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Truncated Weibull–exponential 
distribution: methods 
and applications
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This paper introduces a truncated Weibull-exponential distribution and provides a thorough 
insight into its mathematical characteristics. These characteristics include moments, generating 
functions, inverse distribution function, and entropy. Various measures are also discussed about the 
distribution’s reliability. A simulation study is carried out to assess the stability and consistency of the 
maximum likelihood estimates of the parameters. Finally, two social sciences data sets are used to 
assess the distribution’s relevance in modeling real-world situations.

As the need to model real-world data problems continuously grows, researchers are expanding classical distribu-
tions to meet these new demands. To this end, several authors have proposed extensions to the existing families 
or classes of distributions, including the generalization of the parent distributions and introducing new models 
with some additional parameters. This ongoing development of the distribution theory reflects a continuous 
effort to improve the accuracy and applicability of the statistical models in a wide range of fields. Gupta et al.1 
introduced a new "Exponentiated G-Class of distributions", which involves exponentiating the cumulative dis-
tribution function (cdf) to some positive power. Since then, many researchers have proposed different classes 
of distributions, including Marshall Olkin G–family by Marshall and  Olkin2, the beta generalized-G family by 
Eugene et al.3, the Kumaraswamy–G family by Cordeiro and  Nadarajah4, and the exponentiated generalized–G 
family by Cordeiro et al.5, a general method of generating continuous distributions by Alzaatrh et al.6, the 
Kumaraswamy Marshall Olkin–G family by Alizadeh et al.7, the transmuted exp–generalized–G family by Yousuf 
et al.8, and Kum–Transmuted–G family by Afify et al.9. These families of distributions provide several flexible and 
versatile models that can capture a wide range of data patterns and behaviors. Recently, Alzaatreh et al.10 have 
proposed a method to generate the families of distributions by using the truncated distribution and named the 
families of distributions as the truncated families of distributions. These families of distributions contain four 
different ways to generate the truncated families of distributions.

The Weibull distribution, a power transformation of the exponential distribution, was first studied by Fisher 
and  Tippett11 in the context of the limiting distribution of extreme values in a sample. Since then, the Weibull 
distribution has been used in various applications, such as modeling the variability in diameter of powder 
particles by De  Moivre12 and the failure rate properties of a system over time by  Yong13. The Weibull distribu-
tion has been used to generate several new model for modeling of more complex phenomena. For instance, 
Alizadeh et al.14 have introduced the Transmuted Weibull–G family of distributions, Tahir et al.15 have derived 
a Weibull–G family of distributions, Cordeiro et al.16 have derived the exponentiated Weibull–G distributions, 
and  Oluyede17 has proposed the Gamma Weibull–G family of distributions. These developments have expanded 
the applicability of the Weibull distribution and have provided more flexible models to capture a wider range of 
data patterns and behaviors.

Statistical models have been expanded to handle the complexity that arises in lifetime analysis. In certain 
situations, the domain of application of a phenomenon is reduced and one has to restrict the domain of the appli-
cability of the underlying model. The truncated distributions play a useful role in such situations. The truncated 
distributions can be viewed as a form of a conditional distribution where the domain of the random variable is 
restricted under some conditions. When the domain of the random variable is restricted below a certain thresh-
old, the resulting distribution is known as the left–truncated distribution. Conversely, if the domain is restricted 
above a specific threshold, the resulting distribution is a right-truncated distribution.
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In this article, we have proposed a new truncated distribution called the truncated Weibull-exponential dis-
tribution, which is a truncated mixture of Weibull and exponential distribution. The proposed model is flexible 
and can be used for modeling data from various fields, including reliability sciences, social sciences, demogra-
phy, and environmental sciences. We believe that the truncated Weibull-exponential distribution will provide 
a valuable addition to the existing models and will serve as an effective tool for data analysis in various fields.

The article structure follows. Section "Methodology" outlines the methodology used in this study. Section "The 
truncated Weibull–exponential distribution" presents the development of the truncated Weibull-Exponential 
model. Section "Properties of the distribution" contains important properties of the proposed distribution. 
Section "Reliability analysis" discusses some reliability measures. Section "Estimation" contains estimation of 
the model parameters. Section "Simulation study" is based on the simulation study to see the consistency of 
the estimation method. Some real data applications are given in Section "Applications". Section "Conclusions" 
contains the conclusions and findings of the study.

Methodology
Mahdavi and  Silva18 have derived a truncated family of distributions that can be used with any baseline distri-
bution. The cumulative distribution function (cdf) and probability density function (pdf) of this new family are

and

where HT (t) is cdf of any generator distribution, HT (0) and HT (1) are values of HT (t) at 0 and 1, F(x) is cdf of 
any baseline distribution and f (x) is the pdf corresponding to F(x) . Several distributions can be proposed by 
using different combinations of HT (t) and F(x) . Najarzadegan et al.19 have used the family (1) to propose a two 
parameter truncated Weibull-G family of distributions. Bantan et al.20 have proposed a truncated Burr-G family 
of distributions by using a Burr generator in (1). Almarashi et al.21 have used the Muth distribution as a genera-
tor in (1) to propose a truncated Muth-G family of distributions. In this paper, we have proposed a modified 
truncated Weibull-F family of distributions by using the following Weibull cdf and pdf as HT (t) and hT (t) in (1) 
and (2), respectively,

and

where γ is the scale parameter and k is the shape parameter. Now, using (3) in (1), the cdf of the proposed trun-
cated Weibull–F family of distributions is

The density function corresponding to (5) is

Various distributions can be derived by using different baseline distributions in (5) and (6). In the following, 
we have derived the truncated Weibull–Exponential distribution by using the exponential baseline distribution 
in (5) and (6).

The truncated Weibull–exponential distribution
In this section, we have proposed the truncated Weibull–Exponential (TWEx) distribution by using the following 
pdf and cdf of the exponential distribution in (5) and (6).
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The cdf of the proposed TWEx distribution is
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It is interesting to note that if random variable X has density (8) then the distribution of Y =
√
X has Weibull-

Rayleigh distribution, given by Khalifa et al.22. The TWEx distribution provides some specific distributions as 
a special case. For example, for k = 1, the distribution reduces to a truncated exponential–exponential (TEEx) 
distribution, and for k = 2, it reduces to the truncated Rayleigh–exponential (TREx) distribution. It is to be noted 
that the proposed model is applicable for positive phenomenon only.

The density function of TWEx distribution can be easily expressed as the weighted sum of the exponentiated-
exponential distributions as

where Bi,j(k, γ ) = (−1)i+1Ŵ[2k(j+1)]
i!j!

(

1−e−γ−k
)

Ŵ[k(j+1)−1]γ kj+1
.

The plots of the density function of TWEx distribution for specific values of λ and γ and for different choices 
of the parameter k are given in Fig. 1, below

From the above figure, we can see that the shape of the distribution changes with the value of k. We can 
see that the distribution approaches a symmetrical distribution for a large value of k. We can also see that the 
parameters � and γ do not have a significant effect on the shape of the distribution. These parameters rather 
control the spread of the distribution.

Shape of the distribution
The shape of the distribution is important in certain applications. In the following, we will obtain the mode of 
the distribution. For this, we first see that the logarithm of the density function is

The derivative of (10) with respect to x is

The mode is obtained as a solution of ∂gX(x)
/

∂x = 0 and a unique mode of the distribution is readily 
obtained as

The mode can be computed for specific values of the parameters.

Properties of the distribution
In this section, some desirable properties of the proposed TWEx distribution are explored. These properties are 
studied in the following sub-sections.

The quantile function
The quantile function is useful in obtaining percentiles of the distribution. The quantile function is obtained by 
solving G(x) = m for x. Now, for the TWEx distribution, the quantile function is obtained by solving
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Figure 1.  Plot of the density function of TWEx distribution for different values of the parameter.
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for x and is given as

The percentiles can be obtained by using any value of m, such that m ∈ [0, 1] , in (11). Specifically, the median 
can be obtained by using m = 0.5 in (11). Also, a random observation can be drawn from the TWEx distribution 
by replacing m with a uniform random number between [0,1] in (11).

Moments and generating functions
The moments are useful in studying certain properties of a probability distribution. The rth moment of a random 
variable X having cdf G(x) is computed as

µ
/
r =

∫∞
−∞ xrdGX(x) =

∫∞
−∞ xrgX(x)dx.

Now, using the density function of the TWEx distribution, from (9), in the above equation, we have

Solving the integral, the rth moment of the TWEx distribution is

The moments can be computed for specific values of r in (12).
The mean and variance of the distribution, for selected values of the parameters, are given in Table 1, below
From the table, we can observe that as the value of � increases, the mean of the TWEx distribution also 

increases. This is because � is the scale parameter of the distribution, and as it increases, the distribution shifts 
towards higher values, resulting in a larger mean. Similarly, we can see that as the parameter γ increases, the 
mean of the TWEx distribution decreases. This is because γ controls the rate at which the distribution decays, 
and as it increases, the distribution becomes more concentrated around lower values, resulting in a smaller mean. 
Finally, as k increases, the mean of the TWEx distribution also increases. This is because k is a shape parameter 
that controls the rate at which the tails of the distribution decay, and as it increases, the distribution becomes 
less heavy-tailed, resulting in a larger mean. The pattern for variance is almost the same as that of the mean.

The incomplete moment is another meaningful measure of a distribution. The incomplete moment of a 
distribution is defined as

Using (9), the incomplete moment for the TWEx distribution is given as

Simplifying the integral, the pth incomplete moment for the TWEx distribution is
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Table 1.  Mean and variance of TWEx distribution.

k λ

Mean Variance

γ γ

3 4 5 3 4 5

2

2 1.963 2.275 2.599 0.722 1.001 1.455

3 2.586 2.996 3.419 1.065 1.772 2.519

4 3.402 3.943 4.504 1.508 2.443 3.452

3

2 2.083 2.493 2.905 0.875 1.500 2.240

3 3.002 3.559 4.133 1.639 2.671 3.870

4 4.250 5.011 5.822 2.506 4.050 5.799

4

2 2.236 2.702 3.189 1.041 1.819 2.671

3 3.455 4.126 4.847 2.086 3.430 4.830

4 5.087 6.083 7.142 3.299 5.461 7.776
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where Ŵ(n, z) is the incomplete gamma function defined as

The incomplete moments can be computed for specific values of y and p.
The moment generating function (mgf) is a useful function that can be used to compute moments of a distri-

bution. The moment generating function of a continuous random variable X having density f (x) is obtained as

Now, the mgf for the TWEx distribution is obtained as

Solving the integral, the mgf of the TWEx distribution is

The moments can be computed from (13).

Entropy
The entropy is a useful measure of information. The Rényi23 entropy is computed as

Using the density function of the TWEx distribution, the Rényi entropy is

Transforming we have

Solving the integral, the entropy is

The entropy can be computed for given values of the parameters.

Reliability analysis
In this section, we have given some reliability analysis for the proposed TWEx distribution. The reliability 
analyses include the survival function, the hazard rate function, the moments of the residuals and the reversed 
residuals. These are given in the following sub-sections.

Survival Function
The survival function is useful in reliability analysis. The function is used to obtain the probability that a com-
ponent will be functioning after a specified time. The survival function is computed as S(x) = 1− F(x) . The 
survival function for the TWEx distribution is given as

The survival function can be computed for specific values of the parameters.
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Hazard rate function
The hazard rate function provides the information about instantaneous failure of a component that is still func-
tioning at a specific time point. The hazard rate function for the TWEx distribution is obtained as

The plots of the hazard rate function for different values of the parameters are given in Fig. 2 below
We can see that the hazard rate function of TWEx distribution has both increasing and decreasing trends.

Moments of residual and reversed residual life
The residual life is useful to determine the life expectancy of components. The moments of residual and reversed 
residual life are useful in obtaining certain information about the life expectancy of the components. The rth 
moment of residual life is given as

where R(t) is survival function associated with gX(x) at time t. Using the binomial expansion of (x − t)r , we have

Now, using gX(x) from (9), the rth moment of residual life for the TWEx distribution is

Solving the integral, the rth moment of residual life from the TWEx distribution is

The mean residual life can be obtained by using r = 1 in the above equation. The rth moment of reversed 
residual life is given as
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Figure 2.  Plot of the hazard rate function for different values of the parameter.
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Using the density function, given in (9), the rth moment of the reversed residual life for the TWEx distribu-
tion is given as

The mean residual life can be obtained by using r = 1 in (14).

Estimation
In this section, we have discussed the maximum likelihood estimation of parameters of the TWEx distribution. 
For this, suppose that a sample of size n is available from the TWEx distribution. The log-likelihood function 
is then

The derivatives of the log-likelihood function, (15), with respect to the unknown parameters are

and

The maximum likelihood estimators of k, γ and � can be obtained by equating the derivatives in (16–18) to 
zero and numerically solving the resulting equations.

The Fisher information matrix is useful to obtain the variances and covariances of the maximum likelihood 
estimators of the parameters. The entries of the Fisher information matrix for the TWEx distribution are given as

The entries of the Fisher information matrix are given in Appendix–A. The inverse of the Fisher information 
matrix provides the variance–covariance matrix of the maximum likelihood estimates, which help in obtaining 
the confidence intervals for the true population parameters.

Simulation study
In this section, we have presented the simulation study to see the performance of the maximum likelihood esti-
mates of the parameters. The simulation study has been conducted by generating random samples of different 
sizes from the TWEx distribution. The simulation algorithm is given below:

1. Generate random samples of sizes 50, 250, 500, 750, and 1000 from the TWEx distribution.
2. Compute maximum likelihood estimates of the parameters γ , � and k for each sample.
3. Repeat steps 1 and 2 for 10,000 times.
4. Compute average estimates and the mean square error as
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The results of the simulation study are given in Table 2 below; with pre-specified values in the parenthesis;
From the above table, we can see that the estimated values of the parameters are close to the pre-specified 

values. Also, we can see that the mean square error of the estimates decreases with an increase in the sample size. 
The results of simulation study indicate that the maximum likelihood estimates of the parameters are consistent 
estimates.
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Applications
In this section, we have given two real data applications of the proposed TWEx distribution. The data set has 
been obtained from the Country Data  Book24 and contains information about poverty level and college degrees. 
The summary measures of two data are given in Table 3, below

We have fitted the following distributions; alongside the TWEx; distribution on these two data sets

• Weibull (W): gX(x) = k
�

(

x
�

)k−1
exp

[

−
(

x
�

)k
]

; x, k, � > 0

• Exponential (E): gX(x) = 1
�
exp

(

− x
�

)

; x, � > 0

• Log–Logistic (LL): gX(x) = γ �γ xγ−1

(�γ+xγ )2
; x > 0 , �, γ > 0

• Exponentiated Weibull (EW): gX(x) = kγ
�

(

x
�

)γ−1
exp

[

−
(

x
�

)γ ][
1− exp

{

−
(

x
�

)γ }]k−1

The estimated model parameters alongside the values of  − 2(log-likelihood), Akaike Information Criterion 
(AIC), and the p value of Kolmogorov–Smirnov (KS) test are given in Table 4 below

From the above table, we can see that the TWEx distribution is the best fit for the two data sets as it has the 
smallest value of AIC and the largest p value for the KS–test among all the competing distributions.

We have also constructed the plots of density and distribution functions of various distributions for the two 
data sets. These plots are given in Figs. 3 and 4 below. From these plots, we can see that the TWEx distribution is 
the best fit for the two data sets. Also, the log-logistic distribution is second best fit to the data. The other distribu-
tions used in the analyses are the poor fit. Further, the probability plot of the TWEx distribution for the two data 
sets, given in Fig. 5, shows the same result that the TWEx distribution is a reasonable fit for the two data sets.

Conclusions
In this paper, we have proposed a TWEx distribution using the truncated Weibull distribution as a generator. 
Various desirable properties of the proposed TWEx distribution are explored. These properties include moments 
of the distribution, quantile function, entropy, and generating function. We have also discussed the reliability 
analysis for the proposed distribution. It has been observed that the proposed distribution has increasing and 
decreasing hazard rate functions. The moments of residual and reversed residual life has also been computed. 
We have also discussed the maximum likelihood estimation of the parameters for the proposed TWEx distribu-
tion. A simulation study is presented to see the performance of the estimates and it is found that the maximum 

Table 2.  Estimated values of the parameters alongside the mean square errors.

Sample Sizes

Estimates MSE

k(0.5) �(1.5) γ (1.0) k(0.5) �(1.5) γ (1.0)

50 0.5180 1.5289 1.0384 0.0031 0.0064 0.0066

250 0.5055 1.5067 1.0098 0.0007 0.0004 0.0013

500 0.5029 1.5031 1.0044 0.0003 0.0002 0.0011

750 0.5022 1.5033 1.0050 0.0002 0.0002 0.0003

1000 0.5015 1.5020 1.0035 0.0001 0.0001 0.0003

k(2.0) �(1.0) γ (2.5) k(2.0) �(1.0) γ (2.5)

50 2.0182 1.0231 2.5336 0.0028 0.0019 0.0046

250 2.0043 1.0073 2.5084 0.0012 0.0009 0.0017

500 2.0028 1.0039 2.5063 0.0008 0.0006 0.0014

750 2.0017 1.0029 2.5036 0.0003 0.0004 0.0007

1000 2.0018 1.0023 2.5034 0.0002 0.0002 0.0003

k(1.0) �(0.5) γ (1.5) k(1.0) �(0.5) γ (1.5)

50 1.0162 0.5265 1.5436 0.0012 0.0029 0.0117

250 1.0042 0.5080 1.5097 0.0010 0.0011 0.0013

500 1.0027 0.5039 1.5050 0.0005 0.0007 0.0007

750 1.0018 0.5030 1.5039 0.0002 0.0005 0.0004

1000 1.0015 0.5023 1.5026 0.0002 0.0004 0.0002

Table 3.  Summary measures of the data.

Data Max Min Mean M.D Variance SD Skewness Kurtosis

Poverty 44.5 3.3 16.61 15.25 80.64 8.98 0.83 3.37

Degrees 30.7 5.6 11.99 11.30 13.90 3.73 2.04 10.72
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Table 4.  Fitted distributions on two data sets.

Data Model

Parameter

−2ℓ AIC KS p valuek � γ

I

TWEx 3.9947 8.0067 6.8446 563.200 569.200 0.948

W 0.3021 1230.44 874.056 878.056  < 2.2 ×  10−16

E 16.6113 609.637 611.637  < 2.2 ×  10−16

LL 14.6855 2.9902 567.858 571.858 0.856

EW 0.1112 908.073 2.1623 812.691 818.691  < 2.2 ×  10−16

II

TWEx 19.4647 4.7121 0.9292 346.872 352.872 0.638

W 0.3253 728.6940 704.008 708.008  < 2.2 ×  10−16

E 11.9904 473.814 475.814  < 2.2 ×  10−16

LL 11.5786 6.7044 357.411 361.411 0.432

EW 0.1205 446.9910 2.2682 644.793 650.793  < 2.2 ×  10−16

Figure 3.  Density plots of various distributions for two data sets.

Figure 4.  Distribution function plots of various distributions for two data sets.

Figure 5.  Probability plot of TWEx distribution for two data sets.
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likelihood estimates are consistent as the estimates converges to the true parameter values. Two real-life data 
applications of the proposed distribution have also been discussed and it is found that the proposed distribution 
is the best fit for the data in comparison with the other competing distributions.

Data availability
The data is available with the authors and can be obtained on request. Also, no medicine was tested on humans 
and animals for data analysis in this study.

Appendix A
Entries of Fisher Information Matrix for TWEx distribution. We have assumed 1− e−γ−k = z and 1− e−xi/ � = wi

and
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