious treatment  modalities8,9. Hence, the pursuit of novel prognostic biomarkers assumes paramount importance 
in the quest to elucidate effective therapeutic paradigms, consequently ameliorating the overall prognosis for 
individuals contending with cutaneous melanoma.

Apoptosis resistance stands as a significant contributor to the ineffectiveness of chemotherapy in cancer treat-
ment. In instances where intracellular apoptotic signaling is lacking, an alternative non-apoptotic cell demise 
pathway, known as necroptosis, emerges as a potential activation route 10. Necroptosis, characterized as a regu-
lated variant of necrotic cell death, operates through a cysteine-independent process, primarily orchestrated by 
key mediators including receptor-interacting protein 1 (RIP1), RIP3, and mixed-spectrum kinase structural 
domain-like (MLKL). This mechanism not only bypasses apoptosis resistance but also holds the potential to incite 
and bolster antitumor immune responses within the ambit of cancer  therapy11. Furthermore, the ramifications of 
necroptosis extend to its involvement in the etiology and progression of diverse immune-related disorders, span-
ning acute kidney injury, acute hepatitis, inflammatory skin conditions, inflammatory bowel disease, pathological 
oncogenic processes, and an array of systemic  maladies12,13. Nonetheless, the intricate modus operandi through 
which necroptosis influences oncogenesis remains enigmatic. On one facet, necroptosis exerts the capacity to trig-
ger robust adaptive immune reactions, effectively impeding tumor advancement. Conversely, the inflammatory 
milieu triggered by necroptosis might concurrently foster tumorigenesis and metastasis, potentially culminating 
in an immune-suppressive microenvironment conducive to tumor  growth11. It is worth noting, however, that the 
mechanistic underpinnings of necroptosis within the context of melanoma remain relatively unexplored, with 
only a limited number of investigations delving into this  facet14,15.

In the present investigation, we commenced by extracting expression profiles about genes associated with 
necroptosis from the TCGA-SKCM dataset. Through a systematic analysis, we discerned independent prognostic 
determinants intricately linked to patient outcomes, subsequently culminating in the establishment of prognostic 
indicators rooted in necroptosis in melanoma. This was achieved through rigorous prognostic assessment. Aug-
menting our endeavor, an exploration of the immune microenvironment was undertaken to unravel the underly-
ing immunological mechanisms at play in melanoma. Notably, this endeavor served to corroborate a robust and 
substantive correlation existing between the derived risk score and the immune microenvironment. By leveraging 
these findings, the population of melanoma patients can be effectively stratified into discrete high-risk and low-
risk clusters, predicated on distinctive molecular signatures. Employing a risk-stratified approach, a survival 
analysis was conducted, thereby affording an evaluative lens to scrutinize the prognostic landscape for individuals 
afflicted by melanoma. In amalgamation, the overarching objective of this study resides in the conception of an 
innovative prognostic prediction model, one grounded in the genomic underpinnings of necroptosis-associated 
genes. Through its implementation, we envision the provision of a valuable clinical framework, one that lends 
itself as a diagnostic and therapeutic reference tool in the context of melanoma management.

Materials and methods
The transcriptomic data for TCGA-SKCM, represented by FPKM values, along with clinically pertinent informa-
tion, were procured from the UCSC website (https:// xenab rowser. net/ datap ages/). To mitigate the impact of con-
founding variables, patients characterized by incomplete clinical records and an overall survival duration of less 
than 30 days were excluded from the study cohort. Melanoma samples from GSE65904, GSE53118, GSE54467, 
GSE19234, and GSE15605 were sourced from the Gene Expression Omnibus (GEO) platform (https:// www. ncbi. 
nlm. nih. gov/ geo/) in their raw CEL and TAR file  formats16–20. The GSE19234 and GSE15605 microarray datasets 
underwent background correction and normalization through the employment of the RMA function within the 
"Affy"  package21. As for GSE53118, GSE54467, and GSE65904, the raw data was subjected to background cor-
rection and normalization using the lumiExpresso function within the R package "lumi"22. The RNA-seq data 
originating from TCGA-SKCM underwent conversion into TPM values. The amalgamation of TCGA data from 
the four GEO cohorts, alongside the rectification of batch effects, was executed employing the ComBat function 
from the "sva" R  package23. Necroptosis-associated genes were systematically retrieved from GeneCards (https:// 
www. genec ards. org/), considering only those exhibiting correlation coefficients surpassing  124. This meticulous 
curation culminated in the inclusion of a total of 941 genes for subsequent analyses (Supplementary Table S1). 
All ensuing analyses were performed using R (version 4.2.2) in conjunction with the suite of R Bioconductor 
packages. The flow chart of this study is shown in Fig. 1.

Unsupervised cluster analysis of NRGs
Patients were systematically categorized into distinct molecular subgroups predicated on the expression patterns 
of NRG through the utilization of an unsupervised clustering methodology, facilitated by the R package "Con-
ensusClusterplus"25. The generated clusters were subjected to a cumulative distribution function (CDF) analysis, 
which exhibited a seamless increment, indicative of ample representation within each subtype, bolstered by a 
substantial sample size. To render the findings accessible, both heatmap and Kaplan–Meier survival curves were 
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employed as visualization tools. In an endeavor to unravel nuanced distinctions, a comparative assessment was 
undertaken concerning the expression profiles of major histocompatibility complexes and T-cell stimulatory 
factors across the delineated clusters.

Functional enrichment analysis
Enrichment analyses were conducted utilizing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG)  databases26,27. The "clusterProfiler" R package was instrumental in executing these analyses, 
and the outcomes were effectively rendered visually through the utilization of the "ggplot2"  package28,29. To 
further elucidate the genomic variations, the Gene Set Variation Analysis (GSVA) method was employed, with 
c2.cp.kegg.Hs.symbols.gmt obtained from the MSigDB database being utilized as the definitive gene set for this 
 purpose30,31.

Construction of a prognostic model for necroptosis
Differential gene expression analysis across distinct necroptosis subtypes was conducted employing the "limma" 
package, employing a defined threshold of |logFC|> 1.0, along with a stringent adjusted p value threshold of 
less than 0.0532. To elucidate the prognostic implications of these identified differential genes, a Cox regression 
analysis was undertaken. Subsequently, prognostic gene candidates were further refined through a least absolute 
shrinkage and selection operator (LASSO) analysis, employing the "glmnet" R  package33. The optimal minimum 
λ value was determined during this process. Genes shortlisted for constructing risk models were ascertained 
via a multivariate Cox regression analysis. A random seed of 14 was set, enabling the random division of the 
dataset into training and test subsets at a 7:3 ratio. The training subset was then harnessed for the establishment 
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Figure 1.  Flow chart for comprehensive analysis of necroptosis patterns in SKCM patients.
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of a risk prediction scoring model associated with necroptosis-related genes. Leveraging the median value of 
the risk score, patients within the training set were effectively categorized into distinct low-risk and high-risk 
strata. Subsequent comparison of the overall survival trends of these stratified groups was achieved through 
Kaplan–Meier analysis. To quantitatively evaluate the predictive performance of the model, receiver operating 
characteristic (ROC) curves were utilized in conjunction with the area under the curve (AUC)  metric34. Valida-
tion of the developed risk scoring model was executed utilizing the independent test dataset. Last but not least, 
ROC curves were used to compare the developed models to those of Gang Hu et al. and Zehao Niu et al., and to 
assess how well the three models predicted  outcomes35,36.

Creation of nomogram
Clinical attributes of SKCM patients were acquired and subsequently integrated with the developed genetic prog-
nostic model. Employing the R package "rms"37, a multifactorial Cox regression analysis was undertaken to craft 
a comprehensive nomogram model, encompassing joint prognostication. Furthermore, this process facilitated 
the creation of a visual nomogram representation. In a bid to rigorously evaluate the predictive potential of the 
nomogram model, a suite of analytical tools was engaged. The time-dependent receiver operating character-
istic (TimeROC)  analysis38, calibration curves, and decision curve analysis (DCA) curves were systematically 
 employed39. These evaluative mechanisms collectively gauged the model’s precision in predicting outcomes and 
its clinical utility.

Construction of a diagnostic model
We created a diagnostic model based on these two genes using logistic regression and validated it in the GSE15605 
dataset in order to further assess the diagnostic effectiveness of the important risk genes DLL3 and  SEMA6A40.

Tumor microenvironment and immune checkpoint assessment
The immune infiltration score was evaluated using the "ESTIMATE"  algorithm41. For a comprehensive assessment 
of immune cell infiltration across distinct samples, the "CIBERSORT" package was employed, facilitating the cal-
culation of abundances for 22 distinct infiltrating immune cell types. Employing the "CIBERSORT"  algorithm42, 
we conducted a comprehensive analysis of the relative abundance of 22 human immune cell subpopulations 
within SKCM samples. Furthermore, a focused inquiry into immune regulatory mechanisms was undertaken 
through the assessment of 33 immune checkpoints (Supplementary Table S2). This analysis sought to uncover 
potential variations in expression profiles across distinct risk groups.

Mutation and drug sensitivity analysis
The investigation into melanoma mutations was conducted through the utilization of the "MAFTOOLS" soft-
ware  tool43. Additionally, an in-depth analysis of drug sensitivity was carried out, employing the "oncoPredict" 
 package44. This analysis aimed to ascertain the half maximal inhibitory concentration (IC50 values) of frequently 
utilized chemotherapeutic agents in the context of melanoma treatment.

Cell culture and real-time quantitative polymerase chain reaction
From the Chinese Academy of Sciences Cell Bank, the normal human fibroblast cell line HF and the human 
melanoma tumor cell line A375 were acquired. All cells were cultured in Dulbecco’s modified Eagle’s medium 
(DMEM) supplemented with 10% fetal bovine serum (Gibco, Thermo Fisher Scientific, Inc.) at 37 °C in an incu-
bator with 5% carbon dioxide. Cell cultures were established in 10 cm dishes with an initial inoculum density of 
80 ×  104 cells and were subsequently maintained at 37 °C. Cells were harvested once they reached 80% confluence. 
The Molpure® Total Cell/Tissue RNA Kit (produced by YEASEN) was used to initially harvest the cells from the 
10 cm dishes and extract the RNA. Reverse transcription PCR (RT-PCR) was used to amplify cDNA after that. 
The primers mentioned in Supplementary Table 8 were used to perform real-time quantitative PCR (qPCR), 
which was the final step in quantifying mRNA. For the qPCR procedure, the QuantStudio TM3 machine from 
ThermoFisher was used with the PrimeScript RT kit from PhDL Biotech. For qPCR temperature changes, 35 s 
at 95 degrees, 30 s at 55 degrees, and 45 s at 72 degrees were used. Using a QuantStudio TM3 machine from 
ThermoFisher, the qPCR was carried out. The  2−ΔΔCT approach was used to determine how much the target 
genes’ expression had changed.

Statistical analysis
Statistical analyses were carried out using R (version 4.2.2). To quantify the strength and direction of associa-
tions, Spearman correlation analyses were conducted to compute correlation coefficients. For the comparison of 
multiple group variables, the chi-square test was employed. The assessment of overall survival between patients 
categorized into high-risk and low-risk groups was accomplished using the log-rank test within the Kaplan–Meier 
analysis framework. In alignment with convention, a statistically significant distinction was defined by a P value 
of 0.05 or lower.

Ethics approval and consent to participate
This is an observational study. The Research Ethics Committee of Southwest Medical University Hospital has 
confirmed that no ethical approval is required.
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Result
Identification of the SKCM necroptosis cluster
The comprehensive analysis encompassed a total of 803 patients drawn from five distinct melanoma cohorts, 
namely, TCGA-SKCM, GSE65094, GSE53118, GSE54467, and GSE19234. Employing an unsupervised clus-
tering algorithm, we stratified melanoma patients based on their NRG expression profiles. This facilitated a 
deeper exploration of the distinctive characterization of NRGs within the context of melanoma. Remarkably, 
the outcomes of the clustering analysis delineated two discernible groups, denoted as group A (n = 335) and 
group B (n = 468), when utilizing k = 2 (Fig. 2A,B,C). The validity of this clustering was substantiated through 
the employment of a heatmap, while principal component analysis (PCA) further accentuated the existence of 
these two distinctive clusters. Intriguingly, this clustering was also effectively captured by a PCA plot (Fig. 2D). 
Subsequent Kaplan–Meier survival analysis demonstrated that patients belonging to the SKCM subtype A exhib-
ited markedly extended overall survival duration when compared with their counterparts in the subtype B group 

Figure 2.  (A–C) Define a heatmap of the consistency matrix for two clusters (k = 2) and their associated 
regions. (D) PCA results showed that these two clusters differed significantly in transcriptional expression. (E) 
Survival analysis curves of SKCM patients with two NRG modification patterns. (F) Unsupervised clustering of 
necroptosis genes in SKCM cohorts. (G–H) Gene expression of HLA and MHC gene sets between two distinct 
clusters. Statistical significance at the level of * < 0.05, ** < 0.01, and *** < 0.001.



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:21094  | https://doi.org/10.1038/s41598-023-48374-0

www.nature.com/scientificreports/

(Fig. 2E). Research into the interactions between these two clusters and different ages and genders showed that 
NRG cluster A expressed NRGs more than cluster B (Fig. 2F).

Patients with different molecular subtypes exhibit different immune infiltration states
Immunological assays were systematically conducted to delve into the discernible variations in immune infil-
tration across distinct molecular subtypes. Through the implementation of GSVA enrichment analysis, nota-
ble statistically significant disparities between immune cell abundances were unveiled between cluster A and 
cluster B, as discerned from the ssGSEA outcomes (Supplementary Figure S1A; Supplementary Table S3)45. 
This discrepancy was particularly evident, except for the  CD56dim natural killer cell subset, wherein the subclus-
ter A exhibited a more favorable immune infiltration abundance as opposed to subcluster B (Supplementary 
Figure S1B). Additionally, a comprehensive scrutiny of the interrelation between the two subtypes and major 
histocompatibility complexes, along with T-cell stimulating factors, was undertaken. The examination of this 
association demonstrated that the subpopulation A consistently displayed elevated expression levels of major 
histocompatibility complex components and T-cell stimulating factors, substantiating the inclination towards 
heightened immunomodulation in this subset. Notably, this trend held across several factors, with the exception 
being TNFRSF14 (Fig. 2G,H).

DEGs-based analysis of necroptosis clusters
Employing the "limma" R package, we successfully pinpointed 447 differentially expressed genes (DEGs) intri-
cately linked to necroptotic clusters. Subsequently, prognostic gene candidates were discerned via univariate 
Cox regression analysis (Supplementary Table S5). This analytical trajectory gave rise to the identification of two 
distinct gene clusters, aptly denoted as gene clusters A and B (Fig. 3A,B,C). The classification of these clusters 
aligned closely with the degree of necroptosis, thus furnishing a substantial delineation. Functional insights 
into the roles of the DEGs were gleaned through a robust enrichment analysis that encompassed the GO and 
KEGG databases. The GO analysis prominently underscored that the majority of the identified differential genes 
were intricately associated with biological processes such as leukocyte cell–cell adhesion, leukocyte-mediated 
immunity, and positive regulation of cell activation. At the cellular level, the enriched components primarily 
revolved around the external side of the plasma membrane, endocytic vesicles, and membrane rafts. Moreover, 
molecular functions were significantly enriched for attributes encompassing immune receptor activity, peptide 
binding, and cytokine binding. Intriguingly, the KEGG pathway analysis underscored the engagement of DEGs 
in pivotal biological pathways, including cytokine-cytokine receptor interaction, cell adhesion molecules, and 
hematopoietic cell lineage (Fig. 3D,E; Supplementary Table S4). The clinical ramifications of these findings were 
evident through Kaplan–Meier survival analysis, which distinctly demonstrated that patients grouped within 
cluster B faced markedly inferior overall survival when juxtaposed with their counterparts in cluster A (Fig. 3F). 
The gene expression data revealed significant differences in the NRG expression patterns between the two gene 
clusters (Fig. 3G,H).

Risk scoring model for necroptosis gene correlation
A necroptosis-associated risk score model was meticulously constructed, hinging on the differential genes affili-
ated with distinct gene clusters. Utilizing LASSO regression, the optimal λ-value was derived, leading to the 
identification of 18 risk genes (Fig. 4A,B). Subsequently, this pool of 18 risk genes was subjected to multivariate 
Cox regression analysis, ultimately yielding a refined set of 6 genes (GBP4, HSD11B1, CD40, VAMP8, DLL3, 
SEMA6A). The necroptosis risk model was meticulously formulated as follows, yielding the risk score equation: 
GBP4 exp *(− 0.1395) + HSD11B1 exp *(− 0.1775) + CD40 exp *(− 0.1483) + VAMP8 exp * 0.1994 + DLL3 exp * 
0.0842 + SEMA6A exp * 0.1122. The clinicopathologic features associated with the high and low risk groups are 
shown in Supplementary Table S7. Sankey plot provided an insightful visualization of the intricate relationships 
among patients across two distinct NRG clusters, two gene clusters, as well as high- and low-risk groups (Fig. 4C). 
Notably, the risk-scoring formulas rooted in the risk model effectively stratified the training set into high- and 
low-risk groups, resulting in divergent survival outcomes (Fig. 4D,E,F,G,H,I). The risk distribution plots of the 
necroptosis risk model corroborated a consistent trend: escalating necroptosis risk scores paralleled heightened 
mortality risk and correspondingly diminished survival duration. This correlation was succinctly captured in the 
scatter plot, where a preponderance of high-risk patients exhibited truncated survival times. Furthermore, the 
model analysis of the necroptosis risk score concerning gene expression patterns underscored VAMP8, DLL3, 
and SEMA6A as high-risk genes, while GBP4, HSD11B1, and CD40 assumed the mantle of low-risk genes. 
Gene cluster A was linked to lower risk ratings, whereas gene cluster B was linked to higher risk scores. In NRG 
clustering, cluster A was linked to a decreased necroptosis risk score. Higher risk ratings and NRG cluster B were 
significantly correlated (Fig. 4J,K). Subsequent Kaplan–Meier survival analysis for both training and test cohorts 
accentuated that the high-risk group suffered a higher incidence of mortality relative to the low-risk cohort. This 
disparity was further substantiated by the statistically significant differences observed within Kaplan–Meier 
survival curves (Fig. 4L,M). To validate these findings, an entirely new test group was incorporated, affirming 
the robust association between necroptosis risk scores and patient survival. Elevated necroptosis risk scores were 
inextricably linked to elevated mortality risk and concomitantly abbreviated survival span. This was graphically 
exemplified by the Kaplan–Meier survival curve, where patients boasting high necroptosis scores exhibited 
markedly lower survival rates compared to those with lower scores (Supplementary Figure S1C,D,E,F). The ROC 
curve indicates that our model has an AUC value of 0.744, which is much higher than the AUC values for the 
other two necroptosis-related models (Supplementary Figure S2B).
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Figure 3.  (A–C) Cluster analysis of DEGs identified two gene clusters. (D–E) GO and KEGG enrichment 
analysis of DEGs in two gene clusters. (F) Survival analysis of the two gene clusters. (G) Unsupervised clustering 
was used to study DEGs. Two gene clusters and clinical characteristics are connected. (H) Two gene clusters, 65 
necroptosis genes, and their varying modes of expression.
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Diagnostic modeling of key risk genes
Using data from the GSE15605 dataset, we verified the diagnostic model built for DLL3 and SEMA6A’s predic-
tive effectiveness. ROC curves for the above two genes were used to examine how well individual genes could 
distinguish between melanoma and normal samples. All of the genes’ AUCs were higher than 0.7, and the logistic 
regression model’s AUC was 0.857 (95% CI: 0.766–0.92), indicating that it was more accurate and specific than 
the individual marker genes for melanoma and normal sample differentiation (Supplementary Figure S2C,D). 
We investigated the expression patterns of the aforementioned two genes and their association with prognosis 
utilizing the GEPIA online database. Our analysis revealed that both genes exhibited significantly elevated 
expression levels in SKCM in comparison to normal tissues (Supplementary Figure S2F,G). Additionally, it was 
observed that patients characterized by lower expression levels of DLL3 and SEMA6A exhibited a prolonged OS 
period (Supplementary Figure S2J,K). Ultimately, the expression profiles of these two genes were corroborated 
through experimentation with cell lines, yielding results consistent with those obtained from the database analysis 
(Supplementary Figure S2H,I).

Figure 4.  (A–B) LASSO regression identifies optimal risk genes. (C) Sankey plot showing changes in NRG 
clusters, gene clusters, and status. (D–I) In the training and test groups, Necroptosis risk score distribution and 
patient survival status are plotted in ranked point and scatter plots. Genes associated with risk expression and 
distribution. (J) Differences in necroptosis risk scores in two gene clusters. (K) Differences in necroptosis risk 
scores in two NRG clusters. (L–M) Survival analysis for patients with high or low necroptosis risk scores in the 
training and test groups.
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Tumor microenvironment and immunotherapy
According to the immunoassay results obtained through "CIBERSORT", the six necroptosis risk model genes 
exhibited a substantial association with various immune cell types (Supplementary Table S6). For instance, GBP4 
demonstrated a positive correlation with immune cell populations like  CD8+ T cells, activated  CD4+ T memory 
cells, and M1 macrophages. In contrast, DLL3 exhibited a negative correlation with immune cells such as M2 
macrophages and resting  CD4+ T memory cells. The interplay between these genes and immune cells was robustly 
demonstrated. Furthermore, the necroptosis risk score exhibited intricate correlations with distinct immune 
cell subsets. Specifically, the risk score showcased a negative correlation with plasma cells, activated memory 
 CD4+ T cells, M1 macrophages, and  CD8+ T cells, while a positive correlation was noted with M0 macrophages 
(Supplementary Figure S3A, C).

The comprehensive exploration of immune infiltration within high- and low-risk groups, as assessed through 
the "ESTIMATE" algorithm, yielded noteworthy findings. Immune score, stromal score, and ESTIMATE score 
were all significantly higher in the low-risk group compared with the high-risk group (Supplementary Fig-
ure S3B). This divergence implied that the low-risk group harbored a markedly greater abundance of immune 
infiltration. Furthermore, the connection between our risk model and immune checkpoints was systematically 
examined. Among the 33 immune checkpoints, including LAG3, IFNG, and CTLA-4, significant differential 
expression was observed across the two distinct subgroups (Supplementary Figure S2E). Most immune check-
points exhibited a positive correlation with the low-risk group, indicating that individuals within this subgroup 
might be more responsive to immunotherapy (Supplementary Figure S3D). To substantiate the sensitivity of vari-
ous risk subgroups to immunotherapy, external datasets encompassing patients who underwent anti-PD-L1 ther-
apy (IMvigor210 and GSE78220) were leveraged as test  cohorts46,47. Remarkably, patients demonstrating complete 
response (CR) and partial response (PR) exhibited significantly prolonged survival compared to patients with 
stable disease (SD) and progressive disease (PD). Notably, within the IMvigor210 cohort, an intriguing discrep-
ancy was detected in the response subtypes (CR, PR, SD, and PD) across different necroptosis subtypes (p < 0.05). 
Higher-risk patients displayed a larger proportion of SD/PD, while CR/PR occurrences were more prevalent 
in the lower-risk group. Although no substantial variation in response subtypes to treatment-free therapy was 
evident between high- and low-risk patients within the GSE78220 cohort, the profound impact of risk stratifi-
cation was consistently observed in the context of patients receiving immunotherapy (Fig. 5A,B,C,D,E,F,G,H). 
Through the establishment of risk-based subgroups within the GSE78220 and IMvigor210 cohorts, employing 
an optimal cutoff value derived from the "survivalROC" R  package48, significant differences in overall survival 

Figure 5.  (A) Prognostic differences among risk score groups in the IMvigor210 cohort. (B) Differences in 
risk scores for immunotherapeutic response in the IMvigor210 Cohort. (C) Distribution of immunotherapy 
responses between risk scoring groups in the IMvigor210 Cohort. (D–E) Prognostic differences between risk 
score groups for early and advanced stage patients in the IMvigor210 Cohort. (F) Prognostic differences among 
risk score groups in the GSE78220 cohort. (G) Differences in risk scores for immunotherapeutic response in the 
GSE78220 cohort. (H) Distribution of immunotherapy responses between risk scoring groups in the GSE78220 
cohort.
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emerged. Patients within the low-risk group showcased considerably prolonged overall survival in both the 
IMvigor210 and GSE78220 cohorts, transcending the stages of the disease. These findings compellingly suggest 
that the low-risk subgroup exhibited a more favorable therapeutic response to immunotherapy compared with 
their high-risk counterparts. This underlying rationale elucidates the superior survival outcomes of melanoma 
patients within the low-risk group compared to those within the high-risk group.

Mutation analysis and drug sensitivity
The analysis of waterfall plots vividly illustrates that the tumor mutational burden (TMB) is notably elevated 
within the low-risk population as opposed to the high-risk counterpart. This discrepancy assumes significance 
given the well-documented impact of tumor mutation burden on prognosis. Indeed, patients with elevated TMB 
have been consistently shown to exhibit extended survival durations relative to those with diminished TMB 
levels (Fig. 6A,B). Furthermore, a meticulous inquiry into the sensitivity of distinct subpopulations to various 
chemotherapeutic agents holds potential significance in informing clinical interventions, particularly for patients 
within the high-risk group. Notably, patients belonging to the high-risk category manifest heightened sensitivity 
to a selection of drugs, including Lapatinib, Selumetinib, Trametinib, and Ulixertinib (Fig. 6C,D,E,F). On the 
other hand, individuals categorized within the low-risk group exhibit greater responsiveness to chemotherapeutic 
agents such as 5-Fluorouracil, Axitinib, Dasatinib, and Talazoparib (Fig. 6G,H,I,J). This intricate understanding 
of drug sensitivity across distinct risk groups serves as a crucial theoretical cornerstone for the tailored clinical 
management of patients, especially those situated within the high-risk subgroup.

The risk score can be an independent prognostic factor for SKCM
Given the notable association between the risk score and the advanced and highly malignant nature of SKCM, 
our inquiry delved into determining whether this risk score could emerge as an independent prognostic factor 
within the clinical landscape of SKCM. This exploration was undertaken through a comprehensive analysis 

Figure 6.  (A–B) A waterfall plot depicts the characterization of somatic mutations in the necroptosis risk 
model. (C–J) Necroptosis risk model-assisted selection of antitumor drug candidates.
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encompassing both univariate and multivariate Cox regression assessments (Fig. 7A,B). In this analytical con-
text, risk score, age, gender, stage, and TNM staging were all considered as covariates for meticulous evaluation. 
Intriguingly, the findings underscored the autonomy of age and risk score as independent factors capable of 
prognosticating the outcome of SKCM patients (Fig. 7C). Driven by this compelling association, we moved 
forward to construct a clinically relevant prognostic nomogram, capitalizing on the amalgamation of these clini-
cal attributes. This nomogram stands as a robust quantitative tool, effectively poised to predict the trajectory of 
prognosis, particularly within the context of a worse prognosis for individual patients. The predictive accuracy 
of the nomogram was methodically verified through the utilization of calibration curves, which aptly gauged the 
alignment between predicted and observed mortality rates among patients afflicted with measured SKCM. This 
predictive framework was further strengthened by employing "TimeROC" analysis, which strikingly revealed 
that the AUC of the nomogram eclipsed the alternative metrics in the TCGA cohort (Fig. 7D). Remarkably, 
the calibration curves consistently demonstrated the nomogram’s propensity to closely mirror actual overall 
survival, reinforcing its predictive prowess across 2, 3, and 5-year timeframes for melanoma patients (Fig. 7E). 
Furthermore, DCA curves, enacted across a spectrum of variables within the TCGA cohort, underscored the 
pronounced benefits conferred by clinical interventions based on the nomogram (Fig. 7F). Notably, patients 
subjected to therapeutic strategies guided by the nomogram exhibited considerably enhanced rates of favorable 

Figure 7.  (A–B) Univariate and multivariate Cox analysis of risk score and clinicopathological features. 
(C) Nomogram integrating risk score and clinical features. (D) Comparison of the predictive power of 
clinicopathologic features and nomogram using timeROC analysis. (E) Calibration of the nomogram at 2, 3 and 
5 years in the TCGA cohort. (F) Decision curve for nomogram.
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outcomes, surpassing the efficacy of interventions solely informed by single clinical characteristics. Collectively, 
this multifaceted analysis highlights the nomogram’s potent utility as a tool that extends beyond prognostic 
indications, exhibiting a capacity to guide clinical decision-making and optimize therapeutic interventions for 
melanoma patients.

Discussion
Cutaneous melanoma, the most prevalent form of skin cancer, has exhibited a rapid surge in incidence over 
the recent decades. Distinguished by its immunogenicity, melanoma holds promise for favorable responses to 
immunotherapeutic interventions. Nonetheless, akin to numerous malignancies, melanoma employs a spectrum 
of inhibitory strategies to circumvent recognition and eradication by the host’s innate and adaptive immune 
 mechanisms49. The pronounced clinical heterogeneity within the cohort of melanoma patients, coupled with 
the dearth of early diagnostic markers and therapeutically responsive indicators, underpins the persistently high 
mortality associated with this disease.

Programmed cell death, or apoptosis, universally ingrained in the tapestry of evolution, assumes a pivotal role 
in organismal development and the maintenance of homeostasis. This process stands as the cardinal means to 
eliminate senescent or damaged cells from the  body50. However, in the backdrop of pathological states, especially 
in the context of cancer cells, the capacity to orchestrate apoptosis becomes compromised, precipitating unregu-
lated cellular  proliferation51. Notably, several proteins that experience upregulation in the context of cancer cells 
have emerged as instrumental in igniting the antiapoptotic cascade response. This has engendered an array of 
mechanisms facilitating cells’ evasion of programmed cell death, including the amplification of anti-apoptotic 
 molecules52. The inception of necroptosis as a concept was heralded by Degterev et al. in 2005. In scenarios void 
of intracellular apoptotic signals, necroptosis engenders an alternative non-apoptotic route to cell demise, typi-
fied by necrotic morphology and encompassing elements of autophagy  activation10. Necroptosis materializes 
as a caspase-independent mode of cell death, induced solely upon tumor necrosis factor (TNF) exposure when 
confronted with broad-spectrum cysteine inhibitors such as zVAD fluoromethyl ketone. Unlike apoptosis, the 
manifestation of necroptosis hinges on the inhibition or perturbation of cysteinyl asparagine 8  function53. In the 
context of cancer therapy, necroptosis emerges as an intriguing alternative to programmed cell death, harnessing 
the potential to surmount apoptosis resistance while concurrently augmenting anti-tumor immune  responses54. 
Research has underscored the pivotal role of necroptosis in governing the migratory and invasive attributes of 
diverse tumor  types55. Through its capacity to induce immune activation against tumors, necroptosis emerges 
as a formidable countermeasure against tumor progression. Existing studies have established the propensity of 
DNA-damaging chemotherapeutic agents to invoke necroptosis, thereby instigating cancer cell demise via the 
RIP1/RIP3/MLKL pathway. Noteworthy examples encompass paclitaxel, etoposide, and 5-fluorouracil (5-FU), all 
of which enact RIP1-induced necroptosis across diverse cancer cell types. In melanoma cells actively engaged in 
melanogenesis, the use of melanin synthesis inhibitors to induce depigmentation has shown to restore sensitiv-
ity to RIPK1/RIPK3/MLKL-mediated  necroptosis56. Melanin, known for its protective properties and ability to 
chelate metals, significantly influences the chemosensitivity of melanoma cells towards antitumor  drugs57. Studies 
have highlighted that patients exhibiting an unpigmented phenotype in advanced connective tissue-promoting 
proliferative melanoma exhibit enhanced immunotherapeutic responses to PD-1 or PDL1 immune checkpoint 
blockade  therapies58. Intriguingly, necroptosis-induced inflammatory responses have been documented as ben-
eficial in antitumor therapeutic  contexts59,60. A case in point is the activation of necroptosis through ragweed 
administration for gastric cancer  treatment61.

Within our study, a panel of six necroptosis-related genes (GBP4, HSD11B1, CD40, VAMP8, DLL3, and 
SEMA6A) was initially discerned through the creation of necroptosis prognostic indicators, subsequently fore-
casting the survival prognoses of SKCM patients within a test set. Moreover, we have constructed a diagnostic 
model characterized by robust predictive capabilities, employing the risk-associated genes DLL3 and SEMA6A, 
both of which exhibit a hazard ratio (HR) exceeding 1. Delta-like protein 3 (DLL3), a pivotal ligand in the Notch 
signaling pathway, is notably abundant in various solid tumors, including  melanoma62. Substantiated investiga-
tions have elucidated that the downregulation of DLL3 can attenuate lipopolysaccharide-induced inflammation, 
inhibit migration, and impede invasion of melanoma cells through the inhibition of Twist1-mediated epithelial-
mesenchymal  transition63. SEMA6A, a constituent of the semaphorin family, collaborates with plexin to orches-
trate crucial aspects of cellular function, including the regulation of the actin cytoskeleton, cellular motility, 
and proliferation. Recent studies have illuminated SEMA6A’s role in governing the viability and proliferation of 
 BRAFV600E human melanoma cells. Additionally, SEMA6A plays a pivotal role in orchestrating the coordinated 
escape of melanoma cells from concurrent BRAF/MEK inhibition, signifying its potential as a dependable marker 
for immediate therapeutic benefits of such inhibition. This suggests that SEMA6A could serve as a promising 
treatment target for  BRAFV600E  melanoma64,65. As evident from the foregoing discussion, DLL3 and SEMA6A 
emerge as pivotal components in the diagnosis and management of SKCM, offering valuable insights into poten-
tial therapeutic interventions. Employing GSVA analysis, we ascertained the marked enrichment of immune-
related signaling pathways within NRG cluster A. This encompassed pathways linked to apoptosis, RIG-1-like 
receptor signaling, and leukocyte transendothelial migration, among others. This underscores the potential for 
NRGs to orchestrate necroptosis within melanoma, through modulation of intricate immune pathways. We 
transitioned to stratify patients utilizing a necroptosis risk model, delineating high-risk and low-risk categories 
that exhibited distinct prognostic outcomes within the two gene clusters. A deep dive into immune infiltration 
analysis yielded insight into the critical role played by the melanoma tumor microenvironment (TME). Through 
the prism of GO and KEGG analyses, we gleaned that NRGs could exert influence over the composition of the 
tumor immune microenvironment, consequently shaping SKCM’s developmental trajectory. The TME, character-
ized by a blend of natural immune cells (such as macrophages, mast cells, neutrophils, and dendritic cells) and 



13

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21094  | https://doi.org/10.1038/s41598-023-48374-0

www.nature.com/scientificreports/

acquired immune cells (T and B lymphocytes), interacts with tumor cells via diverse avenues—direct contact or 
cytokine signaling—culminating in a profound influence over tumor behavior and therapeutic  responsiveness66. 
Strikingly, the diminished immune infiltration abundance observed in the high-risk melanoma group alludes 
to an overall impairment in immune function. This conjecture is fortified by parallel immunotherapy response 
analyses, which laid bare shorter overall survival and inferior immunotherapy response for high-risk melanoma 
patients.

Given its status as a paradigmatic immunogenic tumor, the correlation between immune cell infiltration 
and melanoma prognosis is contingent upon the nature and presence of immune cells within the tumor TME. 
In the context of our study, we meticulously evaluated the connection between the necroptosis risk model and 
immune cell infiltration abundance. The findings revealed a significant correlation between most immune cells 
and the risk score. Notably, the risk score displayed a positive correlation with M0 macrophages while manifesting 
negative correlations with M1 macrophages,  CD4+ T cells, and  CD8+ T cells. This resonated within the low-risk 
group, characterized by heightened infiltration levels of  CD8+ T cells,  CD4+ T cells, and M1 macrophages. It is 
widely established that M1 macrophages enhance melanoma patient prognosis under their roles in inflammation 
promotion and tumor suppression, underpinned by the secretion of proinflammatory cytokines like IL-12 and 
TNF-α, alongside robust expression of nitric oxide synthase (iNOS)67,68. The prominence of  CD8+ T cells also 
underscores their pivotal role in orchestrating antitumor immunity, thereby correlating with prolonged overall 
survival. In contrast, M0 macrophages, predominant in the high-risk group, suggest a close nexus with melanoma 
progression and metastasis. This conjecture finds resonance with studies that highlight the heightened prevalence 
of M0 macrophages in the N1 stage of colorectal cancer, attesting to their correlation with tumor  metastasis69. It 
is worth noting that Treg cells exhibited higher proportions within the high-risk cohort compared to the low-risk 
cohort. This disparity could potentially be attributed to the role of Treg cells in regulating oxidative stress and the 
hyperactive inflammatory responses that necroptosis engenders within the TME. In the context of colon cancer, 
these Treg cell subtypes have demonstrated opposing functions in modulating the  TME70.

Taking into account the far-reaching influence of necroptosis on melanoma’s heterogeneous nature and its 
corresponding clinical ramifications, we devised a necroptosis risk model hinging on six risk-associated genes, 
accompanied by a quantified risk score nomogram. These compelling findings substantiate the utility of the 
necroptosis risk model score as an autonomous prognostic biomarker for melanoma patients. Our proactive 
foray into antitumor drug sensitivity analyses across disparate risk subgroups has equipped the necroptosis risk 
model with the prowess to prognosticate and identify promising drug candidates.

Yet, it is imperative to acknowledge certain limitations inherent to our study. Foremost, although we have 
successfully identified some necroptosis-related prognostic gene markers pertinent to SKCM, further validation 
through in vitro and in vivo experiments is imperative for a more comprehensive understanding. Secondly, con-
sidering that the clinical cohorts under scrutiny are predominantly of Caucasian ethnicity, a broader validation 
encompassing diverse ethnic cohorts becomes indispensable. In conclusion, the imperative to undertake multi-
center clinical cohorts for exhaustive validation underscores the next critical juncture in advancing our findings.

Conclusion
In summation, our study undertook a meticulous analysis of necroptosis-related genes, encompassing their 
multifaceted influence on the immune microenvironment, clinicopathological attributes, and overall prognosis. 
The culmination of our efforts resulted in the establishment of a robust necroptosis risk model, complemented by 
an insightful antitumor drug sensitivity assessment. This collective endeavor not only augments the repertoire of 
potential biomarkers but also holds promise for enhancing the prognostic and therapeutic landscape of patients 
afflicted with clinical SKCM. The implications of our findings extend to the realm of personalized treatment 
strategies, poised to address the distinct melanoma subtypes exhibited by diverse patients.

Data and code availability
The datasets generated and analyzed during the current study can be found in the TCGA(https:// portal. gdc. 
cancer. gov/ repos itory), GEO database(http:// www. ncbi. nlm. nih. gov/ geo/), including GSE54467,GSE53118,GS
E65904,GSE19234,GSE78220, and GSE15605, and UCSC repository (https:// xenab rowser. net/ datap ages/). The 
corresponding author will provide the code used in this work upon reasonable request.
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