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GASOLINE: detecting germline 
and somatic structural variants 
from long‑reads data
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Chiara Ronchini 4, Gianmaria Frigè 4,5, Roberto Semeraro 3, Marta Baragli 1, Davide Bolognini 3, 
Emanuela Colombo 4,5, Luca Mazzarella 4 & Pier Giuseppe Pelicci 4,5*

Long‑read sequencing allows analyses of single nucleic‑acid molecules and produces sequences in the 
order of tens to hundreds kilobases. Its application to whole‑genome analyses allows identification 
of complex genomic structural‑variants (SVs) with unprecedented resolution. SV identification, 
however, requires complex computational methods, based on either read‑depth or intra‑ and inter‑
alignment signatures approaches, which are limited by size or type of SVs. Moreover, most currently 
available tools only detect germline variants, thus requiring separate computation of sample pairs 
for comparative analyses. To overcome these limits, we developed a novel tool (Germline And 
SOmatic structuraL varIants detectioN and gEnotyping; GASOLINE) that groups SV signatures using 
a sophisticated clustering procedure based on a modified reciprocal overlap criterion, and is designed 
to identify germline SVs, from single samples, and somatic SVs from paired test and control samples. 
GASOLINE is a collection of Perl, R and Fortran codes, it analyzes aligned data in BAM format and 
produces VCF files with statistically significant somatic SVs. Germline or somatic analysis of 30× 
sequencing coverage experiments requires 4–5 h with 20 threads. GASOLINE outperformed currently 
available methods in the detection of both germline and somatic SVs in synthetic and real long‑reads 
datasets. Notably, when applied on a pair of metastatic melanoma and matched‑normal sample, 
GASOLINE identified five genuine somatic SVs that were missed using five different sequencing 
technologies and state‑of‑the art SV calling approaches. Thus, GASOLINE identifies germline and 
somatic SVs with unprecedented accuracy and resolution, outperforming currently available state‑of‑
the‑art WGS long‑reads computational methods.

Structural variants (SVs) are genomic alterations typically defined (and somewhat arbitrarily) as DNA segments 
larger than 50 bp that can be deleted, duplicated, inserted, inverted or translocated compared to a reference 
genome. SVs are among the main sources of germline genomic variation in humans and can be associated 
with several diseases, including type I  diabetes1, cardiovascular  disease2, neurological  disorders3 and  cancer4. 
Moreover, somatic SVs acquired by cancer genomes are known drivers of carcinogenesis and their detection is 
essential for either diagnosis or treatment stratification in at least 30% of cancer  patients5.

In the past decade second-generation sequencing (SGS) technologies, based on high-throughput short-read 
 generation6, together with the development of powerful computational tools, have revolutionized our capability to 
study structural variations (SVs) of any size, from small insertions/deletions to large CNVs, with unprecedented 
accuracy in determining position and  orientation7. However, it is apparent that the short reads (100–400 bp) 
generated by these platforms are insufficient to confidently detect variants larger than 50 bp, in particular those 
in the range [50, 1000]  bp8. Moreover, Kosugi et al.9 performing a comprehensive comparison of 69 available 
algorithms for SV detection from short reads, found that all these tools obtain low values of recall (between 20 
and 40%) demonstrating the limits of this technology in detecting SVs.

The paste decade has seen the emergence of a third generation of sequencing technologies based on single-
molecule real-time (Pacific Biosciences, PacBio)10 and nanopore sequencing (Oxford Nanopore Technologies, 
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ONT)11, which interrogate single molecule of DNA and are capable to produce sequences much longer than 
those generated by SGS methods.

Chaisson et al.8 and Huddleston et al.12, by using deep PacBio sequencing data from two haploid human 
genomes, resolved the complete sequence of a large amount of SVs, showing that around 80% of these vari-
ants were missed by SGS data (with the greatest increase in sensitivity occurring for events smaller than 5 kb, 
in size). More recently, Zhao et al.13 showed that only a limited subset of SVs overlapped between short-read 
and long-read technologies (66.8% of short- and 33.5% of long-reads events). Moreover, the SV class strongly 
impacted concordance: 60.6% of short- and 48.7% of long-reads deletions demonstrated overlap as compared 
with 81.7% of short- and 24.1% of long-reads insertions. These results demonstrated that the use of long read 
data can definitively enlarge the spectrum of detectable genetic variants, becoming the cutting-edge approach 
for the study of complex genomic structures.

Identification of SVs from long-reads data requires complex computational methods, which are based on 
either read-depth (depth of coverage, DOC) or intra- and inter-alignment SV signatures (split-read align-
ments)  approaches14. While the DOC approach is limited to the identification of large deletions and duplications 
( > 100 kb)15, gapped alignment methods allow detection of deletions, inversion and translocations of any size, 
with insertions and duplications limited by read  length14.

All split-read approaches consist of complex procedures in which the genomic coordinates of SV signatures 
are clustered on the basis of their reciprocal overlap to find groups of similar signatures that support the same SV. 
This step is critical for recovering all the signatures generated by each SV. Incomplete recovery can in fact lead to 
underestimation of the allelic fraction and genotyping errors. Signature clustering becomes even more critical 
when comparing datasets of matched test and control samples for somatic variant detection, where missing of 
some SV signatures in the control sample can lead to the calling false positive somatic variants.

At present, most of the currently available tools, such as  SVIM16,  CuteSV17 and  Sniffles18, only detect germline 
variants, using SV-signature clustering procedures that are based on classical reciprocal overlap. Remarkably, the 
standard approach for the detection of somatic variants consists in the application of these methods separately 
on each of the paired samples (test and control), discarding SVs with supporting reads in the control  sample19.

To overcome the limits of currently available methods, we developed GASOLINE (Germline And SOmatic 
structuraL varIants detectioN and gEnotyping) tool, a software that, exploiting a novel reciprocal overlap measure 
to cluster SV signatures is capable to detect germline SVs from the analysis of single samples as well as somatic 
SVs from the comparison of test and matched-normal samples. We tested our novel tool on synthetic and real 
long reads datasets and demonstrated its potential to detect germline and somatic SVs with unprecedented 
accuracy and resolution.

Results
Germline GASOLINE
When sequencing data are aligned to a reference genome, in principle, each SV subtype generates a typical pattern 
of mapped reads, named SV signature, which is then used to identify the underlying alteration. These signatures 
can be classified in two distinct categories: gapped alignment or split read alignments. Alignment algorithms 
use gap  penalty20 to account for genomic differences (alterations) occurring from insertions or deletions in the 
sequences. For example, a deletion, that is a lack of a sequence, generates a gap in the alignment of the read 
relative to a reference, while an insertion creates a gap in the alignment of the reference relative to the read. 
When genomic differences are too large and exceed gap penalty, mapping algorithms generate split-alignment, 
in which consecutive segments of the query sequence are mapped to disjoint regions in the reference and can 
have discordant orientation.

While gapped alignment generates two signature categories (insertions and deletions), the signatures arising 
from split reads can recognize, in principle every type of alteration: (i) two consecutive segments mapping far 
apart with the same or opposite orientations define, respectively, deletion or inversion signatures; (ii) overlap-
ping coordinates define a duplication signature; (iii) a read splitted in three segments, with the first and third 
segments closely mapped, define an insertion signature; (iv) finally, when two consecutive segments mapped on 
different chromosomes define a translocation signature (Supplementary Fig. S1).

The first critical step of SVs detection consists in finding and grouping, all the signatures generated by each 
genomic alteration. From a computational point of view this step consists in clustering the genomic coordinates 
of SV signatures to find groups of intervals with large reciprocal overlap.

Owing to the high error rate, the alignment of long read data can be very noisy and the genomic coordinates 
of SV signatures generated by the same event can be imprecise and have variances of tens of bp. In this situa-
tion, identifying and clustering SVs signatures generated by small events (50–500 bp) require small reciprocal 
overlap that takes into consideration noisy and imprecise alignments, while large SVs (tens or hundreds of kb), 
less affected by error rate, needs large reciprocal overlap to prevent the inclusion of signatures arising from other 
events.

Thus, the use of standard reciprocal overlap criteria can underestimate or completely miss signatures of small 
SVs (using large reciprocal overlap), or include wrong signatures in the identification of large SVs (using small 
reciprocal overlap may include signatures of other SVs).

To overcome the limits of classical reciprocal overlap we introduced a novel normalized reciprocal overlap 
(NRO) criterion that allows grouping both small and large SV signatures with high accuracy, thus reducing the 
effect of imprecise alignment.

NRO mitigates the effect of imprecise alignment by taking into account both overlapping and non-overlapping 
regions of two SV signatures with the following formula:
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where Li and Lj are the the size of the two signatures, Overlap and NO are the size of the overlapping and non-
overlapping regions between the two signatures respectively and NONorm is a normalization factor. The first term 
represents the classical reciprocal overlap between two signatures, while the second term allows mitigation of the 
effect of imprecise alignments for small variants and prevents the inclusion of erroneous signatures in large SVs.

To identify germline SVs, GASOLINE takes as input the aligned data of a sample (in BAM format) and 
extract the genomic coordinates of gap- and split-alignment signatures (Fig. 1a1 and Supplementary Fig. S1). 
SV signatures are then clustered with a sophisticated clustering procedure based on NRO measure, whose first 
step consists in calculating NRO for each pair of signatures (Fig. 1a2,a3).
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Figure 1.  GASOLINE workflow. Panel (a) shows the steps to calculate NRO for a pair of SV signatures 
coordinates. Once the gap- and split-alignments coordinates ( Si and Ei for i, j = [1, 2] ) have been extracted 
from each read (a1), these are used to calculate the size of non-overlapping ( NO1

12
 and NO2

12
 , blue lines) 

and overlapping ( O12 ) segments for each pair of signatures (a2). NO1
12

 , NO2
12

 , O12 and the total size of the 
two intervals ( L1 and L2 ) are then used to calculate the NRO12 coefficient (a3). In panel (b) is reported the 
workflow followed by GASOLINE for the detection of germline SVs in a sample. After signatures extraction, 
the tool calculates the NROij between all the signature pairs and generates an NRO matrix (b1) that is used as 
adjacency matrix to create an undirected graph by filtering out NROij values smaller than a predefined threshold 
(continuous edges represent NROij > NROthr , while dotted edges NROij < NROthr (b2). The undirected graph 
is then analyzed with the Eppstein–Löffler–Strash algorithm to extract maximal cliques that represent clusters of 
SV signatures that can be assumed to be generated from the same SV event (b3). Next, all the SV signatures of a 
cluster are used to estimate the genomic coordinate (orange segment) of each SV event (b4). Finally, the number 
of SV signatures of a cluster and the total number of reads aligned in the breakpoints are used for genotyping 
with a maximum-likelihood Bayesian classification algorithm (b5). In panel (c) are reported the steps that 
GASOLINE follows for detecting somatic SVs. Somatic SVs are identified by comparing the SV signatures of a 
test (cancer) sample with a control (normal) sample. The SVs detected in the test sample (c1) are compared with 
the SVs signatures extracted from the control sample (c2) by calculating the NRO: SV signatures with a NROSV 
larger than a predefined threshold are considered to be generated from the SV event of the test sample (c3). 
Statistical significance of each somatic SV is calculated by applying the Fisher’s exact test on the contingency 
table of (c4): NRRT (number of reads without SV signatures in test sample), NVRT (number of reads with the 
SV signatures in test sample), NRRC (number of reads without SV signatures in control sample), NVRC (number 
of reads with the SV signatures in control sample) . SVs with a p-value smaller than a predefined significance 
threshold are considered somatic.
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Once NROij is calculated for all the signatures pairs [i, j] (Fig. 1b1), we perform interval clustering by using 
a graph-based approach. We first create an undirected graph by exploiting the NRO matrix as adjacency matrix, 
in which nodes are SV signatures and edges between two nodes i and j exist if NROij > Thr (where Thr is a 
predefined reciprocal overlap threshold, Fig. 1b2). An edge between two nodes expresses the confidence of two 
signatures being generated by the same SV event (Fig. 1b3).

The undirected graph is then used to extract maximal cliques (groups of fully connected nodes) by using the 
Eppstein–Löffler–Strash  algorithm21. Maximal cliques represent groups of signatures that can be assumed to be 
generated from the same SV event (Fig. 1b3). SV signatures of each maximal clique are then used to estimate the 
genomic coordinates (start and end) of each SV event by calculating the median of all start and end coordinates 
(Fig. 1b4). For each cluster we then calculate different statistics including: cohesion score (the ratio between the 
numbers of links in the extended clique and the maximum numbers of link), mean mode and standard deviation 
of start and end coordinates. These statistics are then exploited to filter out low quality SV-signature clusters.

For deletions, duplications, inversions and insertions, the clustering procedure is applied separately to signa-
tures extracted from each chromosome. Similarly, for translocations, clustering is applied to signatures extracted 
from each pair of chromosomes.

Finally, under the assumption of diploidy, each SV event is genotyped as reference, heterozygous, homozy-
gous, by using the maximum-likelihood Bayesian classification algorithm as  in22 (Fig. 1b5).

Somatic GASOLINE
The detection of somatic SVs in cancer genomes consists in the identification of SVs present in the cancer sam-
ple and absent in the patient-matched normal sample. GASOLINE identifies somatic SVs by first applying the 
germline detection module to the test data and then searching for overlapping SVs signatures in the matched 
normal sample (Fig. 1c).

The signature clusters identified in the test sample are then compared with the signatures extracted from the 
control sample, by calculating their NRO (Fig. 1c2). Signatures with a NROSV larger than a predefined threshold 
are considered to be generated from the SV event of the test sample (see Fig. 1c3).

Statistical significance of somatic SV is calculated by comparing the proportion between SV signatures and 
reference reads in the tumor and matched-normal samples with the Fisher’s exact test (contingency table of 
Fig. 1c4). SVs with a p-value smaller than a predefined significance threshold are considered somatic.

GASOLINE and germline SV detection
Many computational methods have been developed to detect SVs from different technologies and evaluation 
of their performance is a very challenging task, mainly due to the lack of gold-standard datasets including all 
subtypes of structural variation.

Thus, to assess the performance of GASOLINE in the detection and genotyping of germline SVs we first 
generated synthetic genomes with SVs of all subtypes and size by using the PBSIM2  software23. PBSIM2 was 
exploited to simulate datasets mimicking the characteristics of long reads generated by either ONT or PacBio 
platforms, with average size of 10 kb, a global error rate of 90% and a total sequencing coverage from 5 × to 30× 
(coverage = 5×,10× , 15× , 20× , 25× and 30×).We simulated all SV subtypes (deletions, insertions, duplications, 
inversions and translocations) in homozygous and heterozygous state and with size ranging from 50 bp to 5 kb 
(50, 100, 200, 300, 400, 500, 1000, 2000, 3000, 4000, 5000 bp). Simulated sequencing datasets were then aligned 
to the reference genome with  minimap224 and  NGMLR18 aligners (see “Methods”).

To investigate the performance of our tool as a function of the NRO threshold, we applied it to the synthetic 
dataset using different parameter settings (NRO=[0.5, 0.6, 0.7, 0.8, 0.9]) and calculated precision and recall as  in25 
(see “Methods”). The results of these analyses (Supplementary Figs. S2–S4) demonstrated that NRO thresholds 
have little effect on the global performance of our tool, with NGMLR-generated data giving better results with 
low NRO thresholds (0.5–0.7), minimap2-generated data requiring instead higher values (0.8–0.9), particularly 
in the case of deletions.

Recently, the Genome in a Bottle (GIAB) Consortium, using a combination of short-, linked-, and long-read 
sequencing, as well as optical mapping, has characterized the genome of an individual of Ashkenazim ancestry 
(NA24385), thus generating gold-standard datasets for  SVs26. Although fundamental to test new technologies 
and algorithms, this dataset only contains high confidence sequence-resolved insertion and deletion calls > 50 
base pairs (bp), and it does not enable performance assessment for inversions, duplications and translocations.

For this reason, we simulated inversions, duplications and translocation by using a computational strategy 
based on  SURVIVOR27 to modify the human reference genome and PBSIM2 to simulate ONT or PacBio reads 
(see “Methods”). Simulated reads were then aligned to the human reference genome with  minimap224 and 
 NGMLR18 aligners (see “Methods”).

The synthetic dataset was then exploited to compare the performance of GASOLINE (using NRO=0.8) with 
those of other three state-of-the-art tools:  Sniffles218,  CuteSV17 and  SVIM16. The results reported in Fig. 2a–f 
and Supplementary Fig. S5 demonstrate that our method (and Sniffles2) obtained the best performance in the 
identification of simulated inversions, duplications and translocations, especially for low sequencing coverages 
(5–10× ), thus demonstrating that our new NRO-based computational strategy is capable to group SV signatures 
with an high level of accuracy.

Remarkably, sequencing coverage has little effects on the global performance of our tool for both alignment 
algorithms: as previously reported  by28 a sequencing coverage higher than 15× is sufficient for detecting all 
subtypes of SVs and its increase does not lead to significant improvements.

To evaluate the accuracy of GASOLINE in the detection of real germline insertions and deletions we applied it 
to the publicly available ONT and PacBio NA24385 datasets generated by the GIAB consortium (see “Methods”) 
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and compared its performance with the three aforementioned tools. To assess the performance of the four tools 
in detecting SVs at different sequencing coverages, we downsampled ONT and PacBio datasets to simulate 5, 10, 
15, 20, 25 and 30× coverages and performed alignments with both minimap2 and NGMLR.

To compare the capability of the four tools to cluster SV signatures, we calculated precision and recall as a 
function of numbers of reads supporting each SV event, separately for large and small SVs (see “Methods”). 
Figure 2g–j and Supplementary Figs. S6–S17 show that for large insertions and deletions ( > 500 bp) all the tools 

Figure 2.  Global performance of GASOLINE and the other three tools in the detection of synthetic and real 
germline SVs. Panels a-f report the F1 score obtained by the four tools in the analysis of simulated inversions 
(a,d), duplications (b,e) and translocations (c,f). Results are reported for ONT (a–c) and PacBio (d,e) synthetic 
reads aligned with minimap2. Panels (g–j) report precision and recall obtained by the four tools in the analysis 
of the NA24385 datasets for the detection of small SVs (g,h) and large SVs (i,j) with ONT (g,i) and PacBio (h,j) 
data. The curves in panels (g–j) were obtained by ordering all the SVs as a function of number of supporting 
reads and calculating precision and recall including SVs with decreasing number of reads. Panels (k–n) show F1 
score obtained by the four tools for the NA24385 datasets in the detection of small (k–l) and large SVs (m–n) 
with ONT (k,m) and PacBio (l,n) datasets at different sequencing coverages.
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performed very similarly. For small SVs ( < 500 bp), instead, GASOLINE showed the superiority of its NRO-
based clustering procedure in grouping true SV signatures from long reads noisy alignments, obtaining the 
highest precision at the same level of recall for all sequencing coverages (5–30× ), sequencing data (PacBio and 
ONT) and aligners (NGMLR and minimap2). These analyses also showed that NGMLR alignment gave better 
results in the detection of large SVs, while minimap2 data better detected small SVs.

Finally, we calculated precision and recall for all SVs genotyped as heterozygous (0/1) or homozygous (1/1) 
by the four tools and we found that while for large insertions and deletions ( > 500 bp) all tools obtained very 
similar results, for small SVs ( < 500 bp) GASOLINE obtained the highest F1 measure for all sequencing cover-
ages and technologies (Fig. 2k–n).

Somatic SV detection on simulated and real data
As for germline variants, the validation of computational methods for somatic SVs detection is challenged by the 
lack of high-quality gold standard datasets enabling benchmarking and comparison of bioinformatic analysis 
pipelines, especially for tools exploiting long-read datasets and capable to identify small and complex variants 
previously unseen by short-reads WGS experiments.

Recently, Valle-Inclan et al.19, generated a comprehensive set of true somatic SVs (comprising all SV types) 
of the melanoma COLO829 cell lines by using four different sequencing technologies (Illumina HiSeq, ONT, 
PacBio and 10× Genomics) combined with extensive experimental validation (see “Methods”).

Despite the great utility of such a gold reference dataset, its application for benchmarking purposes on long 
read data is limited by the small number of insertions and by the size distribution of all the SVs that are mainly 
larger than 50 kb not allowing to evaluate the performance of algorithms in the detection of small SVs ([50, 
500] bp).

For these reasons, to assess the accuracy of GASOLINE in the identification of small somatic insertions and 
deletions we simulated somatic SVs of different sizes by using the PacBio and ONT WGS NA24385 dataset 
generated by the GIAB consortium (see “Methods”). We selected 330 heterozygous SVs (169 insertions and 161 
deletions from the high-confidence callsets generated by the GIAB consortium) with size distribution in the 
range [50 bp, 5 kb] (with 230 SVs smaller than 1 kb). Using custom scripts, we first removed all reads contain-
ing signatures of the 330 SVs, we randomly splitted the remaining reads in two sets and finally, we added all the 
reads containing SV signatures to one of the splitted sets. With this workflow, for both PacBio and ONT data 
we obtained a ∼ 30× sequencing experiment with reads containing the 330 selected SVs (test), and a ∼ 30× 
control experiment without the 330 SVs. To evaluate detection accuracy at different sequencing coverages we 
downsampled read datasets to obtain 5 × , 10× , 15× , 20× and 25× . Raw reads were aligned using either minimap2 
or NGMLR. We then applied the somatic module of GASOLINE to the simulated datasets and we compared its 
performance to the other three tools (see “Methods”). Sniffles2, SVIM and CuteSV were used as in Valle-Inclan 
et al.19. They were applied separately on test and control samples and somatic SVs were called discarding events 
with supporting reads in the control sample. Supporting signatures in control samples were searched by using 
a reciprocal overlap larger than 0.5.

GASOLINE obtained the best F-measure for all sequencing coverages of both PacBio and ONT datasets 
aligned with minimap2 or NGMLR (Fig. 3a–d and Supplementary Figs. S18–S29), especially in the detection of 
small SVs ( [50−500] ). In contrast, the other three tools identified a large number of false positive somatic SVs 
resulting in very low levels of precision. These analyses also showed that low sequencing coverages ( ≤ 15x ) yield 
very poor performance and that, similarly to germline SVs, the best F1-measure is obtained with at least 20× 
coverage, for both PacBio and ONT data. Notably, ONT data outperformed PacBio in all our analyses, while the 
minimap2 approach showed higher precision and recall than obtained with NGMLR.

We next tested the capability of our tool in detecting all SVs subtypes, applying it to the ONT and PacBio 
data of the COLO829 cell lines and comparing its performance with those of the other three tools by using the 
Valle-Inclan et al.19 true-set as benchmark (see “Methods”). As with the simulated datasets, the three state of the 
art tools identified a large number of false positive somatic events that generated very low levels of precision. 
On the other hands, GASOLINE, filtering out SVs on the basis of somatic p-values, was capable to drastically 
increase precision (removing a large fraction of false positive calls) at the expense of a minimal decrease in recall 
(removal of true positive calls). For all SV subtypes, with the exception of insertions (unfortunately the gold 
standard true dataset only contains three somatic insertions), our method was capable to identify between 80% 
and 100% of the Valle-Inclan et al. true-set with precision in the order of 60–80%, outperforming the other three 
state of the art methods (Fig. 3e–o).

Notably, in ONT analyses with somatic p-value< 0.001, GASOLINE detected 49 SVs (25 deletions, 4 inser-
tions, 9 Inversions, 5 tandem duplications and 6 translocations). Among these variants, 6 SVs (1 deletion, 1 inser-
tions, 1 duplication and 3 inversions) were not present in the Valle-Inclan et al. gold reference set (Supplementary 
Table S1) and were not detected by the other three tools. Visual inspection of aligned reads demonstrated that 
all the six SVs have somatic signatures in ONT data (signatures in cancer and not in normal). Moreover, 5 out 
6 of these SVs are also supported by Pacbio and/or Illumina data of the COLO829 cell line (see Supplementary 
Figs. S30–S35).These results demonstrate that GASOLINE can expand our potential to study somatic alterations 
in cancer and that the precision and recall reported in Fig. 3 are even underestimated.

GASOLINE tool
GASOLINE is a collection of Perl, R and Fortran codes for the detection of somatic SVs from long read sequenc-
ing data. It takes as input two BAM files from a pair of test and matched normal samples and gives as output a 
VCF file (version 4.2) with statistically significant somatic SVs.
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Figure 3.  Performance of GASOLINE on the detection of somatic SVs. Panels (a–d) show F1 score obtained by 
the four tools in the detection of simulated small (a,b) and large somatic SVs (c,d) with ONT (a,c) and PacBio 
(b,d) datasets at different sequencing coverage. Panels (e–o) report the precision-recall obtained by GASOLINE 
and the other three tools in the detection of deletions (e,j), insertions (f,l), duplications (g,m), inversions (h,n) 
and translocations (i,o) of the Valle-Inclan et al. true-set for the COLO829 cell lines sequenced with ONT 
(e–i) and PacBio (j–o) technologies. The results for GASOLINE were reported for different somatic p-value 
thresholds ( 5× 10

−1 , 1× 10
−1 , 5× 10

−2 , 1× 10
−2 , 5× 10

−3 , 1× 10
−3 , 5× 10

−4 , 1× 10
−4 ). All the results 

reported in the panels are based on mimimap2 alignment data.



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:20817  | https://doi.org/10.1038/s41598-023-48285-0

www.nature.com/scientificreports/

GASOLINE analyzes aligned data in BAM format and extracts the genomic coordinates of discordant align-
ments of a read with respect to the reference genome (SV signatures). The parsing module of our tool searches 
for two types of signatures: gapped alignments (in the CIGAR strings) and split alignments (primary and sup-
plementary alignment of a read).

At present the signature extraction module is written in Perl and takes around 3 h for parsing a ONT or PacBio 
WGS at 30× of sequencing coverage. After the parsing step, GASOLINE can be run in ‘germline’ or ‘somatic’ 
mode. In ‘germline’ mode, SV signatures are grouped with the NRO-based clustering and then genotyped. In 
‘somatic’ mode SV signatures from a test cancer sample are clustered and then compared with those of matching 
control sample to calculate somatic p-value with Fisher’s exact test.

Both ‘germline’ and ‘somatic’ modules can be ran in multicores: the ‘germline’ module takes around 1 h to 
genotype a 30× bam file (with 20 threads), while the ‘somatic’ module takes around 2 h two compare the SV 
signatures of two 30× bam files (with 20 threads).

GASOLINE can run on any UNIX system (desktops and workstations). The GASOLINE tool is freely avail-
able at https:// sourc eforge. net/ proje cts/ gasol ine/.

Discussion and conclusion
Long-read sequencing technologies are revolutionizing our capability of identifying and resolve the structure of 
complex SVs with an unprecedented accuracy and resolution. However, currently available tools for long-read 
analyses are based on computational procedures that limit the detection of small SVs ( < 500 bp). Notably, none 
of them is properly devised for the identification of somatic alterations.

In order to overcome the limits of currently available methods, we developed GASOLINE, the first compu-
tational approach that is capable of detecting germline and somatic SVs from long reads sequencing datasets. 
GASOLINE is based on a novel reciprocal overlap (NRO) criterion that allows to group both small and large SV 
signatures with high accuracy, thus reducing the effect of imprecise alignment and allowing the identification of 
both small ( < 500 bp) and large ( > 500 bp) SVs with the same accuracy.

Analyses of synthetic and real long-read datasets demonstrated that our NRO-based clustering algorithm 
clearly outperform the other state of the art method in the detection of germline alterations, especially SVs 
smaller than 500 bp.

The most important novelty and uniqueness of GASOLINE lies in its capability to compare a test and a 
matched normal sample to identify somatic alterations. At present, the standard approach for the detection of 
somatic variants consists in applying these methods separately on paired samples (test and control) discarding 
SVs with a supporting read in the control sample. GASOLINE directly compares the SV signatures found in test 
and control samples and then it calculates somatic statistical significance with Fisher’s exact test.

As for germline variants we tested the performance of our tool in the detection somatic variants, using both 
simulated and real long-read cancer datasets. In synthetic datasets, as for germline variants, our tool demon-
strated its superiority in the detection of small SVs for all sequencing coverages we simulated. In particular, 
the somatic p-values calculated by GASOLINE are a useful instrument to increase precision (removing a large 
fraction of false positive calls) at the expense of a minimal decrease in recall (removal of true positive calls).

When applied on a pair of metastatic cutaneous melanoma (COLO829) and matched normal sample, GASO-
LINE outperformed the other three tools in the detection of all SV subtypes. Notably, our tool identified five 
genuine somatic SVs that were missed by Valle-Inclan et al. by using five different sequencing technologies and 
state-of-the art SV calling approaches, demonstrating that GASOLINE can expand our capability of studying 
somatic alterations in cancer.

At present, the speed of GASOLINE is, however, still slower than the other of state-of-the-art approaches. The 
germline or somatic analysis of a 30× coverage sequencing experiments requires 4–5 h with 20 threads. This is 
mainly due to the SV signature extraction module of our method that is implemented in perl. We are planning 
to implement the parsing module in c++, to obtain computational speed comparable to that of currently avail-
able state of the art SV callers.

Regardless, the results obtained in all of the comparative analyses we performed highlighted the versatility of 
our software and its ability to overcome the limitations and drawbacks of currently available state-of-the-art tools, 
thus making GASOLINE a suitable tool for the investigation of SVs in population as well as in cancer studies.

Materials and methods
PBSIM2
PBSIM2 simulates synthetic reads by randomly sampling from a reference sequence, adding errors with user 
defined distribution of substitutions, insertions and deletions and allowing to define read size distribution 
(mean and maximum size) and the desired sequencing coverage. PBSIM2 was exploited to simulate sequenc-
ing dataset that mimic the characteristics of long reads generated by ONT and PacBio platforms with total 
sequencing coverage from 5 × to 30× (coverage = 5× , 10× , 15× , 20× , 25× and 30× ). To study the performance of 
GASOLINE as a function of NRO values, we simulated all SV subtypes in homozygous and heterozygous state 
by applying PBSIM2 to reference sequences obtained by modifying a 5 Mb segment of chromosome 1 of the 
hg19 (1:5000001–10000000, see “Methods”) with deleted, inserted, duplicated and inverted segments ranging 
from 50 bp to 5 kb (50 bp, 100 bp, 200 bp,...). Translocations were simulated by applying PBSIM2 to two refer-
ence sequences obtained by modifying two 5 Mb segment of chromosome 1 of the hg19 (1:5000001–10000000 
and 1:10000001–15000000, see “Methods”). Simulated reads were then aligned to the 5 Mb reference genomes 
with minimap2 and NGMLR aligners. To compare the performance of GASOLINE with other three state of 
the art methods, we simulated inversions, duplications and translocations by combining SURVIVOR (https:// 
github. com/ fritz sedla zeck/ SURVI VOR) and PBSIM2. SURVIVOR was used to generate a modified version of 

https://sourceforge.net/projects/gasoline/
https://github.com/fritzsedlazeck/SURVIVOR
https://github.com/fritzsedlazeck/SURVIVOR
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the Human Genome (hg19) with 3000 inversions, duplications and translocations ranging from 500 bp to 30 kb. 
The modified and standard human genome was used to generate ONT and PacBio reads at 2.5× , 5 × , 7.5× , 10× , 
12.5× and 15× with PBSIM2. Reads from standard and modified genome were combined to obtain heterozygous 
SVs and aligned with minimap2 and NGMLR.

Tools comparison
We downloaded the cuteSV tool (version 1.0.12) from https:// github. com/ tjian gHIT/ cuteSV, Sniffles2 (version 
2.0.7) from https:// github. com/ fritz sedla zeck/ Sniffl es and SVIM from https:// github. com/ eldar iont/ svim. For 
germline analyses, CuteSV was applied by using parameter settings suggested in the github page for ONT 
data (–max_cluster_bias_INS=100, –diff_ratio_merging_INS=0.3, –max_clus-
ter_bias_DEL=100, –diff_ratio_merging_DEL=0.3) and for PacBio data (–max_cluster_
bias_INS=100, –diff_ratio_merging_INS=0.3, –max_cluster_bias_DEL=200, –diff_
ratio_merging_DEL=0.5), while Sniffles2 and SVIM were both run with default parameter settings.

Somatic analyses were performed by using each tool separately on paired samples (test and control) and 
discarding SVs with a supporting signature in the control sample. Supporting signatures in control samples 
were searched by using a reciprocal overlap larger than 0.5. GASOLINE was applied to all the datasets (PBSIM2 
synthetic datasets, the NA24385 datasets, the COLO829 datasets and the synthetic somatic SVs generated with 
the NA24385 dataset), in ‘germline’ and ‘somatic’ mode with NRO = 0.8 , NONorm = 1000 . In all the analyses we 
performed, precision was calculated as the ratio between the number of correctly detected events (the intersection 
between the tool calls and the gold standard set calls) and the total number of events detected by each method, 
while recall was calculated as the ratio between the number of correctly detected events and the total number 
of events in the gold standard dataset (as  in25). In both germline and somatic analyses each SV was considered 
a true positive if we found a reciprocal overlap larger than or equal to 50% with an SV of the validation set. SVs 
detected by GASOLINE on the COLO829 datasets with p-value< 0.001 were validated by visual inspection by 
using the Integrative Genomics  Viewer29 (IGV version 2.9.4, https:// softw are. broad insti tute. org/ softw are/ igv/ 
downl oad) and Samplot (version 1.3.0, https:// github. com/ ryanl ayer/ sampl ot)30.

NA24385 data
ONT and PacBio read data for the NA24385 individual of Ashkenazim ancestry was obtained from the GIAB 
ftp site https:// ftp- trace. ncbi. nlm. nih. gov/ giab/ ftp/ data/ Ashke nazim Trio/ HG002_ NA243 85_ son/. Reads in fastq 
(for ONT) or fasta (for PacBio) format were aligned against the human reference genome (hg19) by using mini-
map2 and NGMLR aligners, obtaining an average coverage of 64× for ONT and Xx for PacBio. To simulate 5, 
10, 15, 20, 25 and 30× sequencing coverages, the original reads in fastq and fasta formats were downsampled 
by using the seqtk tool (https:// github. com/ lh3/ seqtk) and then aligned to the human reference genome (hg19) 
with minimap2 and NGMLR. The GIAB consortium, by combining short-, long-, linked-read sequencing and 
optical mapping generated a high-quality callset of germline insertions and deletions. The NA24385 truth SV 
callset contains 12,745 SVs divided into 7,281 (6341 smaller than 1 kb and 787 in the range [1 kb, 5 kb]) inser-
tions and 5,464 (4846 smaller than 1 kb and 462 in the range [1 kb, 5 kb]) deletions. The truth SV callset was 
downloaded at https:// ftp- trace. ncbi. nlm. nih. gov/ Refer enceS amples/ giab/ data/ Ashke nazim Trio/ analy sis/ NIST_ 
SVs_ Integ ration_ v0.6/.

COLO829 data
The COLO829 cancer cell-line from a metastatic cutaneous melanoma patient and the COLO829BL cell-line from 
a lymphoblastoid line of the same patient were recently sequenced by Valle-Inclan et al.19, by using five different 
technology platforms (Illumina HiSeq Xten, ONT, PacBio, 10× genomics and Bionano Genomics Saphyr optical 
mapping). By using state-of-the art SV calling approaches generated a somatic SV truth set comprising 68 high 
confidence calls: 38 deletions, 3 insertions, 7 duplications, 7 inversions and 13 translocations. The somatic SV 
truth set was downloaded from https:// doi. org/ 10. 5281/ zenodo. 39881 85. ONT, Illumina and PacBio WGS data 
were downloaded from EGA project PRJEB27698 (https:// www. ebi. ac. uk/ ena/ brows er/ view/ PRJEB 27698). ONT 
and PacBio reads in fastq format were aligned against the human reference genome (hg19) by using minimap2 
aligner, obtaining an average coverage of 60× for ONT and 50× for PacBio. Illumina reads in fastq format were 
aligned against the human reference genome (hg19) by using the Burrows-Wheeler Aligner (BWA)31, followed 
by indel realignment with  GATK32.

Data availability
ONT and PacBio read data for the NA24385 individual of Ashkenazim ancestry was obtained from the GIAB 
ftp site https:// ftp- trace. ncbi. nlm. nih. gov/ giab/ ftp/ data/ Ashke nazim Trio/ HG002_ NA243 85_ son/. For COLO829 
dataset, the somatic SV truth set was downloaded from https:// zenodo. org/ recor ds/ 39881 85. ONT, Illumina 
and PacBio WGS data were downloaded from EGA project PRJEB27698 (https:// www. ebi. ac. uk/ ena/ brows er/ 
view/ PRJEB 27698).
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