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Integrating DNA methylation 
and gene expression data 
in a single gene network using 
the iNETgrate package
Sogand Sajedi 1,2,15, Ghazal Ebrahimi 3,15, Raheleh Roudi 4, Isha Mehta 5, Amirreza Heshmat 6, 
Hanie Samimi 7, Shiva Kazempour 1,2, Aamir Zainulabadeen 8, Thomas Roderick Docking 9, 
Sukeshi Patel Arora 10, Francisco Cigarroa 11, Sudha Seshadri 2,12,13, Aly Karsan 9,16 & 
Habil Zare 1,2,14,16*

Analyzing different omics data types independently is often too restrictive to allow for detection 
of subtle, but consistent, variations that are coherently supported based upon different assays. 
Integrating multi-omics data in one model can increase statistical power. However, designing such 
a model is challenging because different omics are measured at different levels. We developed 
the iNETgrate package (https:// bioco nduct or. org/ packa ges/ iNETg rate/) that efficiently integrates 
transcriptome and DNA methylation data in a single gene network. Applying iNETgrate on five 
independent datasets improved prognostication compared to common clinical gold standards and a 
patient similarity network approach.

Orthogonal data types, and specifically genomic and epigenomic profiles, can potentially provide new opportuni-
ties to pinpoint underlying molecular mechanisms of  diseases1.

Approaches, which involve analysis of each data type independently, are often too conservative, as they would 
not allow for detection of subtle, but consistent, variations that would be supported based upon results from 
the independent assays.

New advanced biomedical informatics approaches are critically needed in which different data sets can be 
seamlessly and efficiently incorporated into a single comprehensive analysis.

Complex multi-omics data, including transcriptomics, epigenomics, and proteomics data, can be integrated 
using a network analysis  approach1–7.

DNA methylation is essential for initiating gene expression and numerous cellular functions as an activation 
mark, however, abnormalities such as hypomethylation and hypermethylation at specific loci can contribute to 
the initiation and development of  cancer8. Multiple methods have been developed to incorporate gene expres-
sion and DNA methylation  data9–13.
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For example, a similarity network fusion (SNF)14 approach can be used to identify similar patient subgroups in 
a patient similarity  network15,16. In their approach, nodes represent individual patients and an edge corresponds 
to the similarity between two patients computed based on all available features.

While patient similarity networks identify patterns associated with complex data, biological interpretation 
of these patterns remains a significant challenge. Particularly, a deeper understanding of underlying molecular 
mechanisms, deregulated pathways, and interconnected variables is often implausible from such networks.

To overcome the complexities of integrative network analysis, we developed iNETgrate, a unified network 
where each node represents a gene, and an edge between a pair of genes is weighted based on both DNA methyla-
tion and gene expression data. In this way, iNETgrate incorporates DNA methylation and gene expression data 
into a unified network. This innovative paradigm employs a multi-view  approach17 that enhances our previously 
established method,  Pigengene18.

The iNETgrate framework (Fig. 1) starts with preprocessing the available data (Methods). Then, we compute 
a DNA methylation value for each gene. This is a key step in the iNETgrate workflow because it results in every 
node (i.e., gene) in our network having two features, namely, gene expression and DNA methylation levels. To 
quantify the DNA methylation level associated with a gene, iNETgrate computes a weighted average of the cor-
responding beta values using a principal component  analysis19 (PCA). Specifically, the first principal component 
is computed, which we call an eigenloci in our paradigm, and used to represent the loci at the gene level. When 
the number of loci corresponding to a gene is more than a threshold, a subset of them is used as detailed in the 
“Methods”.

The iNETgrate computes the weight of an edge between a pair of genes in three steps: (a) correlation based 
on DNA methylation at the gene level and (b) correlation based on gene expression are computed, then, (c) the 
absolute correlations are combined with an integrative factor of µ (Eq. (1) in “Methods”). We then use a refined 
hierarchical clustering  method20 to identify gene modules, where each module is a cluster of similar genes based 
on both gene expression and DNA methylation data.

An eigengene is the first principal component of the data in a module. For each gene module, we use PCA 
to compute two eigengenes, where each eigengene is a weighted average of gene expression level, DNA meth-
ylation levels, or both for the genes in the corresponding module (Eqs. (2), (3), (4) in “Methods”, respectively). 
Eigengenes are robust biological features useful for downstream data mining analyses e.g.,  classification18, survival 

Figure 1.  Schematic view of the methodology. The inputs include (a) a DNA methylation profile measured at 
genomic loci, which we use to compute (b) methylation value at the gene level, and (c) a gene expression profile. 
(d) We construct an integrative network, in which nodes represent genes and edges model the association 
between individual gene pairs based on both expression and methylation data (Eq. (1) in “Methods”). (e) For 
each module, we compute eigengenes as weighted averages of the expression and DNA methylation level of all 
genes in that module (Eqs. (2)–(4) in “Methods”). (f) We employ the eigengenes as robust biological signatures 
(i.e., biomarkers) for survival analysis. (g) While not implemented in this study, the eigengenes could also be 
utilized for other downstream data mining analyses.
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 analysis21, and  prognostication1. Here, we illustrate the application of eigengenes in determining risk groups in 
different diseases and show the advantage of integrating DNA methylation data in a gene co-expression network.

We benchmarked iNETgrate against two other methodologies using five independent datasets including four 
cohorts from The Cancer Genome Atlas(TCGA): lung squamous carcinoma (LUSC)22, lung adenocarcinoma 
(LUAD)23, liver hepatocellular carcinoma (LIHC)24, and acute myeloid leukemia (AML)25. In addition, we used 
a cohort from the Religious Orders  Study26 and Memory and Aging  Project27,28 (ROSMAP)  including cases with 
different stages of Alzheimer’s Disease and Related Dementias (ADRD).

We compared the iNETgrate performance in identifying risk groups with (a) clinical gold standards within 
each cohort and (b) a well-known similarity network tool called the Similarity Network Fusion  tool14 (SNFtool). 
Unlike the iNETgrate approach, SNFtool is based on the similarity between the subjects (i.e., patients), and not 
the genes. The SNFtool first computes a similarity matrix using each data type (i.e., view) such as gene expres-
sion and DNA methylation. Then, the similarity matrices are fused into a network, where each node represents 
a patient and connections are established between two patients based on the fused similarity patterns.

Results
For a clearer presentation, we only discuss the outcomes for LUSC here and report results on the other four 
datasets in the supplementary materials (Supplementary Fig. S2).

We assigned different values for µ in Eq. (1) (“Methods”) from 0, which results in using only the gene expres-
sion data, to 1, which results in using only DNA methylation data, with a 0.1 increment. The best performing µ 
for our survival analysis in the LUSC cohort was µ = 0.4.

We identified 71 gene modules (i.e., clusters) from our integrated network. We computed two eigengenes 
for each module using the DNA methylation at the gene level (suffixed with “m”) and the gene expression (suf-
fixed with “e”) data. We also computed a linear combination of these two eigengenes (suffixed with “em”) using 
coefficients µ = 0.4 and 1− µ = 0.6 , respectively. We used a penalized Cox regression  model29,30 to determine 
the best subset of three eigengenes out of the 3 ∗ 71 = 213 available eigengenes. We found that the most asso-
ciated subset of three eigengenes with overall survival included eigengenes 23 m, 64 m, and 44 em. Next, we 
employed an accelerated failure time (AFT)  model31 to determine the optimal combination from the three 
selected eigengenes for predicting survival time, which revealed that eigengenes 23 m and 64 m make the best 
model for predicting survival in this dataset.

Using this AFT  model31 with 23 m and 64 m, we categorized the patients into three groups of 54 low-, 242 
intermediate-, and 46 high-risk patients (Fig. 2b). The high-risk group identified by iNETgrate had a significantly 
shorter survival time than the low-risk group (p-value ≤ 10−7 , Table 1). This is a major improvement over the 
stratification by clinical gold standards (Fig. 2a, p-value 0.314) and the state-of-the-art SNFtool in this dataset 
(Fig. 2c, p-value 0.819).

In all five studied datasets, the survival analyses based on the eigengenes provided by iNETgrate resulted in 
the best p-values in the range of 10−9 to 10−3 (Fig. 2 and Table 1), whereas SNFtool and the clinical gold standard 
led to p-values less than 0.01 in only one and two datasets, respectively.

To understand the genomic and epigenomic landscape associated with survival outcomes, we investigated the 
individual contributions of DNA methylation and gene expression data. Analyzing each modality individually, 
(i.e., making models based solely on gene expression using µ = 0 or DNA methylation using µ = 1 ) resulted in 
a p-value of 10−4 . Whereas, optimizing the integrative factor to µ = 0.4 generated a relatively more significant 
p-value of 10−7 . This finding underscores the power of our multi-omics integration strategy in capturing a holistic 
representation, thereby, substantially improving the prognostic prediction capabilities of the survival model.

Furthermore, different cohorts of the same disease can be readily merged because correlations computed 
based on different datasets can be easily combined and used in the network. We compared the computational 
performance of the iNETgrate method with SNFtool. While SNFtool completes its analyses in a couple of min-
utes, iNETgrate requires longer computational time of around 6 h to analyze the same data. Although speed is 
an advantage for SNFtool, it fails to convey the complete perspective. In particular, iNETgrate consistently yields 
significant p-values for the prognostication of risk groups, indicating higher precision and more efficient use of 
biological information in the multi-omics data compared to SNFtool. Gene modules identified by iNETgrate 
can be investigated in different ways including pathway enrichment analysis, hub gene identification, and analy-
sis of gene weights based on eigengenes among others. These downstream analyses are essential for biological 
interpretation of multi-omics data and obtaining a comprehensive view of underlying molecular mechanisms. 
In contrast, patient similarity networks provide limited information on why cases are grouped together.

Using the Kyoto Encyclopedia of Genes and Genomes (KEGG)32–36, our pathway analysis on the selected 
modules in the LUSC dataset revealed a significant association with a total of 15 genes that were enriched in 
four pathways: the neuroactive ligand–receptor interaction, the cAMP signaling, the calcium signaling, and the 
glutamatergic synapse pathways. These pathways are known to be related to LUSC as detailed below.

Our observation of an association between the cAMP signaling pathway and LUSC was previously reported 
by Zhang et al., who identified the GRM8 signaling pathway as a potential therapeutic target for squamous cell 
lung  cancer37. The connection between GRM8 and cAMP is crucial, as the activation of GRM8 can modulate 
adenylate cyclase activity, impacting the cAMP signaling pathway. The research by Wen et al. outlines how 
smoking-activated signaling pathways, including the cAMP signaling pathway, play key roles in lung carcino-
genesis, particularly in  LUSC38. Furthermore, the calcium signaling pathway as a potential key in the context of 
LUSC was previously substantiated by Ke et al.39 They demonstrated that miR-147b has differentially expressed 
genes significantly associated with the calcium signaling pathway in LUSC, which is crucial for several cellular 
processes, including drug transport and DNA binding.
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Figure 2.  The Kaplan–Meier49(KM) curves for all dataset. The log-rank p–values indicate that differences 
between the low-risk group (green) and the high-risk group (red) using clinical criteria (a, d, g, j, m), iNETgrate 
(b, e, h, k, n), and SNFtool (c, f, i, l, o). In all datasets (on rows), using iNETgrate, the middle column, resulted 
in a significantly smaller p-values compared with the conventional classification methods in clinics (left column) 
and an integrative network method of SNFtool (right column).
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Previous studies corroborate the association between the neuroactive ligand–receptor interaction pathway 
and LUSC through extensive analysis among LUSC patients and  controls40,41. The Glutamatergic synapse pathway 
occurred as a significant pathway concerning LUSC. This outcome aligns with a previous study by Zhang et al., 
which also highlighted an association between LUSC and the Glutamatergic synapse pathway, supporting the 
potential relevance of this pathway in the context of  LUSC42.

We undertook a bootstrap analysis on the LUSC dataset to investigate the robustness of iNETgrate and par-
ticularly, to evaluate the potential effects of outliers on the stability of our results. Bootstrap is a resampling tech-
nique that provides empirical evidence on the strength of statistical  estimates43. We applied bootstrap sampling 
three times with 100, 500, and 1000 iterations, respectively. Our experiments across these samplings presented 
remarkable consistency. Specifically, at µ = 0.4 , which was the best value based on our original results, the mean 
of p-values remained significant and stable at around 10−4 across the three bootstrap samplings, with relatively 
small variances of 0.000, 4, 0.000, 7, and 0.000, 6 for the 100, 500, and 1000 iterations, respectively. This implies 
that our model is resilient to potential outliers and random variations. The relatively more significant p-value 
from our original experiment without bootstrapping is justified by having more unique patients compared to 
a bootstrap sample.

Discussion
Our experiments collectively show that integrating DNA methylation and gene expression in a single gene net-
work increases statistical power. The rationale for integrating DNA methylation in our iNETgrate analysis is that 
DNA methylation, as an epigenetic modification, plays a crucial role in gene regulation. Observing co–methyla-
tion patterns, mainly among genes in close genomic proximity, usually reveals shared regulatory elements or 
similar chromatin  environments44,45. These patterns act as indicators of genomic regions under corresponding 
regulatory effects. While this could naturally cluster genes together due to shared patterns, it is crucial to identify 
and account for the inherent spatial bias, where neighboring genes may exhibit co-methylation merely due to 
their genomic positioning. By incorporating gene expression and DNA methylation data using iNETgrate, we 
ensure our approach is not solely reliant on methylation patterns.

Among the current approaches for integration of epigenome and transcriptome data, iNETgrate is unique in 
that it can include the available information from all genes in a single gene network. Some alternative methods 
are described below. A notable study by Ren et al. presents a network-based framework, especially suitable when 
dealing with skewed survival time data prone to  outliers46. Their method uniquely employs a weighted least 
absolute deviation objective function and develops a network-based variable selection method using the AFT 
model. However, when contrasting with iNETgrate, fundamental differences arise. iNETgrate incorporates a 
broader spectrum of genes, ensuring wide recognition of potentially significant genes from the entire gene set, 
unlike the Ren et al. selective approach that includes only a couple of hundreds of genes. Furthermore, iNETgrate 
integrates DNA methylation and gene expression data, providing a multi-omics perspective, which could account 
for the relatively higher accuracy of survival estimates.

Zachariou et al.47 introduced an approach for integrating six different types of interactions to identify sig-
nificant pathways related to a disease using a “super network”. Their method then performed pathway analysis 
on top genes based on the quantity of shared information between gene pairs. However, it is not clear how DNA 
methylation can be included in the construction of their network. In contrast, iNETgrate incorporates DNA 
methylation data and expands the depth of information in the integrated network, which potentially provides 
more holistic insight into gene interactions and the corresponding regulatory mechanisms. Moreover, iNETgrate 
builds a comprehensive gene–level network, discovering complex details about gene–gene relationships that 
might be overlooked in pathway-focused analyses.

Edge-Based Module Detection Network (EMDN)48 is another integrative approach at the gene level. In this 
approach, differential co-methylation and co-expression networks are first constructed, then the standard mod-
ules within multiple networks are defined as epigenetic modules. While EMDN’s capacity to identify and focus on 
differentially expressed and methylated genes allows for the elucidation of critical changes associated with disease 
states, it inherently limits the scope of the investigation to these selected genes and methylation sites. Conse-
quently, other potential molecular interactions and gene modifications that do not reach the defined differential 
expression or methylation threshold are neglected, potentially leading to losing critical biological information.

Another limitation of EMDN and similar methods that rely on differential expression analysis is their assump-
tion of having a case–control labeling in datasets, which limits their application in research settings such as 
survival or clustering analyses where matched data are not readily available. These considerations highlight the 
added value of iNETgrate, which is more inclusive and is designed to utilize all available gene and methylation 

Table 1.  Comparison of conventional clinical methods, SNF, and iNETgrate.

Datasets

Conventional methods SNFtool iNETgrate

Criteria p-value Genes Loci p-value Genes Loci p-value

LUSC Pathologic 0.314 12,231 89,213 0.819 12,494 239,703 10
−7

LUAD Pathologic 10
−4 7362 49,515 0.095 7535 165,478 10

−9

LIHC AFP & Ishak score 0.478 12,198 112,398 0.305 13,239 240,905 10
−9

LAML Cytogenetics 0.004 9677 71,022 0.008 10,488 213,255 10
−6

ROSMAP Braak 0.013 4942 484 0.709 11,646 240,021 10
−3
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data rather than limiting the analysis to only differentially expressed or differentially methylated features. In this 
way, iNETgrate can use the subtle, but constant, variations in the data that might be missed by any approach that 
starts with a differential analysis. Additionally, the flexibility of iNETgrate to work efficiently without the need 
for matched control data emphasizes its usefulness in a broader range of research applications.

Methods
Description of datasets
In this study we, utilized five independent cohorts including four cancer- and one Alzheimer-related datasets. 
Gene expression profiling was done using RNA-seq and DNA methylation data were obtained using the Illumina 
Infinium HumanMethylation450 BeadChip, measuring DNA methylation levels (beta values) on about 450,000 
genomic loci.

The TCGA cohorts were obtained using the TCGAbiolinks  package50 (Version 2.24.3). TCGA-LUSC22 and 
TCGA-LUAD23 had clinical and genomic data from 589 and 592 patients, respectively (Supplementary Table S2). 
Information on the pathological stages of the tumors was included in both datasets. We used this information 
to stratify the patients into distinct risk groups and compared the resulting stratification with clusters obtained 
from our approach.

TCGA-LIHC24 was provided by a comprehensive study that included 436 cases with clinical information 
available in the data. We used the Ishak fibrosis  score51 and alpha-fetoprotein (AFP)  level52–56 to stratify patients 
into low-, intermediate-, and high-risk groups. The employed score is described later in this section.

TCGA-L AML was provided by a thorough genomic and epigenomic study on 200 adult cases with  AML25. 
The risk groups were defined based on cytogenetic  abnormalities25,57.

In addition, we used the ROSMAP cohort provided by the longitudinal cohort studies of aging and demen-
tia. We downloaded the ROSMAP dataset from accelerating Medicines Partnership-  AD58 with Synapse IDs 
syn3388564 (bulk RNA-seq) and syn5850422 (DNA methylation), using the synapser (https://r- docs. synap se. 
org/ artic les/ synap ser. html) R package (Version 0.6.61) and a custom R scripts (Version 3.6.1)59.

In the TCGA cohorts, events were defined by patients’ death and the time to an event referred to the dura-
tion from the initial diagnosis to death time or the last follow-up. In the ROSMAP cohort, the event was clinical 
diagnosis of any dementia including mild cognitive impairment with or without other cognitive conditions, 
Alzheimer’s dementia with or without other cognitive conditions, and other primary causes of dementia without 
clinical evidence of Alzheimer’s dementia. The time to an event in this context referred to the age at which the 
first dementia–related diagnosis was made.

To enhance the power of our network, we included cases that have either a single type of data (i.e., gene 
expression or DNA methylation) or both data available. In the survival analysis, we included only patients whose 
gene expression, DNA methylation, and survival data were available (Supplementary Table S2).

Preprocessing data
The initial step in preprocessing involves normalizing the gene expression data. This is accomplished via a 
logarithmic transformation in based 10 to stabilize the variance and make the data more amenable to following 
analyses. Because logarithm of zero is not defined, a small offset is added to the expression levels prior to apply-
ing this transformation. iNETgrate further preprocesses data in two steps: cleaning and filtering. The former 
step involved cleaning DNA methylation and clinical data using the wrapper function cleanAllData(). 
Loci with more than 50% missing beta values were removed, while loci with less than 50% missing values were 
imputed. The imputation was performed by replacing each missing value with the mean of the beta values for 
the corresponding locus (preprocessDnam()). The clinical data was subsequently cleaned by removing 
cases with missing survival time and status (prepareSurvival()). The cleaned survival data had patient 
information including ID, events, time, and risk based on the clinical gold standard.

The second step in the preprocessing data was filtering out genes and loci that have a weak absolute Pearson 
correlation with survival time and vital status. This was performed by calling electGenes() inside the 
cleanAllData() wrapper function. In this study, we set the absolute correlation coefficient cutoffs to 0.2 in 
all TCGA datasets and 0.1 in the ROSMAP dataset.

Every gene and locus that met the quality control criteria was retained for the subsequent steps. In addition, 
we used computeUnion() to include corresponding loci of the selected genes and corresponding genes of 
the selected loci in the next steps of analysis.

Calculating DNA methylation levels for genes
In iNETgrate, every node represents a gene with two features (i.e., gene expression and DNA methylation values). 
Therefore, we needed to calculate the DNA methylation value for each gene using computEigenloci(). This 
function calculated a weighted average of loci levels for their corresponding gene in the following way. When 
the number of loci corresponding to a gene was less than six, the first principal component (i.e., eigenloci) was 
calculated directly by taking a weighted average of beta values using PCA. This was the case for almost 95% of 
loci in our datasets (Supplementary Fig. S1).

For the remaining 5% of cases, in which the number of loci representing a gene was six or more, we used 
findCore() to determine the most connected cluster of loci for each gene. Specifically, a graph was constructed 
for each gene using the igraph package (Version 1.5.0). In this graph, each locus is represented by a node. We 
used a fast greedy  algorithm60 to calculate the pairwise correlation between loci and detected communities (i.e., 
clusters) in the graph. Within each community, the average pairwise correlation was computed. The community 
with the highest average pairwise correlation was identified as a dense subset of highly co-methylated loci in the 
graph, and the eigenloci value was then computed based on this subset.

https://r-docs.synapse.org/articles/synapser.html
https://r-docs.synapse.org/articles/synapser.html
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Network construction and module detection
We constructed a network in which nodes represent genes and edges are weighted based on the absolute cor-
relation of gene expression and DNA methylation levels for each pair of genes. This was achieved using the 
makeNetwork() function. The weight of the edges between genes gi and gj was calculated using the following 
equation:

Here, W(gi , gj) describes the integrated similarity between genes gi and gj . The term | cor E(gi , gj)| represents 
the absolute value of the Pearson correlation between the gene expression levels of genes gi and gj . Similarly, 
| corM(gi , gj)| represents the absolute value of the Pearson correlation between the DNA methylation levels of 
these two genes. The hyperparameter µ is an integrative factor controlling the relative contributions of gene 
expression and DNA methylation data in the network. When µ = 0 , the network is based solely on gene expres-
sion data. Increasing the value of µ emphasizes the DNA methylation data in the model, whereas µ = 1 indicates 
that only DNA methylation data is used in calculating the edge weights (i.e., gene similarities).

Construction of the network and identification of the modules were done by the wrapper function mak-
eNetwork(), which first uses the pickSoftTreshold() function (RsquaredCut=0.75) from the weighted 
gene co-expression network  analysis20(WGCNA) package (Version 1.72.1) to determine the optimal soft-thresh-
olding power for our integrated network. Then, the blockwiseModules() function (with minModuleSize=5, 
the absolute value of Pearson correlation, and the default values for the rest of parameters) is utilized to execute 
a hierarchical clustering approach. This leads to identification of modules, where each module is a group of 
genes that exhibit similar patterns of expression and DNA methylation. Additionally, module zero is designed 
to contain outlier genes that cannot be confidently assigned to any module due to their weak or negligible cor-
relation with other genes.

Module eigengene computation
We employed PCA to compute an eigengene for every module (computEgengenes()). In order to balance 
the contribution of high-risk and low-risk groups, the gene expression and DNA methylation data were over-
sampled. Intermediate-risk cases were not included in the PCA. An eigengene is computed from a weighted 
average of gene expression levels ( Ee ), DNA methylation levels ( Em ), or both ( Eem ), using the following equations:

Here, n is the number of genes in the module, ge
i
 is the expression level of gene i, and gm

i
 is the methylation 

level corresponding to gene i (i.e., eigenloci), while αe
n
 and αm

n
 are the corresponding weights. These weights are 

computed using PCA ensuring maximum variance and minimum loss of biological information. The eigengene 
levels are then inferred for the intermediate-risk group using the same weights obtained from PCA. It should 
be emphasized that regardless of which eigengenes are used, our network and the corresponding modules are 
consistently constructed based on both gene expression and DNA methylation data and they depend on the µ 
hyperparameter. The resulting eigengenes are robust features, carrying useful biological information, which can 
be leveraged in classification, clustering, and other downstream analyses including survival analysis.

Survival analysis
To identify the optimal subset of modules for precise prognostication of risk groups, we conducted a two-step 
survival analysis using analyzeSurvival(). In the first step, we performed a penalized Cox regression 
analysis using the least absolute shrinkage and selection operator (lasso)  penalty29,30 from the glmnet R  package61 
(Version 4.1.7). This analysis identified the three modules that were most associated with the survival data. 
Second, we fitted an AFT  model31 to each combination of the top three modules and determined the optimal 
combination that leads to the smallest p-value. p-values were based on a log-rank test with a null hypothesis that 
there is no difference between the two high- and low-risk  groups62.

To categorize the risk groups, iNETgrate uses findAliveCutoff() that searches for a cutoff on the AFT 
predictions such that the difference between high- vs. low-risk groups is optimized. More specifically, for each 
risk group, the function iterates over all possible cutoff values leading to a recall of more than a given threshold 
(i.e., for low-risk: minRecall=0.2, for high-risk: minRecall=0.1 in ROSMAP and 0.05 in other datasets) 
and selects the cutoff value that maximizes precision.

Comparison with other prognostication approaches
To ensure the reliability of our integrative approach, we performed a comparative analysis by benchmarking our 
results against alternative methodologies including a well-known patient similarity network called SNFtool. We 
also compared our results vs. risk classification according to the clinical gold standards based on the intrinsic 
nature of the disease in each cohort.

(1)W(gi , gj) = (1− µ)| cor E(gi , gj)| + µ| corM(gi , gj)|,
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SNFtool
The SNFtool first computes a similarity matrix for each data type (i.e., gene expression and DNA methylation). 
That is, using each data type independently, a network is constructed where nodes are patients and weights of 
the edges represent similarity between patients computed based on correlation. The networks (similarity matri-
ces) are then fused to create a consensus network representing the overall similarity between patients across 
different data types. The resulting patient similarity network is then used to cluster patients into subgroups. We 
noted that the SNFtool faced some limitations in using all the DNA methylation loci due to memory exhaustion 
while computing the similarity matrices. We tackled this issue by filtering out loci with a relatively low variation 
characterized by a standard deviation of less than 0.1. Determining the appropriate cutoff for a given dataset is 
subjective and challenging for SNFtool users.

Clinical gold standards
In lung cohorts (LUSC and LUAD), we evaluated the risk groups based on the tumor stage. Specifically, we classi-
fied stages I, IA, IB, II, and IIA as the low-risk group, stages IIIB and IV as the high-risk group, and the remaining 
stages as the intermediate-risk group. In the LIHC cohort, we considered a case high-risk if the AFP level was 
greater than 500 or the Ishak fibrosis score was six. In contrast, patients were considered low-risk if their AFP 
levels were smaller than 250 and their Ishak fibrosis scores were 0, 1, or 2. The remaining cases were considered 
intermediate-risk. In the LAML cohort, we utilized the classification system available in the clinical data that 
categorized cases based on cytogenetic criteria into three groups of favorable (low-risk), intermediate, and poor 
(high-risk). We utilized the Braak  score63 to stratify the ROSMAP cohort into three risk groups. Cases with a 
Braak score of 0, 1, or 2 were considered low-risk, those with a Braak score of 5 or 6 were classified high-risk, 
while the remaining cases were grouped as intermediate-risk.

Data availability
All data used in this study are publicly available. The cancer datasets can be accessed in The Cancer Genome 
Atlas (TCGA) at https:// portal. gdc. cancer. gov/. The ROSMAP data is available from https:// www. synap se. org/, 
with Synapse IDs syn3388564 (bulk RNA-seq) and syn5850422 (DNA methylation). Access to the ROSMAP data 
requires the submission of a Data Use Certificate through the AMP–AD website. The clinical data referenced in 
this study can be found in their respective publications.

Code availability
iNETgrate is open-source and publicly available through Bioconductor (https:// bioco nduct or. org/ packa ges/ 
iNETg rate/). We used Version 0.99.124 in this study.
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