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GPCR molecular dynamics 
forecasting using recurrent neural 
networks
Juan Manuel López‑Correa 1,3, Caroline König 1,2,3 & Alfredo Vellido 1,2,3*

G protein-coupled receptors (GPCRs) are a large superfamily of cell membrane proteins that play an 
important physiological role as transmitters of extracellular signals. Signal transmission through the 
cell membrane depends on conformational changes in the transmembrane region of the receptor, 
which makes the investigation of the dynamics in these regions particularly relevant. Molecular 
dynamics (MD) simulations provide a wealth of data about the structure, dynamics, and physiological 
function of biological macromolecules by modelling the interactions between their atomic 
constituents. In this study, a Recurrent and Convolutional Neural Network (RNN) model, namely Long 
Short-Term Memory (LSTM), is used to predict the dynamics of two GPCR states and three specific 
simulations of each one, through their activation path and focussing on specific receptor regions. 
Active and inactive states of the GPCRs are analysed in six scenarios involving APO, Full Agonist 
(BI 167107) and Partial Inverse Agonist (carazolol) of the receptor. Four Machine Learning models 
with increasing complexity in terms of neural network architecture are evaluated, and their results 
discussed. The best method achieves an overall RMSD lower than 0.139 Å and the transmembrane 
helices are the regions showing the minimum prediction errors and minimum relative movements of 
the protein.

G protein-coupled receptors (GPCRs) are a large and diverse superfamily of eukaryotic cell membrane pro-
teins. They are receptors for a large diversity of extracellular signals including light, pressure, chemical ligands, 
neurotransmitters and metabolites, among others1–4, and play an important physiological role as transmitters 
of extracellular signals to the cell5.

Due to their participation in a wide range of activation pathways and important biological processes and 
because of their high affinity binding to drugs, GPCRs have become a prime research concern in pharmacology 
and a major target for drug discovery6. In fact, approximately 34% of all the drugs approved by the US Food 
and Drug Administration5 target GPCRs with the aim of either activating (agonist) or deactivating (antagonist) 
the receptor7.

The functionality of proteins is determined by their 3D structural configuration, which varies according 
to the binding processes of orthosteric and allosteric ligands, the lipidic environment and post-translational 
modifications8. These sources of variability elicit dynamical changes in the GPCR that result in the generation 
of specific signals.

The understanding of these signal transmission mechanisms in the receptor would provide us with a key to 
drug development and testing. The GPCR structure includes seven trans-membrane (TM) helices, linked by 
intra-cellular loops (ICL) and extracellular loops (ECL). All these regions play a role in the activation process9, 
but the TM regions are of particular importance10, as they have to undergo a conformational change to transmit 
the signal trough the cell membrane.

Molecular dynamics (MD) simulations provide a wealth of data about the structure, dynamics, and physi-
ological function of biological macromolecules by modelling the interactions between their atomic constituents. 
The computer-assisted analysis of MD simulation data should allow the study of the receptors dynamic behavior, 
particularly in their interaction with drugs. Machine Learning (ML) tools can be particularly efficient in such 
endeavours.

This study investigates the ability of a recurrent neural network (RNN) model, namely Long Short-Term 
Memory (LSTM)11, to predict the dynamics of two GPCR states and three specific simulations of each one, 
through their activation path. Most importantly, the relative relevance of different regions of the receptor (TM, 
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ECL, and ICL) for this prediction is also estimated as part of the analysis. A unidirectional LSTM (ULSTM) and a 
bidirectional LSTM (BLSTM) are used to predict the path trajectories for three types of simulations in the active 
and inactive states of the β -2 adrenergic receptor ( β 2AR) GPCR. More specifically, these simulations are analysed 
for the 2RH1 (inactive state) and 3P0G (active state) structures, both with APO, Full Agonist (BI-167107) and 
Partial Inverse Agonist (carazolol). In addition, the LSTM variants are compared to other architectures, such as 
Random Forest (RF) and chains of Artificial Neural Networks (ANN), namely Convolutional Neural Networks 
(CNN) with LSTM (CNN-LSTM).

Advances in biotechnology, X-ray crystallography, and cryoelectron microscopy (cryo-EM) in recent years 
have generated an exponential increase in available GPCR simulation data, easing GPCR analysis, visualisa-
tion, and data-driven experimental designs5. Machine Learning can be used as tool to extract knowledge from 
complex data and different ML models have successfully been applied to many areas in proteomics, including 
the MD domain. They have been applied, for instance, to the study of protein pocket dynamics12, to enhance 
sampling13,14, and to generate new digital structures15,16. Some studies have used ML methods to identify different 
biological function states from MD conformations to explain the allosteric mechanism. For example, Fleetwood 
et al. (2020)17 used ML and statistical approaches (Principal Component Analysis, Random Forest, Autoencoder, 
Restricted Boltzmann Machine, and Multilayer Perceptron) to analyse conformational changes within the soluble 
proteins and ligand binding to a GPCR. Zhou et al. (2018)18, in turn, used Decision Trees and ANNs to classify 
ligand unbound and bound states from MD trajectories of PDZ2 protein. Both models achieved, in turn, 75% 
and 80% of predictive accuracy.

Most recent ML-based approaches concern the use of different variants of Deep Learning (DL) methods. 
Jumper et al. (2022)19 and Baek et al. (2021)20 developed, respectively, the very successful AlphaFold and RoseT-
TAFold models for protein structure forecasting from sequence as input. Other authors have applied CNN 
methods to the prediction of interactions between proteins21, protein with ligand22,22, protein folding, protein 
phosphorylation23, and protein structure classification24. Notice though that the input data for the CNN are 
images described as spacial arrays, whereas the characteristics that describe GPCRs conformation are not struc-
tured. Hayatshahi et al. (2019)25 distinguished otherwise similar allosteric states of proteins adopting conven-
tional ML and DL approaches on extensive MD simulations. Plante et al. 201926 combined a densely connected 
ANN and the pixel representation to identify ligand bound and unbound states.

Recurrent Neural Networks are ANNs where connections between points-nodes can create a cycle. This ena-
bles them to show temporal dynamic behavior. They have been particularly successful in applications to human 
language modelling27. The LSTM models address a limitation of the RNN architecture, namely its inability to 
learn information from the distant past, allowing the network to dynamically learn to forget old aspects of infor-
mation. They have been used to mimic trajectories produced by simulations28,29, achieving accurate short-term 
predictions. They have also shown great potential for sequence processing30, resulting in a large body of literature 
studying the trajectories from simulation systems31.

In Tsai et al. (2020)29, LSTMs were used to predict the temporal evolution of chemical/biophysical trajecto-
ries. Mohamma et al. (2019)32 applied these models to find temporal correlations between atoms. Kadupitiya et 
al. (2020)33 used LSTM for the numerical integrator that solves Newton’s equations in MD simulations33. Other 
authors have applied LSTM over the low-dimensional molecular simulations to detect rare events in the sequen-
tial data34. Liang et al.35 applied them to molecular step-positions forecasting for S-protein on the SARSCoV2 
dynamics. Ludwig et al.(2022) evaluated the performance of BLSTMs in the task of increasing the 3D spacial 
resolution of MD trajectories as a data post-processing step.

We carried out a preliminary study using LSTM36, in which the best representation of amino-acids in 3D 
space to predict MD trajectories of a GPCR receptor as a whole was obtained, but, to the best of our knowledge, 
there is no reported work on MD forecasting by GPCR regions, which is the main concern of the current study.

Materials
GPCR MD simulations
The MD simulations used in this study were created in Google Exacycle cloud computing platform37 as a way to 
improve understanding of the drug efficacy at GPCR receptors. These simulations could be incorporated into a 
valid and functional structure-based drug discovery approach through pathway analysis. The simulations under 
study were created by Kohlhoff et al.38 by computing intensively short MD trajectories in parallel on the cloud 
platform, and are publicly available as source data at the SimTK (https://simtk.org/projects/natchemgpcrdata/) 
repository. The authors of these short simulations further analysed them by assembling larger trajectories using 
extensive sampling with Markov state modeling. We summarily describe these larger simulations next according 
to the description by their authors.

The crystal structure of the membrane for PDB id:2RH1 (inactive) and id:3P0G (active) was created from 
the OPM database39. Inactive (2RH1) and active structures (3P0G) without ligand (APO) in addition to bind-
ing of the receptor to the partial inverse agonist and the full agonist (2RH1 with BI-167107, and 3P0G with 
carazolol)40,41.

The structures were embedded in a bilayer of POPC lipid molecules in a orthorhombic box of size 10.0 × 10.0 
× 8.5 nm. The system was solvated in TIP3P water molecules interspersed with Na+ and Cl- ions for molecular 
stabilisation with cholesterol and a final ion concentration of 0.15 M.

Protein, water, and ions were parameterized with the AMBER03 force field42 and lipids with the Berger uni-
fied atom force field. Carazolol and BI-167107 ligands were extracted from the PDB entries 2RH1 and 3P0G, 
respectively, and parameterized for the general Amber force field (GAFF)43 with acpype44 and antechamber45. 
For simulations in which the agonist and the partial inverse agonist were switched, the ligand positions were 
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changed after superimposing the two crystal structures using all protein residues with atoms within 6Å of either 
ligand. The sizes of the resulting molecular dynamics systems range from 58,406 to 59,044 atoms.

The receptor structures of both N- and C-termini were not fully resolved during crystallography. In 2RH1, 
the structures involve residues from 30 to 342, and for 3P0G, residues from 23 to 344. In intracellular loop 3 
(ICL3), between helices 5 and 6, the missing residues are substituted in 2RH1 and 3P0G with T4 lysosomes and 
a nanobody, accordingly. These residues are 231–262 in 2RH1 and 228–264 in 3P0G. β2AR remains functional 
even in the absence of ICL3.

Hydrogen bonds and hydrogen bond networks enable intramolecular water to act as a facilitator of biomol-
ecule dynamics. During the equilibrium and production experiments, water molecules were able to move freely 
within the simulation system and enter and exit the receptor during the simulations.

Considering ionic lock formation, a salt bridge between intracellular residues E268 and R131 is a feature 
of the receptor’s inactive state and disruption of this ionic lock is involved in receptor activation46. It has been 
demonstrated that the inactive state shows a mixture of ionic locks formed and broken at equilibrium47.

In the extracellular region, the helical movements extend around the mean helical position. The crystal struc-
tures of the active and inactive conformations on the extracellular side are almost identical in the movements 
of helices 2 and 3 (with a difference of less than 1% or less), while the other five helices are shifted from 0.379 Å 
(helix 4) to 0.773 Å (helix 1) in relation to each other. The active structure has a more compact helical forma-
tion than the inactive structure. During the simulation, helices 6 and 7 were compressed in all systems, while 
helices 4 and 5 moved slightly outward. Helix 1 showed the greatest relative movement within the simulations, 
particularly in the inactive structure.

The central region of the transmembrane helix shows the greatest stability compared to the intra- and extra-
cellular sides. This region is usually quite condensed. The most significant distinctions between the active and 
inactive structures are observed in helices 1, 6 and 7. During the simulation, helix 6 appears to be converging 
towards the inactive state when the simulation is initiated from the active conformation. Helix 1, on the other 
hand, moves out in all systems.

The most notable structural differences are seen in the movement of the transmembrane helices in the 
intracellular region. Helices 6 and 7 are particularly distinct between the active and inactive structures, with a 
displacement of 6.951 Å and 3.47 Å respectively. Helices 1, 2, and 4 are further away from the center in the active 
state, while helix 3 is much closer (with a range of offsets from 1.4 to 2.277 Å).

Residues by helix, and limits of the helices by residue id are defined as follows (with residue numbers in 
brackets): Helix 1 (29–60), Helix 2 (67–96), Helix 3 (103–136), Helix 4 (147–171), Helix 5 (197–229), Helix 6 
(267–298), Helix 7 (305–328)48.

Although Kohlhoff et al.38 assembled a larger simulation for the different crystal structures from the short 
simulations using an extensive sampling with Markov state modelling, the simulations in this study are based 
on short trajectories which are released at the source repository by the authors. More precisely, the simulations 
in the study comprise 2, 000 trajectories for each, classified into six types of crystal structure of β2AR: APO for 
the simulations of 2RH1-icl3 and 3P0G-a, Full Agonist (FA) for the simulations of 2RH1-b and 3P0G-b, and 
Partial Inverse Agonist (PIA) for 2RH1-c and 3P0G-c. The receptor consists of 282 amino acids for the inactive 
and 344 for the active states. Each trajectory describes the 3D position of the receptor along 28 consecutive 
time-steps (trajectory length), which are hereon referred to as frames. The time elapsed between each frame is 
500 picoseconds. Activation and deactivation proceed through multiple pathways and typically visit metastable 
intermediate states. The simulation data under study, as in Gutiérrez-Mondragón et al.49, primarily comprise 
intermediate states of each receptor.

Structural sequence domains
GPCRs have three main structural regions, namely a seven-helix TM domain, an extracellular domain built by 
the N-terminus and three ECLs, and the intracellular domain, including the C-terminus and two ICLs50.

Table 1 provides a detailed description of each region of the β2AR-GPCR receptor under study. The 2RH1 
and 3P0G structures contain residues 30-344. Both have gaps in the sequence, where ICL 3 between TM2 and 
TM3 is replaced in 2RH1 and 3P0G with T4-lysozyme and a nanobody, respectively. These residues are 231-262 
for 2RH1, and 228-264 for 3P0G. β2AR remains functional even in the absence these regions.

Figure 1 represents the common structure of a β 2 adrenergic GPCR. In it, the 7 TM, 2 ICL and 3 ECL regions 
are shown. In addition, BI-167107 ligand binding with the protein is displayed in an image inset.

Methods
The long short‑term memory model
LSTM11 is a neural network of the RNN family, designed for the analysis of temporal data. A schematic expla-
nation of how LSTM works is shown in Fig. 2. Summarily, LSTM has an input gate (i), a forgetting gate (f), a 
memory gate (c) and an output gate (o). The input gate decides whether to let the incoming signal go through to 
the memory gate, or block it. The output gate could allow a new signal output, or avoid it trough the memory gate. 
The forgetting cell is responsible for remembering or forgetting the previous state of the memory gate. The update 
of memory gate states is carried out by feeding the previous output gate back onto itself by recurrent connections 
of two consecutive time steps. The reading-and-writing memory cell is controlled by a group of sigmoid gates (x). 
At a given time, the LSTM receives inputs from different sources: the current amino-acid positions Xxyz as the 
input, the previous hidden state of all LSTM units (h), as well as the previous memory gate state c(t−1) . Then, the 
output gate returns the estimated probability of the next 3D amino-acid positions for the sequences (Px, Py, Pz).

In short, LSTM solves one of the limitations of the RNN architecture, namely the inability to learn information 
from the far past. Therefore, LSTMs are able to accumulate information for a long period of time by allowing the 
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network to dynamically learn and forget old aspects of information. In this work, an LSTM model was trained 
with 3D position sequences to predict their next movement.

In this paper, ULSTM, BLSTM, as well as CNN-LSTM as a chain of ANNs are investigated. ULSTM works 
by processing data in the forward direction, while BLSTM processes sequence data in both forward and back-
ward directions with two separate hidden layers51. In addition, the LSTM variants are evaluated with other ML 
approaches, namely RF and CNN, in order to compare the results obtain with model architectures of different 
complexities.

Convolutional neural network
The CNN is a feedforward Neural Network proposed by Lecun et al.52 that has been shown to perform exceed-
ingly well in image and natural language processing tasks53. It can also be used effectively to predict time series. 
Local perception and weight sharing of the CNN model can dramatically reduce its number of parameters, 

Figure 1.   Schematic representation of the β 2 adrenergic GPCR, including TM, ECL and ICL regions in Full 
Agonist (BI-167107) trajectory.

Table 1.   β2AR-GPCRs amino acid distribution by regions for inactive (2rh1) and active (3p0g) states.

Region Amino acid id

N-terminus [0–30)

TM 1 [30–61)

IL 1 [61–68)

TM 2 [68–97)

EL 1 [97–104)

TM 3 [104–137)

IL 2 [137–148)

TM 4 [148–172)

EL 2 [172–198)

TM 5 [198–230)

TM 6 [268–299)

EL 3 [299–306)

TM 7 [306–329)

C-terminus [329–344)
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increasing the effectiveness of its learning process54. The CNN architecture consists mostly of a convolution layer 
and a two-part regrouping layer. Each convolution layer contains a plurality of convolution kernels. Following 
the convolution operation of the convolution layer, the data features are extracted, but their dimension is very 
high, so, and to reduce the computational cost of training, a pooling layer is added after the convolution layer 
to reduce the feature dimension55. In our experiments, a combined CNN-LSTM shallow Neural Network-based 
forecasting model has also been applied. Figure 3 shows an schematic representation of such a model architecture, 
and Table 2 provides a brief quantitative summary of its elements.

Experimental methodology
Data underwent linear max-min normalisation56 and were returned to the original range of values in Angstrom 
(Å) units. The 3D positions of amino acids were extracted for each frame. Note, though, that the original database 
included the positions of atoms, instead of the positions of amino acids. Therefore, the amino acids mass centers 
were calculated and used as 3D positions that represent them. Data prepossessing was performed on the 3D 
positions (x, y, z dimensions) of each residue. Five time frames were used to train the model, and the next frame 
was predicted from these. An overlap of 4 frames was used to select the following sequence on the training set; 
this means that, in the end, each frame was predicted, providing the 5 previous frames in the simulation. Then, 
the average error of all predictions was calculated and reported.

Two thousand trajectories per simulation were used. Simulations are represented in two states: β2AR-2RH1 
(simulations started in inactive state) and β2AR-3P0G (simulations started in inactive state) both for APO, Full 
Agonist (BI-167107) and partial inverse antagonist conforming 6 types of the simulation. We refer to trajectories 
as nClones.

The LSTM model training was carried out using the 3D amino acid position (x, y, z) per frame. We refer 
to the length of a sequence as nSteps-in (which was 5 in our experiments), and the position of the amino acid 
representative data point as the center of mass. The centers of mass of the amino acid were employed as a repre-
sentation of the residue’s position. This center of mass parameter is the best representative of the amino acid in 
the 3D space under LSTM forecasting36. All experiments were carried out in this way.

The parameters of training configuration of the LSTM were: epochs = 100, verbose = 0, activation = relu, 
input shape = (nSteps-in, length of amino acid chain). All the remaining parameters of the Keras57 framework 
were retained by default.

The RF58 algorithm, used for comparison, is a more conventional ML approach that can behave as a regression 
model. The Sklearn library59 implementation was used with default parameters, with the exception of maxdepth 
= number of residues 3 (xyz positions) and randomstate = 0.

For each type of simulation, 10,000 trajectories are available from the database reported in Kohlhoff et al.38. 
Two thousand of these are randomly selected and split into 5 folds (Four of them were used for cross-validation, 
and the remaining hold-out fold was used for test.) each including 400 trajectories. Results do not improve 
by using a bigger number of simulations. Ten iterations of this procedure were performed to obtain statistical 
significance tests.

The experiments were repeated by randomly choosing 2000 trajectories from the original set of trajectories 
(10,000). This procedure generates 10 models that have been evaluated and yields 10 RMSD values per experi-
ment (ML approaches and the 6 types of simulations). Students t-tests (pvalue < 0, 001 and pvalue < 0, 005)60 
were carried out to find statistically significant differences between experiments. Standard deviations and p-values 
are shown in the tables of results.

Figure 2.   Illustration of an LSTM unit. X represent the input data for 3D positions of the amino-acids, and P 
their 3D predicted positions.
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Given the potentially higher flexibility of the loops (ECL and ILC), a specific analysis was performed in 
which only the amino acids belonging to the TM were used for training and prediction. These results can then 
be compared with models obtained by training with the full protein sequences.

The quality of the test predictions was assessed through the Root Mean Square Deviation (RMSD), commonly 
used to assess the similarity between simulated and predicted atomic coordinates and therefore straightforwardly 
generalizable to the centers of mass of the amino acids, as we have have done in this study.

Experimental setup
Three experiments were performed for both GPCR states. The first experiment (E1) evaluates the capability of 
the RF,ULSTM, BLSTM and CNN-LSTM models to predict steps of the GPCR trajectories, discriminating by 
TM, ECL and ICL regions for active and inactives states.

For that, the prediction error of each of the amino acid positions was calculated and compared between 
models, region by region. Similar evaluations were carried out in the second experiment (E2), this time focused 
on the seven TM, comparing the prediction error between the 2RH1 and 3P0G for each TM (TM1 to TM6).

Focusing now on the large dynamics of the ICL and ECL of the GPCR, Experiment E3 evaluates the prediction 
capability of the models on the ICL (ICL1, ICL2) and ECL (ECL1, ECL2, ECL3) regions.

Results and discussion
Our study investigates the capability of LSTM models to predict GPCR MD trajectories for its different states 
and constituent regions. Different GPCR regions may play different roles in the MD associated to each state. The 
investigation of regions individually is therefore relevant.

Figure 3.   Illustration of CNN-LSTM chain of algorithms. n-residues represent the consecutive position of the 
amino acids in the protein.



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:20995  | https://doi.org/10.1038/s41598-023-48346-4

www.nature.com/scientificreports/

As mentioned, prediction errors are reported using the RMSD61, with original range values in Angstroms 
(Å) units. The standard deviation (std)62 between experiment repetitions is also calculated for the RMSD metric. 
Table 3 shows the RMSD and the std in Å for 2RH1 inactive and 3P0G active states, in which prediction errors 
for RF, ULSTM, BLSTM, CNN-LSTM are compared. The results discriminated by APO, PA and PIA simulations 
are also shown in Table 3.

Regarding experiment E1, three questions can be answered:

•	 Which model is the best one? TM, ECL and ICL regions show similar prediction error values for the dif-
ferent models. Furthermore, these errors are not uniform when comparing APO, FA and PIA simulations 
(see italics in Table 3). Despite the increasing complexity of the models evaluated (RF, ULSTM, BLSTM and 
CNN-LSTM), no clear differences were found between them with the exception of RF, which performed 
significantly worse than the rest. Using an Occam’s razor criterion, ULSTM, being the simplest model in 
terms of architecture complexity and computational resources used to obtain this goals, should be selected.

•	 Which GPCR region yields best results and in what analysis? The TM regions are shown to be the best 
predicted regions of the GPCRs (see bold values in Table 3, with significant differences with p < 0.005 for 
β2AR-2RH1 (inactive state in APO) and p < 0.001 for the remaining simulations respect to ICL and ECL . 
Comparing now the ICL and ECL regions, ILC achieve the minimum error for APO, FA and PIA simulations, 
with the exception of the active state of the APO simulation, where the minimum error was obtained for the 
ECL region, however no significance different are shown between these regions.

•	 Are there any substantial differences between active and inactive states? Regarding inactive (2RH1) and 
active (3P0G) states, no strong differences were observed between their regions. Two exceptions are found in 
this analysis, once for the ECL region in the APO state and the TM region in the FA state that show significant 
differences ( pvalue < 0.05 ), see RMSD values in Table 3 with single asterisk). Only in these cases, the active 
state show clear differences from the inactive one.

Table 2.   Deep neural networks architecture.

Layer (type) Output shape Parameter

ULSTM

 LSTM (LSTM) (None, 100) 378800

 Repeat vector (RepeatVector) (None, 1, 100) 0

 LSTM (LSTM) (None, 1, 100) 80400

 Time distributed (TimeDistributed) (None, 1, 150) 85446

 Total params 544,646

 Trainable params 544,646

 Non-trainable params 0

BLSTM

 Bidirectional (Bidirectional) (None, 100) 417200

 Repeat vector (RepeatVector) (None, 1, 100) 0

 Bidirectional (Bidirectional) (None, 1, 100) 80400

 Time distributed (TimeDistributed) (None, 1, 150) 95142

 Total params 592,742

 Trainable params 592,742

 Non-trainable params 0

CNN+LSTM

 Conv1D (None, 5, 64) 487360

 MaxPooling1D (None, 3, 64) 0

 Dropout (None, 3, 64) 0

 Conv1D (None, 3, 128) 73856

 MaxPooling 1D (None, 2, 128) 0

 Dropout (None, 2, 128) 0

 BatchNormalization (None, 2, 128) 512

 Flatten (None, 256) 0

 RepeatVector (None, 1, 256) 0

 lstm (LSTM) (None, 1, 100) 142800

 TimeDistributed (None, 1, 846) 85446

 Total params 789,974

 Trainable params 789,718

 Non-trainable params 256
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The experimental results show that the LSTM model performed the best in predicting the dynamics of the TM 
regions and that, overall, the ICL regions yielded the highest prediction error. However the dynamics of the 
GPCR are different by region determining that some regions are more prone to conformational changes. The 
flexibility of the molecule was calculated by region and compared by examining the prediction error between 
regions, as shown in Tables 3 and 6.

The transmembrane regions are less flexible than the ILC and EXL regions, which are more likely to experi-
ence changes in their 3D structure. This may be one of the reasons why minor error has been obtained in the 
transmembrane regions.

Regarding now E2 and focusing on the six TM regions, the prediction errors are shown in Tables 4 and 7. The 
former includes results obtained training the models with the whole receptor, while the latter includes results 
obtained training the models only with the TM regions. No statistically significant differences ( p > 0.05 ) are 
observed between the errors obtained for models trained with loops and those trained without loops. In general 
terms, TM2 was the best predicted region for the active state. These results coincide for all the simulations for 
APO, FA and PIA. However, for the inactive state, the best values were obtained for TM2 or TM3, depending on 
the simulation, showing substantial differences between both regions. TM2 and TM3 do not show statistically 
significant differences between them ( p > 0.05 ). However, TM2 shows significant differences with respect to 
TM1, TM4, TM5, TM6, TM7 in almost all simulations and models (except in active state for PIA simulation 
with BLSTM in frot of TM4), see value ∗1 in Table 4.

A more detailed analysis of the experimental results provided further information on the MD of the specific 
receptor regions. While TM2 coincides for all the simulations as the best predicted in active and inactive states, 

Table 3.   Prediction error of the RF, ULSTM, BLSTM and CNN-LSTM models, as measured by RMSD and 
std in Å units for TM, ICL, ECL loops of the APO, FA, PIA simulations for 2rh1 and 3p0g states. Statistics of 
significantly worse(−) and significantly better(+) differences with p < 0.05∗ and p< 0.01∗∗ are included. The 
symbols in the first column indicate significantly better differences between regions, while in the model results 
columns indicate significantly worse differences between models. The Mean row at the bottom of the table 
indicates mean errors across regions. Bold values show the minimum error accross regions and models.

Region MD-RMSD RF ULSTM BLSTM CNN-LSTM

APO 2rh1

TM ∗+ 2.0120 0.2660 ∗∗− ± 0.0040 0.1390 ± 0.0080 0.1460 ± 0.0080 0.1430 ± 0.0020

ICL 2.3200 0.3150 ∗∗− ± 0.0090 0.1790 ± 0.0090 0.1910 ± 0.0070 0.1830 ± 0.0019

ECL 2.0800 0.2770 ∗∗− ± 0.0020 0.1810 ± 0.0090 0.1850 ± 0.0080 0.1880 ± 0.0020

APO 3p0g

TM ∗∗+ 1.8652 0.1746 ∗∗− ± 0.0019 0.1438 ± 0.0052 0.1444 ± 0.0041 0.1387 ± 0.0012

ICL 1.5981 0.2213 ∗∗− ± 0.0027 0.1887 ± 0.0056 0.1920 ± 0.0056 0.1878 ± 0.0019

ECL 1.5306 0.2101 ∗∗− ± 0.0010 0.1781 ± 0.0054 0.1791 ± 0.0042 0.1725 ± 0.0011

FA 2rh1

TM ∗∗+ 1.1757 0.1672 ∗− ± 0.0021 0.1350 ± 0.0042 0.1358 ± 0.0041 0.1349 ± 0.0042

ICL 1.1518 0.2533 ∗∗− ± 0.0033 0.1823 ± 0.0041 0.1850 ± 0.0041 0.1856 ± 0.0043

ECL 1.1476 0.2157 ∗∗− ± 0.0038 0.1713 ± 0.0056 0.1705 ± 0.0054 0.1716 ± 0.0050

FA 3p0g

TM ∗∗+ 1.7808 0.1736 ∗∗− ± 0.0021 0.1362 ± 0.0052 0.1343 ± 0.0036 0.1230 ± 0.0023

ICL 1.4829 0.2132 ∗∗− ± 0.0022 0.1884 ± 0.0059 0.1863 ± 0.0045 0.1834 ± 0.0031

ECL 1.4983 0.2071 ∗∗− ± 0.0024 0.1744 ± 0.0066 0.1737 ± 0.0047 0.1682 ± 0.0029

PIA 2rh1

TM ∗∗+ 1.7686 0.1782 ∗∗− ± 0.0043 0.1388 ± 0.0029 0.1388 ± 0.0028 0.1338 ± 0.0066

ICL 1.5180 0.2712 ∗∗− ± 0.0073 0.1896 ± 0.0026 0.1889 ± 0.0046 0.1850 ± 0.0092

ECL 1.4525 0.2134 ∗∗− ± 0.0027 0.1725 ± 0.0035 0.1715 ± 0.0032 0.1675 ± 0.0061

PIA 3p0g

TM ∗∗+ 1.7853 0.1888 ∗∗− ± 0.0047 0.1365 ± 0.0071 0.1298 ± 0.0053 0.1324 ± 0.0016

ICL 1.4847 0.2260 ∗∗− ± 0.0048 0.1921 ± 0.0075 0.1856 ± 0.0065 0.1890 ± 0.0018

ECL 1.4513 0.2188 ∗∗− ± 0.0029 0.1675 ± 0.0082 0.1591 ± 0.0063 0.1623 ± 0.0020

Mean

TM ∗∗+ 1.7313 0.1914 ∗∗− ± 0.0032 0.1382 ± 0.0054 0.1382 ± 0.0046 0.1343 ± 0.0003

ICL 1.5926 0.0025 ∗∗− ± 0.0049 0.1867 ± 0.0058 0.1881 ± 0.0054 0.1856 ± 0.0037

ECL 1.5267 0.2237 ∗∗− ± 0.0025 0.1741 ± 0.0064 0.1731 ± 0.0053 0.1717 ± 0.0032
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Region MD-RMSD RF USLTM BLSTM CNN-LSTM

APO 2rh1

TM1 2.6361 0.2328∗∗− ± 0.0056 0.1480 ± 0.0080 0.1563 ± 0.0068 0.1518 ± 0.0024

TM2∗+ 1.5520 0.1998∗∗− ± 0.0025 0.1313 ± 0.0075 0.1387 ± 0.0058 0.1350 ± 0.0025

TM3 1.5807 0.2143∗∗− ± 0.0026 0.1325 ± 0.0077 0.1389 ± 0.0059 0.1364 ± 0.0020

TM4 1.7552 0.2090∗∗− ± 0.0023 0.1416 ± 0.0068 0.1482 ± 0.0056 0.1472 ± 0.0026

TM5 1.9092 0.2300∗∗− ± 0.0055 0.1455 ± 0.0084 0.1510 ± 0.0067 0.1501 ± 0.0020

TM6 1.7479 0.5320∗∗− ± 0.0032 0.1372 ± 0.0153 0.1437 ± 0.0192 0.1412 ± 0.0052

TM7 1.7785 0.2451∗∗− ± 0.0071 0.1396 ± 0.0072 0.1485 ± 0.0063 0.1428 ± 0.0017

APO 3p0g

TM1 2.1303 0.1921∗∗− ± 0.0009 0.1480 ± 0.0053 0.1490 ± 0.0039 0.1427 ± 0.0011

TM2∗+ 1.6303 0.1694∗∗− ± 0.0032 0.1340 ± 0.0048 0.1349 ± 0.0040 0.1270 ± 0.0015

TM3 1.5573 0.1585∗∗− ± 0.0022 0.1370 ± 0.0048 0.1378 ± 0.0035 0.1321 ± 0.0012

TM4 1.6851 0.1874∗∗− ± 0.0043 0.1433 ± 0.0046 0.1420 ± 0.0045 0.1377 ± 0.0026

TM5 1.8959 0.1693∗∗− ± 0.0015 0.1514 ± 0.0058 0.1520 ± 0.0040 0.1475 ± 0.0013

TM6 1.7132 0.1730∗∗− ± 0.0011 0.1517 ± 0.0056 0.1527 ± 0.0042 0.1469 ± 0.0011

TM7 1.6891 0.1726∗∗− ± 0.0004 0.1680 ± 0.0053 0.1632 ± 0.0040 0.1516 ± 0.0009

FA 2rh1

TM1 2.2130 0.1632∗∗− ± 0.0014 0.1472 ± 0.0042 0.1488 ± 0.0042 0.1478 ± 0.0045

TM2∗+ 1.1630 0.1485∗∗− ± 0.0018 0.1276 ± 0.0040 0.1279 ± 0.0037 0.1269 ± 0.0044

TM3 1.1557 0.1651∗∗− ± 0.0034 0.1296 ± 0.0040 0.1261 ± 0.0039 0.1262 ± 0.0044

TM4 1.1685 0.1794∗∗− ± 0.0027 0.1325 ± 0.0046 0.1331 ± 0.0042 0.1326 ± 0.0041

TM5 1.1896 0.1866∗∗− ± 0.0013 0.1435 ± 0.0039 0.1449 ± 0.0041 0.1436 ± 0.0044

TM6 1.1713 0.1604∗∗− ± 0.0021 0.1370 ± 0.0034 0.1380 ± 0.0032 0.1366 ± 0.0042

TM7 1.1689 0.1773∗∗− ± 0.0031 0.1476 ± 0.0040 0.1442 ± 0.0036 0.1396 ± 0.0040

FA 3p0g

TM1 2.4546 0.1934∗∗− ± 0.0020 0.1418 ± 0.0054 0.1346 ± 0.0166 0.1355 ± 0.0027

TM2∗+ 1.5985 0.1680∗∗− ± 0.0035 0.1269 ± 0.0046 0.1255 ± 0.0033 0.1205 ± 0.0029

TM3 1.5074 0.1653∗∗− ± 0.0035 0.1314 ± 0.0047 0.1295 ± 0.0030 0.1248 ± 0.0027

TM4 1.7063 0.1796∗∗− ± 0.0015 0.1367 ± 0.0047 0.1345 ± 0.0034 0.1312 ± 0.0024

TM5 1.8776 0.1660∗∗− ± 0.0011 0.1405 ± 0.0052 0.1376 ± 0.0037 0.1337 ± 0.0020

TM6 1.6032 0.1616∗∗− ± 0.0019 0.1450 ± 0.0053 0.1432 ± 0.0041 0.1390 ± 0.0021

TM7 1.7178 0.1816∗∗− ± 0.0015 0.1412 ± 0.0052 0.1420 ± 0.0038 0.1357 ± 0.0022

PIA 2rh1

TM1 2.1959 0.1714∗∗− ± 0.0048 0.1493 ± 0.0216 0.1493 ± 0.0222 0.1434 ± 0.0219

TM2∗+ 1.6432 0.1768∗∗− ± 0.0057 0.1295 ± 0.0156 0.1299 ± 0.0162 0.1248 ± 0.0159

TM3 1.5364 0.1687∗∗− ± 0.0017 0.1293 ± 0.0214 0.1294 ± 0.0226 0.1246 ± 0.0219

TM4 1.6747 0.1789∗∗− ± 0.0053 0.1355 ± 0.0136 0.1365 ± 0.0151 0.1326 ± 0.0144

TM5 1.7934 0.1918∗∗− ± 0.0029 0.1482 ± 0.0342 0.1477 ± 0.0358 0.1427 ± 0.0333

TM6 1.7762 0.1819∗∗− ± 0.0055 0.1436 ± 0.0259 0.1428 ± 0.0265 0.1380 ± 0.0259

TM7 1.7943 0.1936∗∗− ± 0.0087 0.1595 ± 0.0106 0.1505 ± 0.0089 0.14314 ± 0.0124

PIA 3p0g

TM1 2.6085 0.1978∗∗− ± 0.0047 0.1466 ± 0.0074 0.1401 ± 0.0054 0.1417 ± 0.0121

TM2∗+ 1.6066 0.1819∗∗− ± 0.0027 0.1291 ± 0.0071 0.1220 ± 0.0049 0.1244 ± 0.0016

TM3 1.5384 0.1656∗∗− ± 0.0042 0.1297 ± 0.0069 0.1221∗1 ± 0.0048 0.1253 ± 0.0019

TM4 1.6484 0.2159∗∗− ± 0.0098 0.1338 ± 0.0068 0.1259 ± 0.0049 0.1291 ± 0.0020

TM5 1.8164 0.1845∗∗− ± 0.0039 0.0068 ± 0.0266 0.1315 ± 0.0053 0.1353 ± 0.0026

TM6 1.5573 0.1838∗∗− ± 0.0034 0.1457 ± 0.0064 0.1393 ± 0.0050 0.1421 ± 0.0020

TM7 1.7212 0.1919∗∗− ± 0.0040 0.1482 ± 0.0064 0.1424 ± 0.0050 0.1464 ± 0.0020

Mean

TM1 2.3731 0.1918∗∗− ± 0.0032 0.1468 ± 0.0086 0.1247 ± 0.0098 0.1438 ± 0.0075

TM2∗+ 1.5323 0.1741∗∗− ± 0.0032 0.1297 ± 0.0073 0.1298 ± 0.0063 0.1264 ± 0.0048

Continued
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TM3, instead, is the best for inactive states in PIA simulations, but it do not show significance (pvalue > 0.05)
differences in contrast of TM2.

These proteins share a highly conserved motif of seven transmembrane helices connected by three extracel-
lular and three intracellular loops. Movements of transmembrane regions III and IV are responsible for the 
activation of G protein-coupled receptors63. The conformational changes of the receptor transmembrane regions 
are closely related to the β2-adrenergic activation ( β2AR) pathway64. It is known that an outer displacement of 
TM6 from the centre of the helices and displacements of TM5 and TM7 are part of the activation mechanism of 
a receptor10. However, the details of the mechanisms of interaction between residues, which unchain the activa-
tion, are still unclear. The Helices 6 and 7 of the original simulation show a strong difference between inactive 
and active structures, with a relative displacement of 6.951 and 3.47 Å, respectively. Helices 1, 2, and 4 are shifted 
away from the center in the active state, while helix 3 is noticeably nearer (the range of relative displacements is 

Region MD-RMSD RF USLTM BLSTM CNN-LSTM

TM3 1.4793 0.1729∗∗− ± 0.0029 0.1316 ± 0.0083 0.1316 ± 0.0073 0.1292 ± 0.0057

TM4 1.6064 0.1917∗∗− ± 0.0043 0.1372 ± 0.0068 0.1367 ± 0.0063 0.1351 ± 0.0047

TM5 1.7470 0.1880∗∗− ± 0.0027 0.1326 ± 0.0140 0.1441 ± 0.0099 0.1421 ± 0.0076

TM6 1.5949 0.2321∗∗− ± 0.0029 0.1434 ± 0.0103 0.1433 ± 0.0104 0.1406 ± 0.0067

TM7 1.6151 0.1937∗∗− ± 0.0032 0.1489 ± 0.0056 0.1481 ± 0.0045 0.1432 ± 0.0022

Table 4.   Prediction error of the RF, ULSTM, BLSTM and CNN-LSTM models, as measured by RMSD 
metric in Å units. The six transmembrane regions (TM) regions of the APO, FA and PIA simulations for 2rh1 
and 3p0g states. Statistics of significantly worse(−) and significantly better(+) differences with p < 0.05∗ and 
p< 0.01∗∗ are included. The symbols in the first column indicate significantly better differences between TM 
regions, while, in the model results columns, they indicate significantly worse differences between models. The 
Mean row at the bottom indicates mean errors across regions. Bold values show the minimum error accross 
regions and models. Symbol ∗1 refers to no significant differences as compared to TM2.

Table 5.   Prediction error of the RF, ULSTM, BLSTM and CNN-LSTM models, as measured by RMSD in Å 
units add std on the tables. The intracellular loops (ICL) of the APO, FA, PIA simulations for 2rh1 and 3p0g 
states. Statistics of significantly worse(−) and significantly better(+) differences with p < 0.05∗ and p< 0.01∗∗ . 
The symbols in the first column indicate significantly better differences between ICL regions, while, in the 
model results columns, they indicate significantly worse differences between models. The Mean row at the 
bottom of the table indicates mean errors across regions. Bold values show the minimum error accross regions 
and models.

Region MD-RMSD RF ULSTM BLSTM CNN-LSTM

APO 2rh1

ICL1∗∗+ 1.6690 0.2769∗∗− ± 0.0122 0.1669 ± 0.0085 0.1727 ± 0.0068 0.1699± 0.0026

ICL2 1.9260 0.3104∗∗− ± 0.0135 0.1926 ± 0.0091 0.1980 ± 0.0069 0.1978 ± 0.0025

APO 3p0g

ICL1∗∗+ 1.7470 0.1869∗− ± 0.0038 0.1747 ± 0.0057 0.1777 ± 0.0055 0.1717 ± 0.0017

ICL2 2.0260 0.2183∗− ± 0.0009 0.2026 ± 0.0057 0.2062 ± 0.0057 0.2038 ± 0.0022

FA 2rh1

ICL1∗∗+ 1.7960 0.1945∗∗− ± 0.0024 0.1713 ± 0.0039 0.1725 ± 0.0038 0.1732 ± 0.0046

ICL2 1.3420 0.2466∗∗− ± 0.0033 0.1934 ± 0.0042 0.1978 ± 0.0043 0.1979 ± 0.0042

FA 3p0g

ICL1∗∗+ 1.7510 0.1828∗− ± 0.0031 0.1751 ± 0.0050 0.1739 ± 0.0038 0.1704 ± 0.0034

ICL2 2.0170 0.2269∗∗− ± 0.0019 0.2017 ± 0.0065 0.1988 ± 0.0050 0.1964 ± 0.0032

PIA 2rh1

ICL1∗∗+ 1.7770 0.2270∗∗− ± 0.0085 0.1777 ± 0.0022 0.1766 ± 0.0045 0.1703 ± 0.0102

ICL2 2.0020 0.2590∗∗− ± 0.0080 0.2002 ± 0.0030 0.2027 ± 0.0047 0.1996 ± 0.0087

PIA 3p0g

ICL1∗∗+ 1.7460 0.1896∗− ± 0.0053 0.1746 ± 0.0078 0.1795 ± 0.0062 0.1766 ± 0.0020

ICL2 1.9670 0.2520∗∗− ± 0.0040 0.1967 ± 0.0074 0.2049 ± 0.0068 0.2013 ± 0.0023

Mean

ICL1∗∗+ 1.7477 0.2096∗∗− ± 0.0059 0.1747 ± 0.0049 0.1755 ± 0.0051 0.1720 ± 0.0041

ICL2 1.8800 0.2522∗∗− ± 0.0053 0.1989 ± 0.0054 0.2014 ± 0.0056 0.1995 ± 0.0038
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from 1.4 to 2.277 Å). During simulation, helix 6 moves inwards in the active state simulations, while helix 7 moves 
outwards. When Kohlhoff et al.,38 compare simulations started from the active with those started from the inac-
tive state, the relative displacements of helices 1 through 4 between active and inactive remain almost constant, 
indicating the importance of their rearrangement as a distinguishing element of receptor activation. Therefore, 
it is essential to carry out this experiment to examine each domain of the transmembrane region of the receptor 
in detail. It could easily be claimed that the region that is structurally incomplete is most inaccurately modelled.

The original paper describing the MD simulations used in this study did not attempt to model the missing 
sections, which becomes a limitation of our reported results. Regarding missing sections in ICL (231-262 in 
2RH1, and 228-264 in 3P0G between helices 5 and 6), it is difficult to draw solid conclusions about the differ-
ences between ICL and ECL since the protein is not accurately modelled. Nevertheless, β2AR remains functional 
even in the absence of ICL3.

The prediction errors for experiment E3 are shown in Tables 5 for ICL and 6 for ECL. For the ICL regions, 
ICL1 was identified as the region with the lowest prediction error in both states and all simulations. Interestingly 
, the accurate prediction of MD of the ICL1 region contrasts with the results of ICL2, which yields a significantly 
statistics differences (pvalue < 0.01 ), with RMSD differences greater than 0.2 Å.

In the case of the ECL regions, both simulations showed that ECL1 had the lowest prediction error, which 
was significantly different from ICL2 (pvalue < 0.05 ) and from ECL3 (pvalue < 0.01 ). These results coincide 
for APO and FA simulations (see the RMSD values in Table 6). Regarding the PIA simulations, only significant 
differences (pvalue < 0.05 ) were found between ECL1 and ECL2 (Table 7).

Beyond that, our experiments were carried out with three ML models of increasing structural complexity in 
terms of their network architecture. The results show inconclusive differences between DL models, with minor 

Table 6.   Prediction error of the RF, ULSTM, BLSTM and CNN-LSTM models, as measured by RMSD metric 
in Å units. The three extracellular loops (ECL) of the APO, FA, PIA simulations for 2rh1 and 3p0g states. 
Statistics of significantly worse(−) and significantly better(+) differences with p < 0.05∗ and p< 0.01∗∗ have been 
included. The symbols in the first column indicate significantly better differences between ECL regions, while, 
in the model results columns, they indicate significantly worse differences between models. The Mean row at 
the bottom indicates mean errors across regions. Bold values show the minimum accross regions and models.

Region MD-RMSD RF ULSTM BLSTM CNN-LSTM

APO 2rh1

ECL1∗∗+ 2.0800 0.2440∗∗− ± 0.0078 0.1750 ± 0.0084 0.1850 ± 0.0078 0.1808 ± 0.0029

ECL2 2.2200 0.2230∗∗− ± 0.0064 0.1840 ± 0.0091 0.1930 ± 0.0084 0.1920 ± 0.0016

ECL3 2.4500 0.2400∗∗− ± 0.0033 0.1930 ± 0.0089 0.1990 ± 0.0064 0.1971 ± 0.0022

APO 3p0g

ECL1∗∗+ 1.4983 0.1935∗∗− ± 0.0005 0.1702 ± 0.0049 0.1718 ± 0.0021 0.1641 ± 0.0014

ECL2 1.5356 0.1996∗− ± 0.0056 0.1821 ± 0.0055 0.1828 ± 0.0047 0.1767 ± 0.0012

ECL3 1.3340 0.2003∗∗− ± 0.0071 0.1929 ± 0.0060 0.1949 ± 0.0046 0.1895± 0.0015

FA 2rh1

ECL1∗+ 1.4525 0.1962∗∗− ± 0.0028 0.1681 ± 0.0060 0.1679 ± 0.0054 0.1692 ± 0.0054

ECL2 1.8524 0.2064∗∗− ± 0.0065 0.1730 ± 0.0059 0.1720 ± 0.0058 0.1728 ± 0.0053

ECL3 1.4563 0.2133∗∗− ± 0.0033 0.1823 ± 0.0041 0.1819 ± 0.0041 0.1816 ± 0.0040

FA 3p0g

ECL1∗∗+ 1.4513 0.2119∗∗− ± 0.0041 0.1679 ± 0.0061 0.1682 ± 0.0033 0.1618 ± 0.0031

ECL2 1.6783 0.2340∗∗− ± 0.0012 0.1776 ± 0.0070 0.1765 ± 0.0051 0.1715 ± 0.0031

ECL3 1.7785 0.2157∗∗− ± 0.0022 0.1860 ± 0.0066 0.1845 ± 0.0059 0.1806 ± 0.0023

PIA 2rh1

ECL1∗+ 1.9613 0.1934∗∗− ± 0.0026 0.1711 ± 0.0039 0.1690 ± 0.0027 0.1664 ± 0.0066

ECL2 2.3271 0.2017∗∗− ± 0.0019 0.1732 ± 0.0033 0.1727 ± 0.0033 0.1680 ± 0.0063

ECL3 2.5942 0.2235∗∗− ± 0.0022 0.1918 ± 0.0040 0.1893 ± 0.0035 0.1831 ± 0.0055

PIA 3p0g

ECL1∗+ 2.1627 0.1945∗∗− ± 0.0021 0.1647 ± 0.1793 0.1577 ± 0.1771 0.1604 ± 0.1563

ECL2 2.0666 0.2137∗∗− ± 0.0022 0.1690 ± 0.2008 0.1598 ± 0.1974 0.1633 ± 0.1773

ECL3 2.8734 0.2234∗∗− ± 0.0025 0.1924 ± 0.2146 0.1843 ± 0.2212 0.1878 ± 0.2042

Mean

ECL1∗+ 1.7677 0.2056∗∗− ± 0.0033 0.1695 ± 0.0348 0.1699 ± 0.0331 0.1671 ± 0.0293

ECL2 1.9467 0.2131∗∗− ± 0.0040 0.1765 ± 0.0386 0.1761 ± 0.0374 0.1741 ± 0.0325

ECL3 2.0811 0.2194∗∗− ± 0.0034 0.1897 ± 0.0407 0.1890 ± 0.0410 0.1866 ± 0.0366
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Region MD-RMSD RF ULSTM BLSTM CNN-LSTM

APO 2rh1

TM1 2.6361 0.2374∗∗− ± 0.0061 0.1506 ± 0.0086 0.1549 ± 0.0071 0.1499 ± 0.0025

TM2∗∗+ 1.5390 0.2001∗∗− ± 0.0036 0.1304 ± 0.0083 0.1406 ± 0.0070 0.1401 ± 0.0027

TM3 1.5807 0.2208∗∗− ± 0.0026 0.1385 ± 0.0063 0.1343 ± 0.0059 0.1360 ± 0.0032

TM4 1.7552 0.2106∗∗− ± 0.0038 0.1448 ± 0.0020 0.1505 ± 0.0057 0.1560 ± 0.0012

TM5 1.9092 0.2420∗∗− ± 0.0035 0.1399 ± 0.0033 0.1489 ± 0.0052 0.1509 ± 0.0030

TM6 1.7479 0.1882∗∗− ± 0.0034 0.1402 ± 0.0140 0.1423 ± 0.0182 0.1413 ± 0.0049

TM7 1.7785 0.2942∗∗− ± 0.0065 0.1424 ± 0.0068 0.1472 ± 0.0051 0.1422 ± 0.0009

APO 3p0g

TM1 2.1303 0.1864∗∗− ± 0.0004 0.1491 ± 0.0073 0.1458 ± 0.0023 0.1412 ± 0.0013

TM2∗∗+ 1.6303 0.1591∗∗− ± 0.0038 0.1343 ± 0.0014 0.1399 ± 0.0071 0.1298 ± 0.0017

TM3 1.5573 0.1604∗− ± 0.0082 0.1393 ± 0.0052 0.1343 ± 0.0010 0.1365 ± 0.0024

TM4 1.6851 0.1838∗∗− ± 0.0088 0.1474 ± 0.0012 0.1406 ± 0.0003 0.1396 ± 0.0066

TM5 1.8959 0.1636∗− ± 0.0013 0.1585 ± 0.0022 0.1521 ± 0.0084 0.1510 ± 0.0078

TM6 1.7132 0.1745∗∗− ± 0.0016 0.1504 ± 0.0031 0.1451 ± 0.0062 0.1410 ± 0.0067

TM7 1.6891 0.1710∗− ± 0.0089 0.1696 ± 0.0090 0.1600 ± 0.0011 0.1553 ± 0.0079

FA 2rh1

TM1 2.2130 0.1721∗∗− ± 0.0019 0.1342 ± 0.0069 0.1389 ± 0.0035 0.1466 ± 0.0033

TM2∗+ 1.1630 0.1310∗− ± 0.0020 0.1200 ± 0.0033 0.1301 ± 0.0029 0.1264 ± 0.0014

TM3 1.1557 0.1734∗∗− ± 0.0010 0.1246 ± 0.0043 0.1244 ± 0.0096 0.1310 ± 0.0069

TM4 1.1685 0.1812∗∗− ± 0.0024 0.1295 ± 0.0081 0.1299 ± 0.0042 0.1390 ± 0.0067

TM5 1.1896 0.1856∗∗− ± 0.0030 0.1389 ± 0.0034 0.1377 ± 0.0076 0.1344 ± 0.0086

TM6 1.1713 0.1598∗∗− ± 0.0036 0.1344 ± 0.0014 0.1402 ± 0.0032 0.1400 ± 0.0037

TM7 1.1689 0.1789∗∗− ± 0.0039 0.1506 ± 0.0050 0.1388 ± 0.0056 0.1422 ± 0.0031

FA 3p0g

TM1 2.4546 0.1907∗∗− ± 0.0019 0.1432 ± 0.0058 0.1334 ± 0.0028 0.1348 ± 0.0063

TM2∗+ 1.5985 0.1539∗∗− ± 0.0033 0.1246 ± 0.0056 0.1276 ± 0.0030 0.1191 ± 0.0012

TM3 1.5074 0.1711∗∗− ± 0.0043 0.1276 ± 0.0074 0.1302 ± 0.0038 0.1272 ± 0.0099

TM4 1.7063 0.1744∗∗− ± 0.0076 0.1396 ± 0.0042 0.1388 ± 0.0065 0.1329 ± 0.0096

TM5 1.8776 0.1720∗∗− ± 0.0012 0.1377 ± 0.0093 0.1377 ± 0.0020 0.1312 ± 0.0008

TM6 1.6032 0.1674∗∗− ± 0.0011 0.1463 ± 0.0080 0.1479 ± 0.0038 0.1379 ± 0.0027

TM7 1.7178 0.1822 ± 0.0049 0.1517 ± 0.0034 0.1370 ± 0.0011 0.1347 ± 0.0010

PIA 2rh1

TM1 2.1959 0.1801∗∗− ± 0.0054 0.1392 ± 0.0081 0.1505 ± 0.0020 0.1464 ± 0.0104

TM2∗+ 1.6432 0.1704∗∗− ± 0.0034 0.1241 ± 0.0088 0.1276 ± 0.0017 0.1220 ± 0.0100

TM3 1.5364 0.1693∗∗− ± 0.0021 0.1287 ± 0.0079 0.1299 ± 0.0108 0.1262 ± 0.0087

TM4 1.6747 0.1792∗∗− ± 0.0062 0.1488 ± 0.0093 0.1310 ± 0.0066 0.1317 ± 0.0098

TM5 1.7934 0.1867∗∗− ± 0.0066 0.1450 ± 0.0090 0.1478 ± 0.0093 0.1469 ± 0.0053

TM6 1.7762 0.1828∗∗− ± 0.0070 0.1472 ± 0.0101 0.1488 ± 0.0082 0.1399 ± 0.0024

TM7 1.7976 0.1918∗∗− ± 0.0075 0.1603 ± 0.0096 0.1711 ± 0.0076 0.15111 ± 0.0223

PIA 3p0g

TM1 2.6085 0.1887∗∗− ± 0.0035 0.1403 ± 0.0035 0.1557 ± 0.0072 0.1443 ± 0.0101

TM2∗+ 1.6066 0.1822∗∗− ± 0.0090 0.1286 ± 0.0044 0.1237 ± 0.0039 0.1257 ± 0.0016

TM3 1.5384 0.1697∗∗− ± 0.0032 0.1308 ± 0.0066 0.1295 ± 0.0077 0.1301 ± 0.0095

TM4 1.6484 0.2089∗∗− ± 0.0020 0.1360 ± 0.0036 0.1310 ± 0.0059 0.1268 ± 0.0071

TM5 1.8164 0.1897∗∗− ± 0.0025 0.1424 ± 0.0072 0.1398 ± 0.0040 0.1382 ± 0.0065

TM6 1.5573 0.1824∗∗− ± 0.0090 0.1407 ± 0.0054 0.1334 ± 0.0093 0.1442 ± 0.0028

TM7 1.7212 0.1892∗∗− ± 0.0007 0.1433 ± 0.0073 0.1486 ± 0.0027 0.1432 ± 0.0047

Mean

TM1 2.3730 0.1925∗∗− ± 0.0032 0.1427 ± 0.0067 0.1465 ±0.0041 0.1438 ± 0.0056

TM2∗+ 1.5301 0.1661∗∗− ± 0.0041 0.1270 ± 0.0053 0.1315 ±0.004 0.1271 ± 0.0031

Continued
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differences depending on the simulations and state. Therefore, the simplest of these models, namely ULSTM, 
would be the preferred choice for further investigation. In the comparison of DL models (ULSTM, BLSTM, 
CNN-LSTM) with conventional ML models (RF), DL models have shown strong and significant (pvalue < 0.01 ) 
differences with RF.

The existing literature has reported the use of the RMSD error in the static 3D prediction for different proteins: 
for instance, Chen & Brooks65 used it as a metric to ascertain whether MD simulations provide high-resolution 
refinement of protein structure. Lee et al.66 predicted 3D structure using molecular mechanics based on the 
surface area free energies for two small proteins (HP-36 and S15). The RMSD error values obtained were 0.77 
Å for HP-36 protein and 0.83 Å for S15 protein. More specifically for GPCRs, Kaczor et al.67 analysed different 
methods for protein-protein docking and evaluated the generation of new digital protein-protein complexes in 
the transmembrane environment. The best method achieved an overall RMSD lower than 0.7 Å in 8 out of 12 
simulations. Even if not directly comparable to this study, we have reported errors lower than 0.13 Å as measured 
by RMSD in simulations of dynamics that are a major challenge for models.

The approach proposed in this paper allows predicting 3D residue positions from the MD time series. It could 
be used in prospective experiments by setting threshold error targets for the discrimination between states and 
exploring whether the method can achieve them and how well they compare with those obtained with alternative 
methods. Furthermore, such investigation could be assisted by visualising results by residue, as in Figure 4, which 
maps prediction errors using coloured ribbons. This would allow for visual interactive and intuitive evaluation, 
assessing which are the best or worst modelled residues, distinguishing those that are exposed to the solvent, or 
those exposed to the ligand, to name a few possibilities.

Conclusions
LSTM Neural Networks have in the past shown promise in problems of GPCR dynamics forecasting. The cur-
rent study has provided evidence that LSTM models, in three different architectures, are capable of predicting 
the dynamic trajectories of GPCRs in six states with a reasonable efficacy, and far better that more standard ML 
models such as RF.

The TM helices are a key GPCR region due to their physiological role in signal transmission. Our LSTM 
models have been abble to predict the dynamics of TM2 and TM3 the best. Nevertheless, the details of the 
mechanism of interaction between amino-acids that unchains the activation remain unclear.

Although ULSTM is the shallowest of the investigated DL architectures, it has yielded competitive perfor-
mance when compared to more complex models such as BLSTM and the combination CNN-LSTM.

LSTM models, though, suffer from some limitations when used to process long MD trajectories. For this 
reason, as a next step, we plan to investigate the capabilities of generative models (which have successfully been 
used for the modelling of protein MDs16) such as Transformers68 or Autoencoders69, for the prediction of long 
trajectories. We also plan to evaluate alternative representations of GPCR data, including graph representations.

No significant differences were observed between models trained with loops and only with the TM regions. 
This could be due to the fact that the data representation used by the models is a frame-by-frame relationship. 
We suggest that further research should be conducted on the representation of molecular dynamics through 
graphs that explicitly consider the connections between neighbouring residues.

Region MD-RMSD RF ULSTM BLSTM CNN-LSTM

TM3 1.4793 0.1774∗∗− ± 0.0035 0.1315 ± 0.0062 0.1304 ±0.0064 0.1311 ± 0.0067

TM4 1.6063 0.1896∗∗− ± 0.0051 0.1410 ± 0.0047 0.1369 ±0.0048 0.1376 ± 0.0068

TM5 1.7470 0.1899∗∗− ± 0.0030 0.1437 ± 0.0057 0.1440 ±0.0060 0.1421 ± 0.0053

TM6 1.5948 0.2591∗∗− ± 0.0042 0.1432 ± 0.0070 0.1429 ±0.0081 0.1407 ± 0.0038

TM7 1.6455 0.2012∗∗− ± 0.0054 0.1529 ± 0.0068 0.1504 ±0.0038 0.1447 ± 0.0066

Table 7.   Predictionerrorofthe RF, ULSTM, BLSTM and CNN-LSTM models trained only with TM regions 
(and, therefore, to be compared with results in Table 4), as measured by RMSD metric in Å units. The six 
transmembrane regions (TM) regions of the APO, FA and PIA simulations for 2rh1 and 3p0g states. Statistics 
of significantly worse(−) and significantly better(+) differences with p < 0.05∗ and p< 0.01∗∗ have been 
included. The symbols in the first column indicate significantly better differences between TM regions, while, 
in the model results columns, they indicate significantly worse differences between models. The Mean row at 
the bottom indicates mean errors across regions. Bold values show the minimum error between regions and 
models.
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Data availability
The data that support the findings of this study are available from Kohlhoff et al.38, but restrictions apply to their 
availability, which were used under license for the current study. Data are however available from the authors 
upon reasonable request38.
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models for the β 2 adrenergic GPCR for TM, ECL and ICL regions, in columns, and for APO, Full Agonist (FA) 
and Partial Inverse Antagonist (PIA) in rows. Blue colour represent the ligand bound to the protein.
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