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Physics constrained unsupervised 
deep learning for rapid, high 
resolution scanning coherent 
diffraction reconstruction
Oliver Hoidn *, Aashwin Ananda Mishra  & Apurva Mehta 

By circumventing the resolution limitations of optics, coherent diffractive imaging (CDI) and 
ptychography are making their way into scientific fields ranging from X-ray imaging to astronomy. 
Yet, the need for time consuming iterative phase recovery hampers real-time imaging. While 
supervised deep learning strategies have increased reconstruction speed, they sacrifice image 
quality. Furthermore, these methods’ demand for extensive labeled training data is experimentally 
burdensome. Here, we propose an unsupervised physics-informed neural network reconstruction 
method, PtychoPINN, that retains the factor of 100-to-1000 speedup of deep learning-based 
reconstruction while improving reconstruction quality by combining the diffraction forward map 
with real-space constraints from overlapping measurements. In particular, PtychoPINN gains a 
factor of 4 in linear resolution and an 8 dB improvement in PSNR while also accruing improvements 
in generalizability and robustness. This blend of performance and computational efficiency offers 
exciting prospects for high-resolution real-time imaging in high-throughput environments such as 
X-ray free electron lasers (XFELs) and diffraction-limited light sources.

Coherent diffractive imaging (CDI) is a state-of-the-art imaging technique that uses diffraction from a coherent 
beam of light or electrons to reconstruct an image of a specimen without the need for optics. This microscopy 
technique is useful because it overcomes the lens aberrations of traditional lens-based imaging, thus allowing 
imaging at finer scales than previously possible. As a general approach CDI has found application in a broad range 
of settings, including nanoscale imaging through Bragg coherent diffractive imaging reconstruction (BCDI), 
X-ray ptychography, optical super-resolution, and astronomical wavefront sensing1–3.

The main challenge of CDI, known as the phase retrieval problem, originates from the fact that detectors only 
record the intensity (i.e., squared amplitude) of the diffracted wave, not its phase. The phase carries essential 
information about the illuminated real-space object, and its loss stops the direct calculation of an image from 
the recorded diffraction. A breakthrough development over two decades ago outlined an iterative approach to 
solve the inverse problem of phase retrieval and made CDI image reconstruction possible4. Unfortunately, these 
iterative algorithms are slow and typically computationally expensive5, which consequently precludes CDI in 
high-throughput or in situ settings, such as at x-ray free electron lasers (XFELs). In addition, such methods often 
suffer from noise sensitivity and limitations in robustness.

A considerable body of literature focuses on applying deep learning (DL) to inverse problems, with signifi-
cant success in employing neural networks (NNs) to solve the CDI phase problem much more rapidly than 
conventional iterative methods6–8. Early efforts used supervised learning to train these deep learning models and 
achieved several-orders of magnitude speed improvements, accompanied by two major drawbacks: degradation 
in reconstruction quality and the need for large volumes of high-quality labeled training data. More recently, 
strategies such as incorporating the diffraction forward map into deep learning models have been introduced 
to eliminate the requirement for labels.

Despite the promise of these developments, existing physics-informed neural networks (PINNs) for CDI 
have not explored physical priors or constraints beyond the diffraction forward map and discrete Fourier trans-
form (DFT) sampling requirements, nor have they modeled any stochasticity of the relevant physics. Both these 
approaches introduce Inductive Biases in the learning algorithm9,10, enabling better generalization to test samples 
outside the explicit training set while also reducing the need for large corpora of training data. As an illustration, 
incorporation of physics based knowledge via hard constraints reduces the region in solution space to be explored 
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and thus reduces the need for large training datasets11. Similarly, incorporating uncertain or incomplete domain-
specific knowledge via the use of probabilistic loss functions leads to improved convergence and generalizability11. 
In this light, it is conceivable that incorporating additional physics information in the model architecture and 
developing principled probabilistic loss functions may enhance both accuracy as well as generalizability, while 
also maintaining the speed of prior supervised learning approaches.

In this work, we develop the PINN computational approach to CDI, specifically for ptychographic reconstruc-
tion. Ptychography is defined as a conventional CDI technique with overlap, originally introduced to calculate 
the phase of Bragg reflections from crystals. It represents an amalgam between Scanning Transmission X-ray 
Microscopy (STXM) and Coherent Diffraction Imaging (CDI). Ptychography utilizes convolutions in Fourier 
space between an object’s diffraction pattern and the transform of the illumination function. This involves the 
measurement of manifold diffraction patterns via the scanning of an X-ray probe over the specimen, while 
using the overlap between adjacent illuminations for over-determination. In this light, it is often also referred to 
as scanning CDI. When coupled with reconstruction approaches, this leads to robust computational imaging.

In this study, we integrate three novel elements for Machine Learning based approaches to ptychography: 
unsupervised training using the diffraction forward map, additional physics-based constraints informed by the 
ptychography setup, and an explicitly probabilistic treatment of photon counting (Poisson) statistics. We find 
that this unique combination of model features merges the advantages of a standard PINN approach, namely 
speed and unsupervised training, with significantly better generalizability and reconstruction accuracy than 
other NN-based solvers, including physics-informed approaches.

Methods, models and tests
Approach
Physics-based CDI reconstruction methods are accurate because they invert the physically correct forward map 
of far field diffraction, making them capable of finding the optimal solution, in principle, for any input. However, 
due to the difficult nonconvex optimization problem, these methods require computationally expensive itera-
tive solution schemes. Additionally, iterative reconstruction is oblivious to regularities in the input data, so each 
new diffraction signal requires computation commencing from scratch. In contrast, NN-based reconstruction 
methods take a different approach: they may not incorporate domain knowledge of the diffraction physics but 
instead rely on a large amount of training data to fit a flexible black box model from scratch. The inductive biases 
introduced in the learning algorithm are chiefly from the choice of the model architecture. For instance, the 
use of convolutional and pooling layers renders the final model approximately translation invariant. The lack 
of domain knowledge-based inductive biases and physical consistency-enforcing constraints in conventional 
NN-based methods cause them to have reduced accuracy and generalization with respect to the underlying 
physics, although they may capture particular data regularities well. Additionally, conventional neural networks 
are trained via supervised learning approaches. Thus, they require large corpora of labeled data for training, and 
the limited diversity of the training data brings in bias. Nonetheless, the single forward pass nature of NN-based 
methods makes them intrinsically rapid at inference time.

From this perspective, physics-informed neural networks (PINNs) attempt to unite the best of both worlds 
(Archetypal PINNs utilize a soft-constraint on the solution space by using the residual of the governing Partial 
Differential Equation as a regularization term. Our PINN model incorporates domain physics information in 
the architecture of the model). By strongly constraining a neural network model’s hypothesis space to exclude 
parameter combinations that generate unphysical solutions, we can predispose a model towards physically correct 
solutions while also considerably reducing the need for training data. As a concrete starting point, defining the 
model’s loss function over the forward-mapped (i.e., far field-diffracted) NN output – instead of the immediate 
NN output – forces the NN to learn diffraction physics rather than merely fit a priori arbitrary input/output pairs. 
This is the foundation for prior PINN approaches for unsupervised CDI reconstruction6,7.

Map formulation
With this background in place, we develop a new approach for ptychographic reconstruction based on a com-
bination of NN layers, explicit constraints, and the forward map of far-field diffraction.

To begin, the reconstruction problem requires approximating a mapping G : X → Y  from the diffraction/
reciprocal-space domain X to the real-space domain Y. Because we wish to avoid supervised training, we rely 
on an autoencoder formalism that composes G with a second mapping F : Y → X . The output of the autoen-
coder is then x̂ = F(G(x)) , where x is the (complex) diffracted wave field (The measured diffraction intensity 
is therefore I ∝

∼
|x|2).

In prior PINN approaches to CDI reconstruction, F is typically the forward map of far-field diffraction. Here, 
we instead start by subdividing F into two parts: a constraint map Fc : Y → Y  and a diffraction map Fd : Y → X , 
such that F(Y) = Fd(Fc(Y)) . In most practical settings, diffraction amplitudes are centrosymmetric even for 
non-centrosymmetric objects. To break this centrosymmetry and make the inversion well-posed, Fc imposes 
real-space constraints derived from overlapping diffraction measurements. F depends on parameters θ of the 
experimental geometry (including the probe position), so we relate it to a functional F , such that F = F(θ) . 
Notably, this formulation omits explicit dependence on the probe illumination function P(r) of the diffraction 
map Fd because we assume P(r) to be known. In the analysis of simulated data we must therefore provide the 
ground truth P(r) to the model, while for experimental data it is necessary to estimate P(r) using an iterative 
solver such as ePIE.

In our concrete implementation, an entire training set is composed of a collection of diffraction images 
grouped into samples of four 64× 64 diffraction images each. We use i to index individual samples in a dataset 
and k ( k ∈ K = {0, 1, 2, 3} ) to index individual images in a sample; samples and images are noted xi and xki  , 
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respectively. In general the samples may be overlapping (i.e., an individual image appears in more than one 
sample), but the only requirement for training is that images within a single 64× 64× 4 sample, {xi} , overlap in 
real space. (For the particular datasets presented in this paper the measurement pattern of probe positions over 
the object is a grid, and the assignment of images to 64× 64× 4 samples corresponds to sliding a 2× 2 window 
over the grid of scan point positions).

Each sample xi is paired with its matching 2D Euclidean probe coordinates, ri ( ri ∈ θ ). Correspondingly, the 
reconstruction yi = G(xi) is a 3D tensor of shape 32× 32× 4 . (The factor-of-two difference in size between xi 
and yi satisfies the oversampling requirement for invertibility of the discrete Fourier transform12). Finally, to 
distinguish between the two real-space representations we let ȳi = Fc(yi) . We denote the amplitude and phase 
of ȳ as A and φ , respectively, throughout this paper.

The inverse map G consists of an encoder-decoder architecture with a similar structure to PtychoNN and Fd 
is mostly defined by diffraction physics. The element of most interest is Fc , which we detail below.

Real‑space constraints
In CDI reconstruction the phase problem manifests as invariances of the diffraction amplitude to coordinate 
inversion and translation of the real-space object. In the case of scanning CDI this must be solved using real-
space constraints based on overlapping measurements.

In order to detail how the real-space constraint map, Fc(ri) , is applied to yi , we can break it down into two 
steps. Initially, we sum the individual yki  to create a unified reconstruction ŷi with a shape of 64× 64:

where Pad2d denotes zero-padding a 32× 32 tensor to 64× 64 and T(δr, y) is the translation of a 2D tensor y 
by the vector δr . µi is the origin of a local coordinate system for the group of scan points and is normally set to 
their centroid position, for convenience. ⊘ represents elementwise division, while 1 stands for a 32× 32 tensor 
composed entirely of ones. Therefore, the divisor �k∈KT(rki − µi , Pad2d(1)) has the role of a normalizing tensor.

The purpose of this first transformation is to construct a larger real-space image ŷi that encompasses the 
entire solution region. The second, and arguably more critical, step enforces translational symmetry of the 
reconstruction via shifts in the relative probe position. This step also computes the exit wave, illuminating the 
shifted 2D object ŷi with P(r) and transforming it into a 3D object that matches the required input format of Fd:

Here, O(r) represents the ground-truth object, with the domain of its discrete approximation (left hand side) 
confined to a 32× 32 patch centered at rki .

We can compare this approach to iterative scanning CDI reconstruction schemes, which enforce real-space 
constraints in a different way. In methods such as ePIE, the optimization loop is organized around alternating 
error corrections in real and reciprocal space. In the ‘backpropagation’ step of ePIE, the error in the reconstructed 
diffraction amplitude for one measurement – equivalent to our formulation’s |xki | − |x̂ki | – induces an update 
of the O(r) guess via inverse DFT. In the training of PtychoPINN, errors from the |K| individual patterns are 
converted into model parameter updates instead of reconstruction updates, and this is done in parallel instead 
of sequentially.

Probabilistic output and loss function
We choose the model output to be a collection of independent Poisson distributions parameterized by the 
forward-mapping of the final-layer output of the NN. This reproduces the correct photon-counting statistics of 
the diffraction measurement and allows us to calculate a likelihood, with respect to the Poisson parameters, for 
the distribution of per-pixel detected photon counts. The negative log over these Poisson likelihoods is a priori a 
more principled loss function than the typical choice of mean absolute average (MAE) deviation between target 
and predicted pixel values.

Explicitly, the loss function is

where �ijk(x̂) = x̂2ijk , x
2
ijk is the number of photons detected in a single pixel (its square root xijk is the associated 

target amplitude), �ijk is the matching final-layer output of the CNN, i and j index the detector pixel coordinates, 
and k indexes separate images within a diffraction set.

For the above probabilistic formulation of the data, model output, and loss function to be self-consistent it is 
necessary for the units of the diffraction pixel values to be (unscaled) photon counts. A typical diffraction inten-
sity is 109 photons per exposure whereas the magnitude of activations within the NN – including, in particular, 
the reconstructed real-space amplitude – should be of order unity. To invertibly scale the input (and output) we 
define a global normalization parameter that we initialize using a simple heuristic based on the mean photon 
count of images in the training dataset and unitarity property of the Fourier transform. This normalization 
parameter can optionally be either fixed or optimized during training.

PtychoPINN architecture
With the approach now laid out, we introduce its implementation in the form of the deep learning frame-
work PtychoPINN. As illustrated in Fig. 1, PtychoPINN uses an autoencoder architecture that incorporates 2D 

(1)ŷi = �k∈KT(rki − µi , Pad2d(y
k
i ))⊘�k∈KT(rki − µi , Pad2d(1)),

(2)ȳki = T(µi − rki , ŷi)P(r) ≈ O(r)P(r − rki ).

Loss(x, �(x̂)) =
∑

i,j,k

log fPoiss(x
2
ijk; �ijk),
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convolutional, average pooling, and upsampling layers in addition to custom layers that scale the network input 
(and output) and apply the constraint transformations (1) and (2). All convolutional layers use rectified linear 
unit (ReLU) activations, and as in the BCDI model AutophaseNN we incorporate sigmoid and tanh activations 
to limit the domain of the phase and amplitude of ȳi to [0, 2π] and [0, 1], respectively7.

Data generation and training
To prepare the model’s training and evaluation data we begin with a collection of complex-valued images. We 
consider three types of images: simulated compositions of randomly-oriented lines (high aspect ratio features); 
samples with fine, isotropic features from a simulated Gaussian random field; and large features sampled from 
experimentally-derived phase and amplitude from x-ray ptychographic measurements of an etched tungsten 
test sample, which we retrieved from a publicly available dataset13. Representative samples of each dataset type 
are shown in Fig. 2, labeled respectively as Lines for randomly-oriented lines, GRF for Gaussian Random Field 
and ‘Large features’ for the experimentally-derived data of Ref.13.

Each of these datasets is characterized based on isotropy, sharpness, and the characteristic lengths in their 
real-space structure. Isotropy refers to uniformity of the statistical structure across all directions, i.e., invariance 
to rotation, reflection, and translation. The characteristic length signifies the spatial scale at which the correlation 
between two points diminishes. Sharpness refers to the granularity of the distinguishing features.

As summarized in Table 1, the GRF dataset is both isotropic and sharp, and has an extremely small charac-
teristic length. In comparison, the ‘Lines’ objects, which consist of overlays of oriented edge features, are sharp 
but lack isotropy. As is the case in anisotropic media, their characteristic lengths have a direction-dependence. 
Finally, the ‘Large features’ dataset presents a distinct combination of anisotropy and coarseness. Like ‘Lines’, it 
lacks isotropy, and the characteristic length of its features is large in two dimensions—whereas that of ‘Lines’ is 
large in only one dimension.

For each real-space object dataset we simulate a collection of diffraction patterns corresponding to a rectan-
gular grid of scan points on the sample and a known (complex-valued) probe function. Given the real-space 
object O(r) and far-field diffraction forward map Fd , the simulated diffraction pixel values are random samples 
from fPoiss(Fd(O(r))2) , where fPoiss is the Poisson distribution.

For all object types except ‘Large features’, each training dataset contains 49,284 diffraction patterns densely 
sampled from 9 simulated objects (5476 patterns per object), and the size of each simulated object is 392× 392 
pixels. (The ‘Large features’ dataset is limited to a single object with 16,100 diffraction patterns, corresponding 

Figure 1.   Neural network architecture and training configuration of the PtychoPINN model.
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to its smaller underlying experimental dataset.) The probe positions were sampled on a nested rectangular grid 
with a spacing of 8 pixels between solution regions and a spacing of 4 pixels probe positions within a solution 
region. (As defined in 2.1.2, a solution region comprises a 2× 2 local grid of overlapping diffraction measure-
ments.) To generate diffraction from an object patch we assume the ground truth probe illumination function 
P(r) and take as a simulation parameter the expected number of photons incident on-detector, which we set to 
109 photons for all simulated data presented in this paper.

To train the model parameters we use the Adaptive Moment Estimation (ADAM) optimizer with an initial 
learning rate of 0.00114. We train for 50 epochs and with a batch size of 16, which takes approximately 10 minutes 
on an Nvidia RTX 3090 GPU.

Results and discussion
Numerical experiments
Figure 3 compares the reconstruction of artificially generated objects-specifically, those from the ‘lines’ data type 
in Fig. 2-using PtychoPINN and the supervised learning baseline, PtychoNN. PtychoPINN exhibits minimal 
degradation in the real-space amplitude and phase. In contrast, the supervised learning baseline experiences 
significant blurring. The amplitude Fourier ring correlation at the 50 percent threshold (FRC50)–a useful measure 
of linear resolution–is 165.4 pixel−1 for PtychoPINN, a notable improvement to the baseline’s 22.0 pixel−1 . Addi-
tionally, PtychoPINN’s peak signal-to-noise ratio (PSNR), a standard super-resolution metric, is 13 dB higher.

We further assessed the model’s performance across diverse data by including Gaussian random field (GRF) 
generated images and the ‘Large features’ object derived from experimental measurements (Table 2). For each 
image type, PtychoPINN significantly outperforms the baseline PtychoNN in both phase and amplitude, as per 

Figure 2.   Datasets. Examples of amplitude images from three distinct dataset types used in this study. The 
‘Lines’ and ‘Fines Features’ (Gaussian Random Field - GRF) datasets provide contrasting conditions of local 
symmetry (i.e., isotropy). The Gaussian random field process produces characteristic speckle, while ‘Lines’ 
consists of sharp, oriented edges. ‘Large Features’ is anisotropic but coarser than both ‘Lines’ and ‘Fine Features’.

Table 1.   Comparing the characteristics of the three dataset types used in this study.

Isotropy Sharpness Characteristic length

GRF Yes Yes Small

Lines No Yes Mixed

Large Features No No Large

Figure 3.   Representative Amplitude reconstruction comparison for the Lines dataset.
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the MAE metric. However, enhancements in PSNR and FRC50 were comparatively modest for images featuring 
larger (‘Large Features’) or more equiaxed (‘GRF’) features, when juxtaposed with the improvements observed 
for the lines dataset.

As shown in Fig. 4, both PtychoPINN and PtychoNN provide good reconstructions of the ‘Large features’ 
amplitude. However, the baseline model’s phase reconstruction is less favorable, with an FRC50 of 23.4 pixel−1 
compared to PtychoPINN’s 93.7 pixel−1 . In regions of the object with low scattering amplitude, phase reconstruc-
tion is less reliable than that of the amplitude under both models. However, PtychoPINN is more robust, produc-
ing significantly fewer artifacts in those regions compared to PtychoNN (Fig. 4b and c). Crucially, improving 

Table 2.   Three reconstruction metrics for the baseline supervised-learning model (PtychoNN) and 
PtychoPINN, repeated for datasets with contrasting asymmetry and feature sharpness: Lines, GRF and 
‘Large features’. For each combination of dataset (top column header) and reconstruction metric, the best 
amplitude and phase reconstructions are bolded. Lines, with its sharp, asymmetric features, yields the 
largest improvements in reconstruction of the amplitude image (bottom left of table). The baseline model 
recovers large amplitude features quite well (rightmost column), but PtychoPINN is more robust in its phase 
reconstruction across all datasets. *We omit metrics for phase images of the ‘Lines’ datasets, as these are all 
zero-valued.

Model Metric

Lines* GRF Large features

φ A φ A φ A

PtychoNN

MAE – 0.201 0.0335 0.0153 0.219 0.0038

PSNR (dB) – 59.6 75.6 82.4 56.7 92.9

FRC50 ( pixel−1) – 22.0 64.0 65.2 23.4 34.0

PtychoPINN

MAE – 0.0473 0.0109 0.00507 0.149 0.00303

PSNR (dB) – 72.6 85.2 91.9 60.6 95.0

FRC50 ( pixel−1) – 165.4 171.5 171.3 93.7 38.7

Figure 4.   Amplitude and phase reconstruction. Comparison of PtychoPINN to a supervised learning method, 
PtychoNN, on the ‘Large features’ object. As the amplitude object lacks sharp features, PtychoNN reconstructs it 
nearly as well as PtychoPINN. However, it tends to invert the phase structure in low-amplitude regions.
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the estimation of the object in phase space not only results in a higher-quality final image, but also ensures the 
problem is well-posed15 and leads to a unique solution.

The real-space image is the full, complex-valued O(r) – not only its phase or amplitude, as portrayed for 
convenience in Fig. 3 and elsewhere. A competent image reconstruction requires both the amplitude and phase 
of O(r) and, moreover, the phase image sometimes proves more informative than the amplitude image, such as 
in the case of biological materials that have small variations in the differential scattering cross-section but good 
contrast in φ(r).

At a high level, we summarize the resolution enhancement as a factor of 4, based on the FRC50 metric from 
the ‘Lines’ and ‘GRF’ datasets in Table 2, both chosen for their high spatial-frequency features. For PSNR the 
average improvement is approximately 8 dB, derived from the aggregate of all datasets in Table 3.

Figure 5.   Model Generalization. This presents a comparison of the reconstructions produced by PtychoPINN 
and the baseline model, PtychoNN. Both models are trained using data derived from the amplitude object 
depicted in panel (a). Panels (b) and (c) show the training image as reconstructed by PtychoNN and 
PtychoPINN, respectively. The trained models then reconstruct diffraction from an out-of-distribution object 
(d), resulting in images (e) and (f) for PtychoNN and PtychoPINN, respectively. Both models degrade out-of-
distribution, but PtychoPINN proves more robust.

Table 3.   Numerical study of out-of-distribution robustness corresponding to the data of Fig. 5.

Dataset PSNR FRC50

PtychoPINN

Train
A 78.41 160

φ 69.11 158

Test
A 61.11 42

φ 59.87 41

Baseline

Train
A 73.72 76

φ 72.11 74

Test
A 57.91 22

φ 55.77 18
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Ablation study
To better understand the specific aspects of the PtychoPINN architecture that contribute to its improved perfor-
mance, we conducted an ablation study evaluating the impact of PINN-based training and real-space constraints. 
The comparison of reconstruction accuracy (MAE), resolution (Fourier ring correlation, FRC), and peak signal-
to-noise ratio (PSNR) in Supplementary Table S1 suggests that the combination of overlap constraints and PINN 
structure is the most significant factor in improving performance. Combination is an important qualifier, as 
neither the PINN architecture nor the overlap constraints yields a substantial improvement in reconstruction 
accuracy when used individually.

Out‑of‑distribution generalization
To complement these standard evaluation metrics we tested PtychoPINN’s out-of-distribution generalization. 
For this purpose, we extracted two distinct 392× 392 patches from a larger image and used 26, 896 diffraction 
patterns, simulated from just one patch for training both the PtychoPINN model and the baseline model (Fig. 5).

In order to provide a rigorous test of the models’ out-of-distribution performance, we intentionally selected 
two image patches with considerable divergence in their features. This choice of markedly different images creates 
a more stringent test of out-of-distribution behavior than the other datasets that we have presented.

Evaluating the models’ ability to reconstruct both in-distribution and out-of-distribution patches provides 
insight into their generalization capacity. As shown in Fig. 5, a comparison between panels (c) and (f) (repre-
senting PtychoPINN) and panels (b) and (e) (representing the baseline - PtychoNN - model) indicates that 
PtychoPINN experiences a less severe drop in out-of-distribution reconstruction quality, implying better gen-
eralizability compared to the baseline. This observation is further backed by numerical comparison (Table 3). 
As expected, both models perform less well out-of-distribution, with a more pronounced decline in the FRC50 
(resolution) metric than the PSNR metric. However, PtychoPINN outperforms the baseline model, with almost 
double the resolution.

Performance comparison to Iterative Solvers
The reconstruction of a dataset of 1024 diffraction images using the trained model takes 0.3 seconds. In com-
parison, a CPU implementation of ePIE (without position correction) completes in 165 seconds.

Discussion
In summary, we present an unsupervised learning approach for scanning coherent diffraction imaging (CDI) that 
integrates real-space constraints with a physics-informed neural network (PINN) architecture (PtychoPINN) to 
yields substantial improvements in reconstruction accuracy and resolution while preserving the inherent speed 
of the previous NN-based approaches.

In the ensuing discussion, our primary objective is to highlight features of PtychoPINN that would be most 
important to a domain scientist intending to apply it. When possible, we will also take the perspective of a 
machine-learning researcher to understand why PtychoPINN exhibits these characteristics. We specifically con-
centrate on three essential attributes: unsupervised training, generalizability, and the interplay between resolution 
and accuracy.

Unsupervised training
The use of unsupervised training in our approach offers three important advantages over supervised learning 
methods in an experimental setting. Firstly, supervised methods require labeled data, placing the onus on the 
experimenter to first gather or simulate numerous ptychographic datasets, and then painstakingly reconstruct 
the real-space images using iterative methods. Only then can a faster neural network-based method be trained.

Secondly, the demand for labeled data in supervised learning restricts the ability to retrain or update the 
model ’on-the-fly.’ Unsupervised training, on the other hand, allows the use of training samples drawn from the 
same distribution as the test-time samples. This reduces the risk of any issues related to out-of-distribution gen-
eralization that the model may otherwise encounter, which aids robustness – particularly in real-time settings.

Figure 6.   Cross-training comparison. Several models are first trained on locally-symmetric GRF objects, then 
reconstruct strongly-contrasting, asymmetric compositions of lines. The supervised model (b) struggles to 
reconstruct the oriented features in ground truth image (a) while the PINN – both without (c) and with (d) 
ptychographic overlap constraints – fares better.
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Lastly, supervised learning methods can introduce biases due to the lack of diversity in the image types within 
the labeled training data, which in turn reduces the model’s generalizability. We delve deeper into addressing 
this issue in the following sections.

Generalizability
The full PINN model has another inherent advantage: superior generalizability. Even the basic PINN (that 
is, PtychoPINN stripped of overlap constraints) exhibits better out-of-distribution generalization compared 
to the supervised learning baseline in a qualitative out-of-distribution benchmark, shown in Fig. 6. With full 
PtychoPINN, this advantage becomes more pronounced (Fig. 6d).

From the point of view of the experimenter, the benefit of generalizability complements that of unsupervised 
training. An unsupervised architecture facilitates each instance of training; conversely, a more generalizable model 
is more robust and does not need to be as frequently retrained. We attribute PtychoPINN’s superior generaliz-
ability to the PINN structure, which necessitates the inverse map G(X) to learn diffraction physics through its 
connection to the far-field diffraction map Fd and diffraction-space loss function L. This connection enforces 
an approximation of physical consistency between the real-space reconstruction and the measured diffraction. 
Conversely, supervised training typically leads to violations of even basic conservation rules, such as the FT’s 
unitarity (i.e., �x� ≈ �Fc(G(x))� = �Fd(ȳ)� = �x̂� , by Parseval’s identity and ȳ ≡ Fc(G(x))).

Furthermore, given that x̂ = Fd(ȳ) is not bijective and the loss function does not directly rely on ȳ , the PINN 
structure inherently overlooks variations in real-space structure that the diffraction measurement can’t discern. 
Conversely, supervised training is susceptible to wasting model capacity by memorizing the training data’s real-
space structure. All told, supervised learning approaches face challenges in generalizability due to the difficult 
task of reconstructing an a priori arbitrary map X → Y  with less guidance by useful inductive biases.

As an aside, generalizability is closely connected to the concept of model robustness. Robustness depends on 
not only the network architecture but also the choice of loss function and properties of the data. Experimental 
data such as CDI images are often plagued by noise and distortions that must be modeled or explicitly removed 
for good results16. While our framework takes a step in this direction by modeling experimental Poisson noise 
via its training objective, we leave a full treatment of the topic outside of the paper’s scope.

Reconstruction quality
The advances in reconstruction quality presented by PtychoPINN have dual significance: first, in their practical 
implications for scientific applications and second, for potential insights into the source of improvement within 
the model structure. To explore the latter we find it useful to distinguish between real-space and reciprocal-space 
reconstruction accuracy. Both the full-featured version of PtychoPINN and the ‘basic PINN’ variation, which 
lacks overlap constraints, produce good reconstructions of the diffraction measurement. Only the full model, 
however, produces an accurate real-space reconstruction.

We can reconcile the seeming contradiction between the basic PINN’s accurate diffraction reconstruction 
and inaccurate real-space images by examining the latter. When we compare 32× 32 real-space reconstruction 
patches from PtychoPINN, PtychoNN, and a basic PINN (Supplementary Fig. S1), we observe that the basic 
PINN generates superposed pairs of line features that are inversions of one another through the solution patch’s 
origin. Despite the basic PINN’s poor real-space accuracy, its reconstructed line features have similar sharpness 
to the full model equivalents. Furthermore, the real-space reconstructions of the basic PINN and the full model 
are highly similar up to the mapping O(r) → (O(r)+ O(−r))/2.

The above observations demonstrate that the basic PINN recovers most of the information in the ground 
truth image but has poor real-space accuracy because it cannot distinguish between pairs of features that are 
equivalent to one another under coordinate inversion. (In particular, O(r), O(−r) , and (O(r)+ O(−r))/2 have 
identical diffraction amplitudes for this zero-phase demonstration dataset.) The role of the real-space overlap 
constraits in the full model is to correct the alignment of real-space features by breaking the degeneracy associ-
ated with inversion symmetry, which leads to a large improvement in real-space accuracy.

Conclusion and future directions
In conclusion, we present an autoencoder framework for scanning CDI into which we incorporate physical 
principles using PINN training and real-space constraints, thus gaining greatly improved accuracy, resolution, 
and generalizability compared to existing supervised deep learning-based lensless imaging methods. This new 
model, named PtychoPINN, inherits the intrinsic speed of NN approaches and is trained without labels. These 
attributes combine to make it a promising candidate for practical real-time, high-resolution imaging that tran-
scends the resolution of lens-based systems without sacrificing imaging throughput.

To train PtychoPINN, we incorporated a probabilistic (Poisson) model output and corresponding negative 
log likelihood (NLL) objective, thus modeling the Poisson noise intrinsic in experimental data. Our prelimi-
nary studies show that that the NLL objective significantly improves reconstruction quality in photon-limited 
scenarios. This suggests that selecting an appropriate loss function is important in deep learning models that 
incorporate physics. In a similar vein, sources of stochasticity such as probe jitter introduce uncertainties into the 
reconstruction that may degrade image quality. To mitigate this, we advocate for the exploration of probabilistic 
methods to improve performance and provide a principled estimation of model uncertainties. A more immediate 
omission in our framework is its lack of a mechanism for error inference in probe positioning – an important 
feature for robust experimental use. We are developing this capability in ongoing work.
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Data availability
All data and code used in this study are available on GitHub. The repository, which includes both raw datasets 
and scripts for reproducing the simulations and analyses, can be accessed at github.com/hoidn/PtychoPINN.
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