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An inventory of human light 
exposure behaviour
Mushfiqul Anwar Siraji 1,2,15, Rafael Robert Lazar 3,4,15, Juliëtte van Duijnhoven 5, Luc J. 
M. Schlangen 6,7, Shamsul Haque 1, Vineetha Kalavally 8, Céline Vetter 9,10, Gena L. Glickman 11, 
Karin C. H. J. Smolders 6,7 & Manuel Spitschan 12,13,14*

Light exposure is an essential driver of health and well-being, and individual behaviours during rest 
and activity modulate physiologically relevant aspects of light exposure. Further understanding the 
behaviours that influence individual photic exposure patterns may provide insight into the volitional 
contributions to the physiological effects of light and guide behavioural points of intervention. Here, 
we present a novel, self-reported and psychometrically validated inventory to capture light exposure-
related behaviour, the Light Exposure Behaviour Assessment (LEBA). An expert panel prepared the 
initial 48-item pool spanning different light exposure-related behaviours. Responses, consisting of 
rating the frequency of engaging in the per-item behaviour on a five-point Likert-type scale, were 
collected in an online survey yielding responses from a geographically unconstrained sample (690 
completed responses, 74 countries, 28 time zones). The exploratory factor analysis (EFA) on an initial 
subsample (n = 428) rendered a five-factor solution with 25 items (wearing blue light filters, spending 
time outdoors, using a phone and smartwatch in bed, using light before bedtime, using light in the 
morning and during daytime). In a confirmatory factor analysis (CFA) performed on an independent 
subset of participants (n = 262), we removed two additional items to attain the best fit for the five-
factor solution (CFI = 0.95, TLI = 0.95, RMSEA = 0.06). The internal consistency reliability coefficient 
for the total instrument yielded McDonald’s Omega = 0.68. Measurement model invariance analysis 
between native and non-native English speakers showed our model attained the highest level of 
invariance (residual invariance CFI = 0.95, TLI = 0.95, RMSEA = 0.05). Lastly, a short form of the 
LEBA (n = 18 items) was developed using Item Response Theory on the complete sample (n = 690). 
The psychometric properties of the LEBA indicate the usability for measuring light exposure-related 
behaviours. The instrument may offer a scalable solution to characterise behaviours that influence 
individual photic exposure patterns in remote samples. The LEBA inventory is available under the 
open-access CC-BY license. Instrument webpage: https:// leba- instr ument. org/ GitHub repository 
containing this manuscript: https:// github. com/ leba- instr ument/ leba- manus cript.

Light exposure received by the eyes affects many facets of human health, well-being, and performance beyond 
visual sensation and  perception1. The non-image-forming (NIF) effects of light comprise light’s circadian and 
non-circadian influence on several physiological and psychological functions, such as the secretion of melatonin, 
sleep, mood, pupil size, body temperature, alertness, and higher cognitive  functions2.
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With the introduction of artificial electric light, human behaviour has become dissociated from the light-dark 
cycle given by solar radiation. People can now frequently choose when to be exposed to light or darkness. For 
example, they can decide whether to go outdoors and seek out sunlight, switch on/off light-emitting devices, use 
certain types of lights at home, or avoid specific light environments altogether. Additionally, when light sources 
cannot be directly manipulated, sought out, or avoided (for example, at school, work, or in public places), there 
is still potential leeway to influence personal light exposure behaviourally, for instance, by wearing sunglasses, 
directing one’s gaze away or supplementing the situation with additional light sources. Although clearly yielding 
the potential for good, these behaviours are further associated with increased electric light exposure at night 
and indoor time during the day, compromising the natural temporal organisation of the light-dark cycle. For 
example, in the US, an average of 87% of the time is spent in enclosed  buildings3, and more than 80% of the 
population is exposed to a night sky that is brighter than nights with a full moon due to electric light at  night4.

An extensive body of scientific evidence suggests that improper light exposure may be disruptive to health 
and well-being, giving rise to a series of adverse consequences, including the alteration of hormonal rhythms, 
increased cancer rates, cardiovascular diseases, and metabolic disorders, such as obesity and type II  diabetes4–6. 
These findings have sparked a significant call for assessment and guidance regarding healthy light exposure, as 
exemplified by a recently published set of consensus-based experts’ recommendations with specific requirements 
for indoor light environments during the daytime, evening, and  nighttime7.

Furthermore, building on earlier  attempts8, there was a recent push toward the development and use of port-
able light loggers to improve ambulant light assessment and gain more insight into the NIF effects of light on 
human health in field  conditions9,10. Attached to different body parts (e.g., wrist, head, at eye level, chest), these 
light loggers allow for the objective measurement of individual photic exposure patterns under real-world con-
ditions and thus are valuable tools for field studies. Nevertheless, these devices also encompass limiting factors 
such as potentially being intrusive (e.g., when eye-level worn), yielding the risk of getting covered (e.g., when 
wrist- or chest-worn) and requiring (monetary) resources and expertise for acquisition and maintenance of the 
devices. Moreover, it is important to note that portable light loggers alone do not collect data on the specific 
behavioural patterns in relation to light exposure.

On the other hand, several attempts have been made to quantify received light exposure subjectively with 
self-report  questionnaires11–20 (see Supplementary Table 1). However, self-reporting light properties could be 
challenging for people who lack technical knowledge of light sources. Moreover, it is worth considering that the 
human visual system, unlike a photometer, continuously adapts to ambient  brightness21, while the signals under-
lying the non-visual effects of light are independent from  perception22. Retrospectively recalling the properties 
of a light source can further complicate such subjective evaluations. Moreover, measuring light properties alone 
does not yield any information about how individuals might behave differently regarding diverse light environ-
ments such as work, at home or outdoors.

To date, little effort has been made to understand and capture these activities. Here, we present the develop-
ment process of a novel self-reported inventory, the Light Exposure Behaviour Assessment (LEBA), for charac-
terising diverse light exposure-related behaviours. Notably, the focus of the LEBA inventory is not to estimate 
personal light exposure. Instead, we aim to assess, in a scalable way, how people behave in relation to light, 
focusing on habitual patterns that could guide behavioural interventions.

Results
Our results focus on the development of the LEBA inventory and its psychometric validation using a large-scale 
online sample dataset (n = 690).

Development of the initial item pool
To capture the human light exposure-related behaviours, 48 items were developed by an expert panel (all 
authors—researchers from chronobiology, light research, neuroscience and psychology in different geographi-
cal contexts). Face validity examination by each panel member indicated all items were relevant, and a few 
modifications were suggested. The author team discussed the suggestions and amended the items as indicated, 
thus creating a 48-item inventory.

Measurement of light exposure behaviour in an online sample
We conducted two rounds of a large-scale online survey between 17 May 2021 and 3 September 2021 to generate 
data from 690 participants with varied geographic locations (countries = 74; time-zone = 28). For a complete 
list of geographic locations, see Supplementary Table 2. Table 1 presents the survey participants’ demographic 
characteristics. Only participants completing the full LEBA inventory were included. We used the data from the 
first round for the exploratory factor analysis (EFA sample; n = 428) and data from the second round for the 
confirmatory factor analysis (CFA sample; n = 262). Participants in our survey were aged between 11 to 84 years, 
with an overall mean of ~ 32.95 years of age [Overall: 32.95 ± 14.57; EFA: 32.99 ± 15.11; CFA: 32.89 ± 13.66]. In 
the entire sample, 351 (51%) were male, 325 (47%) were female, 14 (2%) reported other sex, and 49 (7%) reported 
a gender-variant identity. In a “Yes/No” question regarding native language, 320 (46%) of respondents [EFA: 191 
(45%); CFA: 129 (49%)] indicated that they were native English speakers. For their “Occupational Status”, more 
than half of the overall sample (396 (57%)) reported that they currently work, whereas 174 (25%) reported that 
they go to school, and 120 (17%) responded that they do “Neither”. With respect to the COVID-19 pandemic, 
we asked participants to indicate their occupational setting during the last four weeks: In the entire sample, 303 
(44%) of the participants indicated that they were in a home office/ home schooling setting, 109 (16%) reported 
face-to-face work/schooling, 147 (21%) reported a combination of home- and face-to-face work/schooling, and 
131 (19%) filled in the “Neither (no work or school, or on vacation)” response option.
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Psychometric analysis: development of the long form
Descriptive statistics and item analysis
We observed that the response patterns of the LEBA inventory for the entire sample (n = 690) were not normally 
distributed (Figs. 1 and 2). All items violated both  univariate23 and multivariate  normality24. The multivariate 
skewness was 488.40 (p < 0.001), and the multivariate kurtosis was 2808.17 (p < 0.001).

Similarly, a non-normal distribution of response patterns was also observed in the EFA sample. Supplemen-
tary Figure 1 depicts the univariate descriptive statistics for the EFA sample (n = 428). Further, we observed that 
each item’s correlation with the aggregated sum of the 48-item score varied largely (corrected item-total correla-
tion = 0.03–0.48), indicating the possibility of a multi-factor structure of the LEBA inventory.

Exploratory factor analysis and reliability analysis
Exploratory analysis revealed that items of LEBA inventory could be categorised into five major factors: (i) wear-
ing blue light filters; (ii) spending time outdoors; (iii) using a phone and smartwatch in bed; (iv) using light before 
bedtime (v) using light in the morning and during daytime. In this stage of analysis, we retained 25 items. The 
first factor had three items and encapsulated the individual’s preference for using blue light filters in different light 
environments. The second factor contained six items that incorporated the individuals’ hours spent outdoors. The 
third factor contained five items that looked into specific behaviours of using a phone and smartwatch in bed. 
The fourth factor comprised five items that investigated other behaviours related to the individual’s exposure to 
electric light before bedtime. Lastly, the fifth factor encompassed six items capturing the individual’s morning 
and daytime light exposure-related behaviour.

Prior to conducting the EFA, we checked the post-hoc sampling adequacy by applying Kaiser-Meyer-Olkin 
(KMO) measures of sampling adequacy on the EFA sample (n = 428)25 and the quality of the correlation matrix by 
Bartlett’s test of  sphericity26. KMO >0.5 would indicate adequate sample  size27, and a significant test of sphericity 
would indicate satisfactory quality of the correlation matrix. Results indicated that we had an adequate sample 
size (KMO = 0.63) and correlation matrix ( χ2

1128
 = 5042.86, p < 0.001). However, 4.96% of the inter-item cor-

relation coefficients were greater than |0.30|, and the inter-item correlation coefficients ranged between − 0.44 to 
0.91. Figure 3A depicts the respective correlation matrix. To identify how many factors are required to optimally 
express human light exposure-related behaviours, we used a combination of methods. The Scree plot (Fig. 3B) 
revealed a six-factor solution, whereas the minimum average partial (MAP)  method28 (Supplementary Table 3) 
and Hull  method29 implied a five-factor solution (Fig. 3C). Hence, we tested both five-factor and six-factor solu-
tions using iterative EFA, where we gradually identified and discarded problematic items (factor-loading <0.3 
and cross-loading >0.3). In this process, we found a five-factor structure for the LEBA inventory with 25 items. 
Table 2 displays the factor-loadings ( � ) and communalities of the items. Both factor loadings and communali-
ties advocate accepting this five-factor solution ( | � |= 0.32–0.99; commonalities = 0.11–0.99). These five factors 
explain 10.25%, 9.93%, 8.83%, 8.44%, and 6.14% of the total variance in individuals’ light exposure-related 
behaviours, respectively. All factors exhibited excellent to satisfactory reliability (ordinal α = 0.94, 0.76, 0.75, 
0.72, 0.62, respectively). The entire inventory also exhibited satisfactory reliability ( ωt = 0.77).

However, the histogram of the absolute values of nonredundant residual correlations (Fig. 3D) displayed 
that 26% of correlations were greater >|.05|, indicating a possible under-factoring30. Subsequently, we fitted a 
six-factor solution, where a factor with only two salient variables emerged, thus disqualifying the six-factor solu-
tion (Supplementary Table 4). While making the judgement of accepting this five-factor solution, we considered 
both factors’ interpretability and their psychometric properties. We deemed the five derived factors as highly 
interpretable and relevant concerning our aim to capture light exposure-related behaviour, and we retained all 

Table 1.  Demographic characteristics of participants (n = 690). 1  Mean (SD); n (%).

Variable Overall, N =  6901 1. EFA Sample, N =  4281 2. CFA Sample, N =  2621

Age 32.95 (14.57) 32.99 (15.11) 32.89 (13.66)

Sex

 Female 325 (47%) 189 (44%) 136 (52%)

 Male 351 (51%) 230 (54%) 121 (46%)

 Other 14 (2%) 9 (2%) 5 (2%)

Gender-Variant Identity 49 (7%) 33 (8%) 16 (6%)

Native English Speaker 320 (46%) 191 (45%) 129 (49%)

Occupational Status

 Work 396 (57%) 235 (55%) 161 (61%)

 School 174 (25%) 122 (29%) 52 (20%)

 Neither 120 (17%) 71 (17%) 49 (19%)

Occupational setting

 Home office/Home schooling 303 (44%) 194 (45%) 109 (42%)

 Face-to-face work/Face-to-face schooling 109 (16%) 68 (16%) 41 (16%)

 Combination of home- and face-to-face- work/schooling 147 (21%) 94 (22%) 53 (20%)

 Neither (no work or school, or in vacation) 131 (19%) 72 (17%) 59 (23%)
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of them with 25 items. Two of the items showed negative factor-loading (item 08: “I spend 30 min or less per day 
(in total) outside.” and item 37: “I use a blue-filter app on my computer screen within 1 h before attempting to 
fall asleep.”). Upon re-inspection, we recognised these items to be negatively correlated to the respective factor, 
and thus, we reverse-scored these two items.

Figure 1.  Summary descriptives and response patterns observed in the large-scale survey for items 01-24. ‘*’ 
denotes a significant deviation from the normality assumption according to the Shapiro-Wilk test. All items 
violated the normality assumption.
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Confirmatory factor analysis
To investigate the structural validity of the five-factor structure obtained in the EFA, we conducted a confirma-
tory factor analysis (CFA) on the CFA sample. The five-factor structure with 25 items showed acceptable fit 
(Table 3), providing evidence of structural validity (CFI = 0.92; TLI = 0.91; RMSEA = 0.07 [0.06-0.07, 90% CI]). 
Two equity constraints were imposed on item pairs 32-33 (item 32: “I dim my mobile phone screen within 1 h 
before attempting to fall asleep.”; item 33: “I dim my computer screen within 1 h before attempting to fall asleep.”) 

Figure 2.  Summary descriptives and response patterns observed in the large-scale survey for items 25–48. ‘*’ 
denotes a significant deviation from the normality assumption according to the Shapiro-Wilk test. All items 
violated the normality assumption.
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Figure 3.  (A) Inter-item polychoric correlation coefficients for the 48 items. 4.9% of inter-item correlation 
coefficients were higher than |0.3|. ‘x’ denotes a non-significant correlation. (B) The Scree plot suggested six 
factors. (C) Hull method indicated that five factors were required to balance the model fit and number of 
parameters. (D) The histogram of nonredundant residual correlations in the five-factor model indicated that 
26% of inter-item correlations were higher than 0.05, hinting at a possible under-factoring.

Table 2.  Factor loadings and communality of the retained items in EFA using principal axis extraction 
method (n = 482). Note Only loading > 0.3 is reported.

Item Stem PA1 PA2 PA3 PA4 PA5 Communality

Item16 I wear blue-filtering, orange-tinted, and/or red-tinted glasses indoors dur-
ing the day. 0.99 0.99

Item36 I wear blue-filtering, orange-tinted, and/or red-tinted glasses within 1 h 
before attempting to fall asleep. 0.94 0.90

Item17 I wear blue-filtering, orange-tinted, and/or red-tinted glasses outdoors 
during the day. 0.8 0.66

Item11 I spend more than 3 h per day (in total) outside. 0.79 0.64

Item10 I spend between 1 and 3 h per day (in total) outside. 0.76 0.59

Item12 I spend as much time outside as possible. 0.65 0.47

Item07 I go for a walk or exercise outside within 2 h after waking up. 0.5 0.27

Item08 I spend 30 min or less per day (in total) outside. − 0.49 0.25

Item09 I spend between 30 min and 1 h per day (in total) outside. 0.32 0.11

Item27 I use my mobile phone within 1 h before attempting to fall asleep. 0.8 0.66

Item03 I look at my mobile phone screen immediately after waking up. 0.8 0.68

Item40 I check my phone when I wake up at night. 0.65 0.46

Item30 I look at my smartwatch within 1 h before attempting to fall asleep. 0.45 0.35

Item41 I look at my smartwatch when I wake up at night. 0.36 0.33

Item33 I dim my computer screen within 1 h before attempting to fall asleep. 0.74 0.56

Item32 I dim my mobile phone screen within 1 h before attempting to fall asleep. 0.73 0.62

Item35 I use a blue-filter app on my computer screen within 1 h before attempting 
to fall asleep. 0.66 0.45

Item37 I purposely leave a light on in my sleep environment while sleeping. − 0.39 0.17

Item38 I use as little light as possible when I get up during the night. 0.38 0.18

Item46 I use tunable lights to create a healthy light environment. 0.6 0.42

Item45 I use LEDs to create a healthy light environment. 0.59 0.37

Item25 I use a desk lamp when I do focused work. 0.41 0.19

Item04 I use an alarm with a dawn simulation light. 0.41 0.22

Item01 I turn on the lights immediately after waking up. 0.4 0.17

Item26 I turn on my ceiling room light when it is light outside. 0.35 0.16
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and 16-17 (item 16: “I wear blue-filtering, orange-tinted, and/or red-tinted glasses indoors during the day.”; item 
17: “I wear blue-filtering, orange-tinted, and/or red-tinted glasses outdoors during the day.”). Item pair 32-33 
describes the preference for dimming the electric devices’ brightness before bedtime, whereas item pair 16-17 
represents the use of blue filtering or coloured glasses during the daytime. Given the similar nature of captured 
behaviours within each item pair, we accepted the imposed equity constraints. Nevertheless, the SRMR value 
exceeded the guideline recommendation (SRMR = 0.12). In order to improve the model fit, we conducted a 
post hoc model modification. Firstly, the modification indices suggested cross-loadings between items 37 and 
26 (item 37: “I purposely leave a light on in my sleep environment while sleeping.”; item 26: “I turn on my ceiling 
room light when it is light outside.”), which were hence discarded. Secondly, items 30 and 41 (item 30: “I look 
at my smartwatch within 1 h before attempting to fall asleep.”; item 41: “I look at my smartwatch when I wake 
up at night.”) showed a tendency to co-vary in their error variance (MI = 141.127, p < 0.001 ). By allowing the 
latter pair of items (30 and 41) to co-vary, the model’s error variance attained an improved fit (CFI = 0.95; TLI 
= 0.95); RMSEA = 0.06 [0.05-0.06, 90% CI]; SRMR = 0.11).

Accordingly, we accept the five-factor model with 23 items, finalizing the long form of the LEBA inventory 
(see Supplementary File 1). Internal consistency ordinal α values for the five factors of the LEBA were 0.96, 0.83, 
0.70, 0.69, and 0.52, respectively. The reliability of the total inventory was satisfactory ( ωt = 0.68). Figure 4 depicts 
the obtained CFA structure, while Supplementary Fig. 2 depicts the data distribution and endorsement pattern 
of the retained 23 items in our CFA sample.

Measurement invariance
We reported the measurement invariance (MI) analysis on the CFA sample based on native (n = 129) and non-
native English speakers (n = 133). A detailed demographic description is provided in Supplementary Table 5. 
Our MI results (Table 4) indicated that LEBA inventory demonstrated the highest level of (residual model) 
psychometric equivalence across native and non-native English-speaking participants, thus permitting group-
mean-based comparisons. The four fitted MI models generated acceptable fit indices, and the model fit did not 
significantly decrease across the nested models ( �CFI>-0.01; �RMSEA < 0.01).

Secondary analysis: Grade level identification and semantic scale network analysis
We investigated the language-based accessibility of the LEBA using Flesch-Kincaid grade-level  analysis31. Results 
indicated that at least a language proficiency of educational grade level four (US education system) with age 
above eight years is required to comprehend the items used in LEBA inventory. Semantic Scale  analysis32 was 
administered to assess the LEBA’s (23 items) semantic relation to other questionnaires. The LEBA inventory 
was most strongly semantically related to scales about sleep: The “Sleep Disturbance Scale For Children”33 and 
the “Composite International Diagnostic Interview (CIDI): Insomnia”34. The cosine similarity index ranged 
between 0.47 and 0.51.

Developing a short form of the LEBA: IRT-based analysis
Our aim was to provide a data-driven approach to reducing the number of items for cases where a small reduc-
tion of items is necessary. In order to derive a short form of the LEBA inventory, we fitted each factor of the 
LEBA with the graded response  model35 to the combined EFA and CFA sample (n = 690). The resulting item 
discrimination parameters of the inventory fell into categories of “very high” (n=10 items), “high” (n=4 items), 
“moderate” (n=4 items), and “low” (n=5 items), indicating a good range of discrimination along the latent trait 
level ( θ ) (Supplementary Table 6). An examination of the item information curve (Supplementary Fig. 3) revealed 
five items (1, 25, 30, 38, and 41) provided very low information regarding light exposure-related behaviours with 
relatively flat curves (I(θ ) < 0.20). We discarded those items, culminating in a short form of the LEBA with five 
factors and 18 items (Supplementary File 2).

Subsequently, we obtained five test information curves (TICs). As Fig. 5 illustrates, the TICs of the first and 
fifth factors peaked on the right side of the centre of their latent traits, while the TICs of the other three factors 
were roughly centred on the respective trait continuum ( θ ). This points out that the LEBA short-form estimates 
the light exposure-related behaviour most precisely near the centre of the trait continuum for the second, third 
and fourth factors. In contrast, for the first and fifth factors, the TICs were left-skewed, indicating their increased 
sensitivity in identifying people who are engaging more in those particular light exposure-related behaviour 
 dimensions36.

Finally, Supplementary Table 7 summarises the item fit indexes of the LEBA short form. All 18 items yielded 
an RMSEA value ≤ 0.06, indicating an adequate fit to the fitted IRT model. Furthermore, Supplementary Fig. 4 

Table 3.  Confirmatory Factor Analysis model fit indices of the two models: (a) Model 1: five factor model 
with 25 items (b) Model 2: five factor model with 23 items. Model 2 attained the best fit.  df degrees of freedom, 
CFI comparative fit index, TLI Tucker Lewis Index, RMSEA root mean square error of approximation, CI 
confidence interval, SRMR standardised root mean square.

Model χ2 df CFI TLI RMSEA RMSEA 90% Lower CI RMSEA 90% Upper CI SRMR

1 675.55 267 0.92 0.91 0.07 0.06 0.07 0.12

2 561.25 231 0.95 0.95 0.07 0.05 0.06 0.11
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depicts the person fit Zh statistics histogram for the five IRT models. Zh statistics are larger than − 2 for most 
participants, suggesting a good person fit regarding the selected IRT models.

Discussion
We have developed two versions of a self-report inventory, the LEBA, that can capture light exposure-related 
behaviours in multiple dimensions. The 48 generated items were applied in a large-scale, geographically uncon-
strained, cross-sectional study, yielding 690 completed surveys. To ensure high data quality, participant responses 
were only included when the five “attention check items” throughout the survey were passed. Ultimately, data 
was recorded from 74 countries and 28 time zones, including native and non-native English speakers from a 

Figure 4.  Five-factor model of the LEBA inventory obtained by confirmatory factor analysis. By allowing the 
error variance of items 41 and 30 to co-vary, our model attained the best fit.

Table 4.  Measurement Invariance analysis on CFA sample (n = 262) across native and non-native English 
speakers.  df degrees of freedom, CFI comparative fit index, TLI Tucker Lewis Index, RMSEA root mean 
square error of approximation, CI confidence interval, SRMR standardised root mean square. a = Metric vs 
Configural; b = Scalar vs Metric; c = Residual vs Scalar; * = df of model comparison.

χ2 df CFI TLI RMSEA RMSEA 90% Lower CI RMSEA 90% Upper � χ2 � df* p

Configural 632.20 442 0.95 0.94 0.06 0.05 0.07 – – –

Metric 643.06 458 0.95 0.95 0.06 0.04 0.07 18.254a 16 0.309

Scalar 711.87 522 0.95 0.95 0.05 0.04 0.06 68.221b 64 0.336

Residual 711.87 522 0.95 0.95 0.05 0.04 0.06 0c 0 NA
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sex-balanced and age-diverse sample (see Table 1). The acquired study population complied with our objective 
to avoid bias from a selective sample, which is crucial when relying on voluntary uncompensated participation.

Data collected in the first round was used to explore the latent structure (EFA sample; n = 428). The explora-
tory factor analysis revealed a highly interpretable five-factor solution (“Wearing blue light filters”, “Spending time 
outdoors”, “Using phone and smartwatch in bed”, “Using light before bedtime”, and “Using light in the morning 
and during daytime”) with 25 items. Our CFA analysis (CFA sample; n = 262) confirmed the five-factor structure 
we obtained in our EFA, thus providing evidence for structural validity (CFI = 0.95; TLI = 0.95; RMSEA = 0.06). 
In this model, we discarded two more items (items 26 and 37 ) for possible cross-loadings. As a rule of thumb, 
reliability coefficients higher than 0.70 are regarded as “satisfactory”. However, at the early developmental stage, 
a value of 0.50 is considered  acceptable37–39. Thus, we confer that the internal consistency coefficients ordinal 
alpha for the five factors and the total inventory were satisfactory (Ordinal alpha ranged between 0.52 to 0.96; 
McDonald’s ωt = 0.68).

The results of the measurement invariance analysis indicate that the construct “light exposure-related behav-
iour” is equivalent across native and non-native English speakers and, thus, suitable for assessment in both 
groups. Furthermore, according to the grade level identification method, the LEBA appears understandable for 
students at least 8.33 years of age visiting grade four or higher. Interestingly, the semantic similarity analysis 
(“Semantic Scale Network”  database32) revealed that the “LEBA” is semantically related to the “Sleep Distur-
bance Scale For Children” (SDSC)33 and the “Composite International Diagnostic Interview (CIDI): Insom-
nia”34. Upon inspecting the questionnaire contents, we found that some items in the factors “Using phone and 
smartwatch in bed” and “Using light before bedtime” have semantic overlap with the SDSC’s and CIDI’s items. 
However, while the CIDI and the SDSC capture various clinically relevant sleep problems and related activi-
ties, the LEBA aims to assess light-exposure-related behaviour. Since light exposure at night has been shown to 
influence sleep  negatively7,40, this overlap confirms our aim to measure the physiologically relevant aspects of 
light-exposure-related behaviour. Nevertheless, the general objectives of the complete questionnaires and the 
LEBA differ evidently.

While developing and validating LEBA, we have complemented conventional approaches with an Item 
Response Theory (IRT) analysis. IRT provides a framework to interpret respondents’ obtained scores in the 
light of latent ability (i.e. light exposure-related behaviour) and the characteristics of the respondents—how they 
interpret the  items41. The benefit of implementing IRT analysis was twofold. First, we derived a shorter form of 
the LEBA inventory (18 items). We fitted a graded response model to the combined EFA and CFA sample (n = 
690) and discarded five items (1, 25, 30, 38, and 41) with a relatively flat item information curve [I(θ ) < 0.20]. The 

Figure 5.  Test information curves for the five factors of the LEBA inventory: (A) wearing blue light filters, 
(B) spending time outdoors, (C) using a phone and smartwatch in bed, (D) using light before bedtime, and 
(E) using light in the morning and during daytime. Along the x-axis, we plotted the underlying latent trait 
continuum for each factor. Along the y-axis, we plotted how much information a particular factor is carrying 
across its latent trait continuum.
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resulting test information curves suggest that the short-LEBA is a psychometrically sound measure with adequate 
coverage of underlying traits and can be applied to capture the frequency of different light exposure-related 
behaviours reliably. Often, psychological measurements require the application of several questionnaires simulta-
neously. Responding to several lengthy questionnaires increases the participants losing focus and becoming tired. 
Thus, in some circumstances, reducing the number of items even slightly may be necessary to employ the LEBA 
questionnaire. Our aim was to provide a data-driven approach to reducing the number of items, apart from the 
possibility of excluding a specific factor from the 23-item questionnaire. Nonetheless, where possible, we strongly 
recommend using the extended form of the questionnaire to avoid limiting the range of gained information.

The IRT analysis enabled us to capture individual differences in responses to the LEBA items. Findings from 
the item and person fit index analysis demonstrate that all five fitted models were acceptable and provide evi-
dence of validity for the factors. In addition, the diverse item discrimination parameters indicate an appropriate 
range of discrimination—the ability to differentiate respondents with different levels of light exposure-related 
behaviour while acknowledging the interpersonal variability in understanding the item.

Known limitations
We acknowledge that this work is limited concerning the following aspects:

The fifth factor, “using light in the morning and during daytime”, exhibited low internal consistency both in 
the exploratory and confirmatory factor analysis (EFA: 0.62; CFA:0.52 ). Since it was above 0.50, considering the 
developmental phase of this inventory, we accepted the fifth factor. This particular factor captures behaviours 
related to the usage of light in the morning and daytime. Since light exposure during morning and daytime influ-
ences our alertness and  cognition42,43, we deemed capturing these behaviours essential for the sake of the com-
pleteness of our inventory. However, the possibility of improving the reliability should be investigated further 
by adding more appropriate and relevant items to this factor.

The habitual patterns queried in the developed inventory might not exhaustively represent all relevant light-
exposure-related behaviours. For instance, it is conceivable that additional light-related activities not included 
in the LEBA depend on the respondents’ profession/occupation, geographical context, and socio-economic 
status. However, we generated the initial item pool with an international team of researchers and followed a 
thorough psychometric analysis. Therefore, we are confident that the developed LEBA inventory can serve as 
a good starting point for exploring light exposure-related behaviours in more depth and inform modifications 
of these behaviours to improve light hygiene.

As with all studies relying on retrospective self-report data, individuals filling in the LEBA may have difficul-
ties precisely recalling the inquired light-related behaviours. In the interest of bypassing a substantial memory 
component, we limited the recall period to 4 weeks and chose response options that do not require exact memory 
recall. In contrast to directly assessing light properties via self-report, we assume that reporting behaviours might 
be more manageable for inexperienced laypeople, as the latter does not rely on existing knowledge about light 
sources. The comprehensibility of the LEBA is also reflected by the Flesch-Kincaid grade level identification 
 method31 which suggested a minimum age of 8.33 years and an educational grade of four or higher (US grading 
system). We argue that measuring light-related behaviours via self-report is crucial because these behaviours 
will hardly be as observable by anyone else or measurable with other methods (like behavioural observations) 
with reasonable effort.

It is important to note that the LEBA utilises a five-point Likert-type response scale which may be susceptible 
to central tendency bias, i.e. responses are biased towards the central value of the response scale. Future work 
should evaluate other methods of obtaining responses, such as using a visual-analogue scale.

Finally, there is limited evidence for convergent validity. LEBA, being the first of its kind in characterising light 
exposure-related behaviour, lacks a gold standard at present against which its’ convergent validity evidence could 
be established. A recent  study44 demonstrated the predictive validity of LEBA by successfully relating its factors 
to self-reported chronotype, mood, sleep quality, and cognitive function. The results of their study confirmed 
that light-related behaviours, as captured by the LEBA, could lead to different light exposure experiences that 
differentially influence health, wellness and performance. Further work will need to establish the convergent 
validity of LEBA.

Future directions
To our knowledge, the LEBA is the first inventory characterising light exposure-related behaviour in a scalable 
manner. Further evidence for the validity of the LEBA could be obtained by administering it conjointly with 
objective field measurements of light exposure (e.g. with portable light loggers/wearables), smartphone readouts, 
as well as subjective data in the form of 24-h recalls. Such a study could explore how (subjectively measured) 
light exposure-related behavioural patterns translate into (objectively measured) received light exposure, and 
smartphone use, and how closely the retrospective questionnaire relates to daily reports of these behaviours.

Conclusion
Here, we developed a novel, internally consistent and structurally valid 23-item self-report inventory for cap-
turing light exposure-related behaviour in five scalable factors. In addition, an 18-item short form of the LEBA 
was derived using IRT analysis, yielding adequate coverage across the underlying trait continuum. Applying the 
LEBA inventory can provide insights into light exposure-related habits on a population-based level. Furthermore, 
it can serve as a good starting point to profile individuals based on their light exposure-related behaviour for 
health-related interventions.
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Methods
Data collection
A quantitative cross-sectional, fully anonymous, geographically unconstrained online survey was conducted via 
 REDCap45,46 hosted by University of Basel sciCORE. Participants were recruited via the website (https:// enlig 
hteny ourcl ock. org/ parti cipate- in- resea rch) of the science-communication comic book “Enlighten your clock”, 
co-released with the  survey47, social media (i.e., LinkedIn, Twitter, Facebook), mailing lists, word of mouth, the 
investigators’ personal contacts, and supported by the distribution of the survey link via f.lux48. The initial page 
of the online survey provided information about the study, including that participation was voluntary and that 
respondents could withdraw from participation at any time without being penalised. Subsequently, consent was 
recorded digitally for the adult participants (≥18 years), while under-aged participants (<18 years) were prompted 
to obtain additional assent from their parents/legal guardians. Filling in all questionnaires was estimated to take 
less than 30 min, and participation was not compensated.

As a part of the demographic data, participants provided information regarding age, sex, gender identity, 
occupational status, COVID-19-related occupational setting, time zone/country of residence and native language. 
The demographic characteristics of our sample are given in Table 1. Participants were further asked to confirm 
that they participated in the survey for the first time. All questions incorporating retrospective recall were aligned 
to a “past four weeks” period. Additionally, four attention check items were included among the questionnaires 
to ensure high data quality, with the following phrasing: “We want to make sure you are paying attention. What 
is 4+5?”; “Please select ‘Strongly disagree’ here.; “Please type in ‘nineteen’ as a number.”; and “Please select ‘Does 
not apply/I don’t know.’ here.”.

Analytic strategy
Figure 6 summarises the steps we followed while developing the LEBA. We conducted all analyses with the 
statistical software environment R. 

(1) We set an item pool of 48 items with a six-point Likert-type response format (0-Does not apply/I don’t 
know, 1-Never, 2-Rarely, 3-Sometimes, 4-Often, 5-Always) for our initial inventory. Our purpose was to 
capture light exposure-related behaviour. In that context, the first two response options: “Does not apply/I 
don’t know” and “Never”, provided similar information. As such, we collapsed them into one, making it a 
five-point Likert-type response format (1-Never, 2-Rarely, 3-Sometimes, 4-Often, 5-Always).

(2) Two rounds of data collection were administered. In the first round (EFA sample; n = 428), we collected data 
for the exploratory factor analysis (EFA). A sample of at least 250–300 is recommended for  EFA49,50. The 
EFA sample exceeded this recommendation. The second round data (CFA sample; n = 262) was subjected to 
confirmatory factor analysis (CFA). To assess sampling adequacy for CFA, we followed the “N:q”  rule51–54, 

Figure 6.  Flow diagram of the development of the LEBA inventory.

https://enlightenyourclock.org/participate-in-research
https://enlightenyourclock.org/participate-in-research
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where at least ten participants per item are required to earn the trustworthiness of the result. Again, our 
CFA sample exceeded these guidelines.

(3) We conducted descriptive and item analyses and proceeded to EFA on the EFA sample. Prior to the EFA, 
the necessary assumptions, including sample adequacy, normality assumptions, and quality of correlation 
matrix, were assessed. As our data violated both the univariate and multivariate normality assumption and 
yielded ordinal response data, we used a polychoric correlation matrix in the EFA and employed “principal 
axis” (PA) as the factor extraction  method30,55. We applied a combination of methods, including a Scree 
 plot56, the minimum average partials  method28, and Hull  method29 to identify factor numbers. To determine 
the latent structure, we followed the common guidelines: (i) no factors with fewer than three items, (ii) no 
factors with a factor loading <0.3, and (iii) no items with cross-loading >0.3 across  factors57.

Though Cronbach’s internal consistency coefficient alpha is widely used for estimating internal consistency, 
it tends to deflate the estimates for Likert-type data since the calculation is based on the Pearson correlation 
matrix, which requires response data to be continuous in  nature58,59. Subsequently, we reported ordinal alpha for 
each factor obtained in the EFA, which was suggested as a better reliability estimate for ordinal  data59. We also 
estimated the internal consistency reliability of the total inventory using McDonald’s ωt coefficient, which was 
suggested as a better reliability estimate for multidimensional  constructs60,61. Both ordinal alpha and McDonald’s 
ωt coefficient values range between 0 and 1, where higher values represent better reliability.

To validate the latent structure obtained in the EFA, we conducted a categorical confirmatory factor analysis 
(CFA) with the weighted least squares means and variance adjusted (WLSMV)  estimation30 on the CFA sample. 
We assessed the model fit using standard model fit guidelines: (i) χ2 test statistics: a non-significant test statistics 
is required to accept the model, (ii) comparative fit index (CFI) and Tucker Lewis index (TLI): close to 0.95 or 
above/ between 0.90-0.95 and above, (iii) root mean square error of approximation (RMSEA): close to 0.06 or 
below, and (iv) Standardised root mean square (SRMR): close to 0.08 or  below62,63. However, the χ2 test is sensi-
tive to sample  size64, and SRMR does not work well with ordinal  data65. Consequently, we judged the model fit 
using CFI, TLI and RMSEA.

In order to evaluate whether the construct demonstrated psychometric equivalence and the same meaning 
across native English speakers (n = 129) and non-native English speakers (n = 133) in the CFA sample (n = 262), 
measurement invariance  analysis53,66 was used. We used a structural equation modelling framework to assess the 
measurement invariance. We successively compared four nested models: configural, metric, scalar, and residual 
models, using the χ2 difference test ( �χ2 ). Among MI models, the configural model is the least restrictive, and 
the residual model is the most restrictive. A non-significant �χ2 test between two nested measurement invari-
ance models indicates mode fit does not significantly decrease for the superior model, thus allowing the superior 
invariance model to be  accepted67,68. 

(4) In a secondary analysis, we identified the educational grade level (US education system) required to 
understand the items in our inventory with the Flesch-Kincaid grade level identification  method31. Cor-
respondingly, we analyzed possible semantic overlap of our developed inventory using the “Semantic Scale 
Network” (SSN)  engine32. The SSN detects semantically related scales and provides a cosine similarity 
index ranging between − 0.66 and  132. Pairs of scales with a cosine similarity index value of 1 indicate full 
semantical similarity, suggesting redundancy.

(5) We derived a short form of the LEBA employing an Item Response Theory (IRT) based analysis. We fitted 
each factor of the LEBA to the combined EFA and CFA sample (n = 690) using the graded response  model35. 
IRT assesses the item quality by estimating the item discrimination, item difficulty, item information curve, 
and test information  curve36. Item discrimination indicates how well a particular item can differentiate 
between participants across the given latent trait continuum ( θ ). Item difficulty corresponds to the latent 
trait level at which the probability of endorsing a particular response option is 50%. The item information 
curve (IIC) indicates the amount of information an item carries along the latent trait continuum. Here, we 
reported the item difficulty and discrimination parameter and categorised the items based on their item 
discrimination index: (i) none = 0, (ii) very low = 0.01 to 0.34, (iii) low = 0.35 to 0.64, (iv) moderate = 0.65 
to 1.34, (v) high = 1.35 to 1.69, (vi) very high >1.7036. We discarded the items with a relatively flat item 
information curve (information <0.2) to derive the short form of the LEBA. We also assessed the precision 
of the short LEBA utilising the test information curve (TIC). TIC indicates the amount of information a 
particular scale carries along the latent trait continuum. Additionally, the item and person fit of the fitted 
IRT models were analyzed to gather more evidence on the validity and meaningfulness of our  scale30. The 
item fit was evaluated using the RMSEA value obtained from the Signed-χ2 index implementation, where 
an RMSEA value ≤0.06 was considered an adequate item fit. The person fit was estimated employing the 
standardised fit index Zh  statistics69. Here, Zh < − 2 was considered a  misfit69.

Ethical approval
The current research project utilises fully anonymous online survey data and, therefore, does not fall under the 
scope of the Human Research Act, making an authorization from the ethics committee redundant. Neverthe-
less, the cantonal ethics commission (Ethikkommission Nordwest- und Zentralschweiz, EKNZ) reviewed our 
proposition (project ID Req-2021-00488) and issued an official clarification of responsibility.

Data availability
The present article is a fully reproducible open-access R Markdown document. The reproducibility of this man-
uscript was confirmed using  CODECHECK70 (https:// codec heck. org. uk), yielding CODECHECK certificate 
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2023-012 (https:// doi. org/ 10. 5281/ zenodo. 10213 244). All code and data underlying this article are available 
on a public GitHub repository (https:// github. com/ leba- instr ument/ leba- manus cript). The English version of 
the long and short forms of the LEBA inventory and online survey implementation templates on common survey 
platforms (Qualtrics and REDCap) are available on another public GitHub repository (https:// github. com/ leba- 
instr ument/ leba- instr ument- en) as well as on the dedicated website of the LEBA inventory (https:// leba- instr 
ument. org/) under an open-access licence (Creative Commons CC-BY).
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