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Circulating miRNA profiles 
in COVID‑19 patients 
and meta‑analysis: implications 
for disease progression 
and prognosis
Liangliang Gao 1,2, Espoir M. Kyubwa 1,2, Mark A. Starbird 1, Jesus Diaz de Leon 1, 
Michelle Nguyen 1, Claude J. Rogers 1* & Naresh Menon 1*

We compared circulating miRNA profiles of hospitalized COVID‑positive patients (n = 104), 27 
with acute respiratory distress syndrome (ARDS) and age‑ and sex‑matched healthy controls 
(n = 18) to identify miRNA signatures associated with COVID and COVID‑induced ARDS. Meta‑
analysis incorporating data from published studies and our data was performed to identify a set of 
differentially expressed miRNAs in (1) COVID‑positive patients versus healthy controls as well as (2) 
severe  (ARDS+) COVID vs moderate COVID. Gene ontology enrichment analysis of the genes these 
miRNAs interact with identified terms associated with immune response, such as interferon and 
interleukin signaling, as well as viral genome activities associated with COVID disease and severity. 
Additionally, we observed downregulation of a cluster of miRNAs located on chromosome 14 (14q32) 
among all COVID patients. To predict COVID disease and severity, we developed machine learning 
models that achieved AUC scores between 0.81–0.93 for predicting disease, and between 0.71–0.81 
for predicting severity, even across diverse studies with different sample types (plasma versus serum), 
collection methods, and library preparations. Our findings provide network and top miRNA feature 
insights into COVID disease progression and contribute to the development of tools for disease 
prognosis and management.

The global COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 
has resulted in significant morbidity and mortality worldwide, with over 765 million confirmed cases and 6.9 
million deaths  reported1. Severe cases of COVID-19 can lead to acute respiratory distress syndrome (ARDS), 
which is associated with a higher incidence of  death2. Despite the widespread availability of effective vaccines 
and treatments for COVID-19 across many countries, it remains imperative to accurately predict disease severity 
and identify enriched biological pathways. These efforts continue to be crucial in optimizing treatment strategies 
and enhancing patient outcomes.

MicroRNAs (miRNAs) are small (~ 22 nt) noncoding  RNAs3,4 that play important roles in various biological 
and pathological processes and have gained momentum and been used as biomarkers for several cancers and 
other  diseases5–8. Circulating miRNAs are promising biomarkers for disease prognosis applications, as they are 
transcriptome-regulating biomolecules that are stably packaged in vesicles or protein complexes and accessible 
via routine blood draw.

A PubMed search using the keywords "circulating microRNA" and "COVID" resulted in over 40 publications, 
with sample sizes ranging from 20 to over two hundred individuals. While all these publications contribute to the 
understanding of the role of miRNAs in COVID-19, only a selected few were chosen to compare with our study. 
We focus on studies with (i) more recent publication dates (mostly 2022) that offer the advantage of capturing 
the most up-to-date knowledge in the field, (ii) similar categories of patients to our research population, and (iii) 
with publicly available raw miRNA sequencing data to ensure transparency and reproducibility of the findings. 
While this process may not have been exhaustive; we believe that the chosen studies provide sufficient diversity, 
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patient age, ethnicity, population, and trial conditions to identify miRNAs that are robustly dysregulated by 
COVID-19 infection.

For instance, Zeng et al.9 conducted a comprehensive analysis of miRNA profiles from 236 individuals with 
varying clinical presentations of SARS-CoV-2 infection. They proposed that hsa-miR-370, hsa-miR-1246, hsa-
miR-483 and more are associated with COVID-19 disease infection, and that hsa-miR-625 and miR-143 and more 
are associated with disease severity (severe vs moderate COVID). Furthermore, the study revealed the importance 
of NF-κB signaling and interleukin pathways in the progression of COVID-19. Gutmann et al.10 analyzed miRNA-
seq data from 47 subjects including healthy controls, non-severe, and severe COVID-19 patients. They identified 
hsa-miR-150, hsa-miR-21 to be involved in COVID-19 disease infection and hsa-miR-122 and hsa-miR-133 
to be associated with COVID severity. Garcia et al.11 identified over 100 differentially expressed miRNAs and 
narrowed down to a key miRNA, hsa-miR-369, that could distinguish COVID-19 disease severity among 28 
patients. Togami et al.12 performed mRNA and miRNA sequencing of 62 individuals and identified key miRNA 
features including hsa-miR-150 and has-miR-143 for COVID disease infection and highlighted the importance of 
interferon pathway in COVID-19 pathogenicity. While these individual studies offer valuable insights, we decided 
to perform a meta-analytical approach by aggregating and analyzing findings from different studies (including 
our own). Previously, meta-analysis have been utilized to improve diagnosis and prognosis of multiple injuries 
and  diseases13–15. The goal of our work is to identify common COVID-19 molecular signatures by reconciling 
discrepancies or variations between individual studies.

We conducted a study to identify circulating miRNAs as potential biomarkers for predicting COVID-19 
disease severity. The circulating miRNA profile of three groups were compared; 77 patients with confirmed 
COVID-19 but no ARDS (11 did not survive the disease), 27 patients with confirmed COVID-19 and ARDS 
(11 did not survive the disease), and 18 roughly age- and sex-matched healthy volunteers without COVID-
19 (collected before the pandemic). We identified differentially expressed miRNAs and performed gene 
ontology enrichment analysis (GOEA) of the genes regulated by the differentially expressed miRNA to build an 
understanding of the underlying biological processes associated with COVID-19. The identified biomarkers were 
found to regulate genes associated with interleukin expression, TLR pathways, T cell proliferation, and intrinsic 
apoptosis as well as virus genome pathways.

Furthermore, through the utilization of a meta-analysis approach, we combined our findings with other 
studies to identify a shared set of dysregulated miRNAs. Notably, we observed a significant down-regulation of 
a large cluster of miRNAs located on chromosome 14 (14q32), comprising over 90 members. We built machine 
learning models based on meta-analysis results combined with an exhaustive feature selection  tool16 that was 
able to predict COVID-19 disease and severity across multiple independently published studies. Our results 
suggest a robust method for building miRNA-based models for disease diagnosis and prognosis and highlight 
overlapping roles of different miRNA biomarkers. In this paper, we present our findings and discuss the potential 
implications for developing new therapies and companion diagnostics for COVID-19.

Results
Patient demographics and clinical chemistry
A summary of the ethnic, sex, and age distribution across three cohorts (normal, severe ARDS + COVID and 
moderate ARDS- covid patients in our study as well as comparisons to seven published studies are provided 
in Table 1 and Supplementary Tables S1. In our study, the median ages for the normal, moderate COVID, and 
severe COVID groups were 62, 70, and 66 years, respectively. The percentage of females in the normal, moderate 
COVID, and severe COVID groups were 42, 44, and 30%, respectively. Our study’s population age and sex 
distributions align with the range of values reported in other  studies9–11.

For our study, all samples were collected at the time of admission into the hospital when the patient 
received a COVID positive test and approximately 2–3 weeks before their severity was categorized. The PF 
ratio measurements were only available for patients with severe COVID and were intubated (Supplementary 
Table S1). The median PF ratio for severe COVID patients was 111 mmHg, with an interquartile range of 
73–194 mmHg. The occurrence of out-of-range values for aspartate transaminase (AST), alanine transaminase 
(ALT), neutrophils, lymphocytes, platelets, and activated partial thromboplastin time (aPTT) was higher in the 
severe COVID group compared to the moderate COVID group and the pre-COVID normal subjects. Specifically, 
the percentages of out-of-range values for AST, ALT, neutrophils, lymphocytes, platelets, and aPTT were 41, 22, 
32, 26, 11, and 74% in the severe COVID group, 29, 15, 18, 33, 7, and 35% in the moderate COVID group, and 
11, 6, 0, 0, and 6% in the pre-COVID normal subjects, respectively (Table S1 and Fig. 1).

Similarly, COVID-19 patients, especially severe  (ARDS+) cases, showed statistically significant increases 
in AST (p-value < 0.005), ALT (p-value < 0.005), and neutrophil (p-value < 0.05) levels, as well as significant 
decreases in lymphocyte counts (p-value < 0.005) compared to healthy volunteers (Fig. 1A). Similar observations 
were also reported in Togami et al.12 study. Most CBC and clinical chemistry biomarkers, including AST, ALT, 
neutrophils, and lymphocytes, were unable to differentiate between severe and moderate COVID groups, with 
the exceptions of aPTT and d-dimer, which showed higher values in severe COVID (Fig. 1A).

miRNA dynamics
In our study around 18% to 35% of the reads in our Illumina libraries consist of miRNAs. To ensure comparability 
with other published works for meta-analysis, our analysis focused on miRNA and did not encompass other 
cfDNA, RNA or proteins present in the collected plasma samples. Severe SARS-CoV-2 infection led to differential 
expression of 72 miRNAs when compared to healthy volunteers (p-value < 0.05 and > 2.25-fold change in 
expression; Fig. 1B). Among moderate COVID-19 patients and healthy controls, 68 miRNAs were differentially 
expressed (Fig. 1C), with 46 of these miRNAs overlapping with the severe COVID vs normal case (Fig. 1D). The 
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shared differentially expressed miRNAs exhibited highly correlated expression (Pearson correlation r = 0.98; 
Fig. 1E), suggesting that severe and moderate COVID-19 share a similar miRNA transcriptome response. 
Principal component analysis (PCA) further illustrates the close relationship between severe  (ARDS+) and 
moderate  (ARDS-) COVID (Fig. 1F). Conversely, the PCA analysis demonstrated a clear separation of normal 
and COVID samples, with the greatest separation observed along the PC3 axis. This axis accounted for 5.74% 
of the total variance among all miRNAs (Fig. 1F).

The top differentially expressed miRNAs identified in the severe COVID vs normal comparison included 
hsa-miR-150-5p, hsa-miR-423-3p, and hsa-miR-381-3p, among others (Supplementary Table S3). The robustness 
of these results was confirmed using 100 bootstrapping iterations of patient samples (Supplementary Fig. S1), 
and many of the same miRNAs were also found to be differentially expressed in the moderate COVID 
 (ARDS-COVID+) vs normal comparison (Fig. 1 and Supplementary Table S3). In addition, the study observed 
a strong correlation between the early and later wave of COVID-19 disease responses (r = 0.78 for all markers 
regardless of DE or not, Supplementary Fig. S2). We’ve observed only a 10–30% overlap (Supplementary 
Tables S3–S5) of DE genes defined across different studies.

The predicted functional roles of these identified miRNAs  (ARDS+COVID+ vs normal set) were assessed using 
GOEA, which identified 1492 enriched GO pathways (FDR corrected Fisher’s exact p-value < 0.05, Supplementary 
Table S6). These pathways were then clustered based on keywords (e.g. apoptosis) or sub-terms (e.g. DNA damage 

Table 1.  Subject demographics and main findings of COVID miRNA studies. HC healthy control, Mod 
moderate COVID-19, Sev severe COVID-19. †  AUC scores predicting severity (ARDS +). *AUC scores from 
cross-study predictions.

Studies Gao current Togami12 Zeng9 Fernández-Pato17 Gutmann10 Farr18 Garcia-Giralt11 Madè19

Sample type Plasma Serum Plasma Plasma Plasma Plasma Serum Plasma

Country US Japan China Spain UK Australia Spain Italy

Ethnicity-main Caucasian Black Asian Asian Caucasian Hispanic Caucasian Caucasian Caucasian Caucasian

Year – 2022 2022 2022 2022 2021 2022 2022

Sample size (HC; MOD; 
SEV)

18 21 61 13 12 10 NA NA

77 41 68 64 18 10 13 44

27 NA 48 32 18 NA 15 NA

Age (HC; MOD; SEV)

62 (47–67)

–

42 (29–66)

–

40 (30–46)

–

NA-NA-NA

–70 (60–77) 53 (43–60) 55 (36–66) 50 (43–54)

66 (57–74) 64 (55–69) 58 (39–66) 51 (48–55)

Gender-F(%)

8 (42%)

NA

6 (38%)

–

6 (58%)

–

NA-NA-NA

–34 (44%) 35(67%) 8 (44%) 6 (54%)

8 (30%) 32(48%) 10 (58%) 6 (40%)

AST

17.5 (12–24)

– – – – – – –28 (21–43)

30 (22–55)

ALT

13 (11–18.2)

– NA NA

29 (17,40)

– – –25.5 (15.8–42) 21 (17, 43)

33 (24.5–54) 52 (33, 65)

Neutrophil

4.2 (2.9–5)

– – –

3.6 (2.8–4.5)

– – –4.9(3.5–7) 2.9 (2–5.4)

6 (4–12) 7.3 (4.9–9)

Lymphocytes

1.7 (1.3–2.2)

– – –

1.8 (1.6–2.1)

– – –1 (0.6–1.5) 1.1 (0.7–1.3)

1 (0.8–1.7) 0.5 (0.4–0.7)

Platelets

216 (193.5–305.2)

– – –

214.0 (188.0–244.0)

– – –229 (188.5–330.5) 208 (157–257)

293 (207.5–384) 274 (158–339)

MiRNA data available Reads, Counts, log2FC Counts Counts
log2FC log2FC Counts

log2FC Reads, log2FC Counts, log2FC Counts

Model AUC 0.81–0.93*
0.71–0.81*† 0.5–0.75 0.9–0.99

0.72–0.99†
0.88–0.97
(survival) 0.87–0.94† 0.9–1 0.72† 0.71–0.98†

Pathways

VEGF
Interferon
Interleuki
Viral genome
Toll-receptor
NF-κB
T-cell; B-cell
Platelet

Interferon
Interleukin

Interleukin
NF-κB
T-cell
Lung

Interleukin
VEGF
Epigenetic

NA NA T-cell
Interleukin

Interleukin
GrowthFactor
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Figure 1.  Expression of miRNA and clinical biomarkers in COVID-19 and non-COVID-19 general population 
donors. (A) Traditional clinical biomarkers were affected by COVID-19, including the PaO2:FiO2 ratio, 
AST and ATL levels, neutrophil and lymphocyte counts, and aPTT duration. The normal reference range 
is indicated in gray. (B) Volcano plot for  ARDS+COVID+ patients vs normal or non-COVID-19 plasma 
donors. The depth of color is proportional to the product of  log2 fold change values and –log10 p-values. (C) 
Volcano plot for moderate  ARDS-COVID+ vs normal or non-COVID-19 plasma donors. (D) Venn diagram 
showing overlap between the two sets of comparisons  (ARDS+COVID+ vs Normal and  ARDS-COVID+ vs 
normal). (E) Correlation among shared differentially expressed markers for  ARDS-COVID+ vs normal and 
moderate  ARDS-COVID+ vs normal sets (F) Principal component analysis of microRNA dynamics. Normal, 
 ARDS+COVID+ and  ARDS-COVID+ are represented with blue, red and orange dots respectively. (G) Top 
enriched gene ontology (GO) categories for  ARDS+COVID+ vs Normal set. Frequency was calculated by 
dividing hit times with total hits within category in GO-basis database. The color and size of the marker 
represents hit counts. Dunn test p-values < 0.05 and ≥ 0.005 are indicated by *, < 0.005 and ≥ 0.0005 are indicated 
by **, and < 0.0005 are indicated by ***. The letter ‘ns’ denotes non-significant differences.
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response), and the frequency of enrichment for each keyword/sub-term was calculated (Fig. 1G). The top GO 
pathways included vascular endothelial growth factor (VEGF) signaling, which promotes angiogenesis and 
vascular permeability; SREBP signaling, which is involved in fatty acid metabolism; NF-κB transcription, which 
plays a role in inflammation, immunity, and cell survival; interleukin-mediated signaling that play important roles 
in the immune system, suppression by virus of host; regulation of interferon-beta, alpha, and gamma that are 
known to be involved in viral and COVID responses, among others; the JNK pathway regulates gene expression 
and cellular functions involved in inflammation, immune response, and cell survival. The interferon alpha 
pathway is shown in Fig. 2. Supplementary Figs. S3–S7 provide further network elaboration of these pathways, 
including the interrelationships between different categories and subcategories. Different studies tend to reveal 
overlapping pathways, the interferon and multiple cytokines were repeatedly detected (Table 1).

In our study, GOEA revealed pathways specifically related to the viral genome and its activities. One of the 
top (4th highest in fold change values, 5.9 fold, logFC = 2.56) differentially expressed miRNAs, hsa-miR-1246, 
was predicted to be directly involved in targeting the SARS-CoV-2 viral  genome20. Two other miRNAs, hsa-
miR-141-3p, hsa-miR-628-3p and hsa-miR-193a cluster were also predicted to have similar  functions4,21. 
Supplementary tables and figures (Supplementary Table S6, Fig. S7) provide further information on specific 
pathways related to the viral genome or viral activities. We also utilized another tool,  miEAA22, for over-
representation and enrichment analysis. However, we did not uncover any significant findings, except for the 
confirmation that many of the top differentially expressed genes in COVID disease are specific to blood tissues 
(over-representation analysis ORA p-value = 2.8e-9).

Building and validating machine learning models for distinguishing COVID disease and severity
We investigated the feasibility of utilizing top differentially expressed (DE) miRNAs as features for constructing 
machine learning models to predict COVID disease or severity, achieving prediction accuracies greater than 0.92 
and AUC scores greater than 0.95 (Supplementary Fig. S8). However, while this approach has been widely used 
in published studies, there are potential limitations to its generalizability in other studies because of sample size 
limitations, batch effects and variations in sample and sequencing library preparation (Supplementary Fig. S9). 
Therefore, we propose that building machine learning models based on meta-analysis of multiple studies would 
enhance the robustness and reliability of these models, especially given the increasing availability of data and 
recent publications in this field. In addition, computational tools such as ExhauFS were employed to identify top 
ranked features for machine learning  predictions16. For model development and validation, our study (n = 18, 
27 for disease, and n = 77, 27 for severity) served as the training set, while the study by Zeng et al. (n = 61, 48 
for disease and n = 52, 48 for severity) was utilized as the filtration set, with the Guttman Study (n = 12, 18 for 

Figure 2.  Interferon alpha pathways involved in severe COVID pathogenesis. Colors indicate p-values from 
Fisher’s exact test. Additional interferon beta and gamma pathways and more details such as p-values can be 
found in supplementary figures and tables.
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disease and n = 18, 18 for severity) and Garcia Study served as validation sets (n = 13, 15 for severity, with no 
healthy controls). Figure 3 illustrates the top 4 up-regulated and top 5 down-regulated miRNAs ranked based 
on marker effect (logFC) sizes.

We selected the top three miRNAs (hsa-miR-150-5p, hsa-miR-1246, and hsa-miR-381-3p) from meta-analysis 
for building machine learning models to predict COVID disease (Fig. 4A). In this approach, we combined data 
from three separate studies and used inverse variance weighting to identify the most strongly regulated miRNAs 
and top correlated markers (Supplementary Fig. S10, Tables S4–S8). We further performed a linear regression 
and correlation analysis using the current study and the Zeng et al.9 study (the one with the highest number of 
samples), which revealed a group of consistently down-regulated miRNAs including hsa-miR-381-3p, hsa-miR-
431-5p, hsa-miR-370-3p, among others (Fig. 4B). On the other hand, the top up-regulated miRNAs included 
hsa-miR-1246, hsa-miR-483-5p among others (Fig. 4B). Interestingly, all the correlated down-regulated miRNAs 
among the two studies were from an evolutionarily conserved cluster located at chromosome 14 at the physical 
bin of 14q32 (Fig. 4C). This miRNA cluster has previously been identified to be involved in various cancer 
disease  responses23,24, and, to the best of our knowledge, our study is the first to robustly associate this cluster 
with COVID response. The resulting model achieved high AUC scores of 1.0 for within study classifications, 
0.93 for the classification of the Zeng et al. study, and 0.89 for the Guttman et al. study which did not include 
age and sex information for individual patients (Fig. 4D). The sensitivity/true positive rate (TPR) are 0.96 for 
current, 0.56 for Zeng and 0.89 for Guttman. The specificity/true negative rate (TNR) are 1.0 for current, 1.0 for 
Zeng and 0.75 for Guttman (Supplementary Table S9).

While classifying patients into COVID or non-COVID based on miRNA data might have limited clinical 
application, we further investigated the use of miRNA features to predict disease severity or prognosis  (ARDS+ 

Figure 3.  Forest plots for meta-analysis of three independent studies on miRNA dynamics upon SARS-COV2 
infection. Results are sorted by effect sizes, and the most up regulated (4) and down regulated (5) miRNAs were 
shown. More details of meta-analysis can be found in supplementary information.
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or  ARDS-). The feasibility of this prediction is based on the observation that our sample collection dates are 
often 2–3 weeks before the diagnosis of ARDS or ventilation setting dates (Supplementary Table S1, Fig. S11). As 
previously mentioned, severe COVID  (ARDS+) and moderate COVID  (ARDS-) patients exhibit similarities in 
miRNA responses (Fig. 1D–F). Consequently, we identified 8 miRNAs that were differentially expressed between 
the two groups (Fig. 4E,F). Remarkably, 4 of these markers were once again located in the 14q32 cluster, and 
their expression values showed high correlation (Fig. 4F). We thus explored the possibility of combining 14q32 
markers into a single feature by averaging the expression values of  4+ miRNAs (Fig. 4G). By selecting the strongest 
and most consistent DE markers (Fig. S10), and the engineered or combined feature of chr14q32, we achieved 
good classification and prognosis of whether a patient might develop severe ARDS following COVID infection 
(Fig. 4H). The model had an AUC score of 0.88 for the current study, 0.81 for the Guttman study, and 0.77 for the 
Garcia study despite using different sample types (Garcia, serum vs plasma) or lacking sex and age information 
(Guttman). The AUC score for the Zeng et al. study was lower (0.71) with the current modelling, which is likely 
due to the differences in ethnic compositions, disease severity classification criteria, or library preps (extra PCR 
step was used in Zeng et al. study). Overall, our models trained on the current study achieved decent predictive 
power for multiple independently published studies with different sample collection and library preparation 
procedures, representing a significant advancement compared to previously published but not independently 
validated models. The sensitivity (True Positive Rate, TPR) and specificity (True Negative Rate, TNR) values 
are listed in Supplementary Tables S10, S11. The sensitivity values are 0.57, 1, 0.6 and 0.98 for current, Garcia, 
Guttman and Zeng studies respectively. The specificity values are 0.93, 0, 0.78 and 0.02 for the studies. Different 
models have variations in these measures with random forest providing slightly better accuracy measures, but at 
the expense of AUC scores. The lower specificity measures observed in the Zeng study can be attributed to the 
additional PCR steps in library preparation when compared to our approach. Similarly, the reduced accuracy 
measures in the Garcia study are likely associated with differences in sample types (plasma vs. serum).

Comparisons of our key findings to independently published studies
To put our study into the context of related works, we summarized the population sizes, ethnic composition 
or country of origins, publication meta data (years, journals) and main findings of several recent publications 

Figure 4.  Model feature selections and building for COVID disease (A–D) and severity (E–H). (A) 
Swarmplots for model markers distinguishing COVID and healthy. Orange represents COVID, blue represents 
healthy controls. (B) Correlation of current study with published studies Zeng et al. 2022. All significantly 
downregulated and correlated markers are in the chr14q32 cluster, indicated as red in plot (C). (C) miRNA 
density plot along human chromosomes, color was coded based on number per Mb, with red indicating higher 
density and blue indicating lower density. (D) Model performance AUC curves for current (blue), green (Zeng 
et al.9) and Guttman (Yellow) studies. (E) Volcano plot for severe ARDS COVID vs moderate COVID. The 
depth of color is proportional to the product of log2 fold change values and –log10 p-values. (F) Correlation plot 
of top DE markers differentiating severe and moderate COVID. (G) Violinplot for model markers distinguishing 
severe COVID and moderate. Orange represents severe COVID, blue represents moderate COVID. (H) AUC 
curves for COVID severity prediction in current (blue), Zeng et al.9 (green), Guttman (yellow), and Garcia 
(purple) studies.
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related with COVID miRNA biomarkers into Table 1. We found that a list of key results from our study were 
independently confirmed with multiple published studies (Supplementary Tables S3–S5). For instance, hsa-miR-
150-5p and hsa-miR-423-3p were repeatedly identified to play critical roles in COVID responses in multiple 
studies. The hsa-miR-150-5p is a known inflammation marker, and was independently identified in Togami 
et al., Guttman et al., Fernandez et al. and the current study for playing critical roles in COVID disease immune 
responses. miR-144-3p and miR-144-5p were identified in Made et al. study that distinguishes severe and non-
severe COVID. This miRNA was also found to be one of the most significant DE miRNA distinguishing severe 
 (ARDS+) and moderate COVID through meta-analysis. Several additional studies (Zeng et al., Fernandez et al., 
Farr et al.) identified chr14q32 markers (including hsa-miR-423, hsa-miR-370, hsa-miR-369-3p) as the most 
interesting or discriminating marker in COVID DE analysis or predictive models. To our knowledge, our study is 
the first to link these findings together and to clearly identify a genomic locus as the site harboring these miRNAs 
of interest (Fig. 4 and Supplementary Fig. S12).

We used a database of known miRNA-mRNA  interactions25 to identify the proteins or genes that could 
be dysregulated due to the DE of miRNAs. Our results showed that 85% of the fibrosis marker genes, 81% of 
the angiogenesis markers, and 90% of the coagulation markers listed in a recent cell  paper26 were predicted to 
interact with our top DE miRNAs (Supplementary Table S12). Moreover, we observed that over 70% of the DE 
genes (1089/1546) identified in the Togami et al. study was also predicted to interact with our most significantly 
DE miRNAs. Furthermore, one of the major genetic loci identified through genome wide association analysis 
(GWAS) (CCR genes)27 in a broad study focused on COVID severity were predicted to interact with our hsa-
miR-150, hsa-miR-144, hsa-miR-369, among others. Collectively, these results provide interesting links from 
miRNAs to genes or proteins and known markers for fibrosis, coagulation, and angiogenesis among others.

Discussion
The pathophysiology of COVID-19 is complex and can result in severe outcomes, such as ARDS and mortality. 
Severe cases of COVID-19 are associated with higher rates of death in our study (Fisher’s exact test p = 0.0057). 
While the availability of effective vaccines has reduced COVID-19 mortality rates in many parts of the world, a 
significant percentage (3–6%)28 of people still develop COVID-induced ARDS. The situation is worse in countries 
where effective vaccines or quality medical care is still not widely available. To effectively plan treatment, 
biomarkers that can predict disease severity are needed. Predictive biomarkers are also essential as companion 
diagnostics for new or existing therapies. Circulating miRNAs are ideal biomarkers for these applications as they 
are transcriptome-regulating biomolecules that are excreted by tissues throughout the body, stably packaged in 
vesicles or protein complexes, and accessible via routine blood  draw29.

We observed that SARS-CoV-2 infection significantly changed the circulating miRNA profile in both moderate 
 (ARDS-) and severe  (ARDS+) COVID patients. Of the 4 miRNAs used in our model distinguishing COVID and 
healthy controls, hsa-miR-150-5p is a master regulator of inflammatory processes and was detected repeatedly by 
us and other researchers in radiation and various pathological  processes30–34; hsa-miR-1246 is among the highest 
expressed miRNAs in the lung, and it was found to be downregulated in response to  COVID4,35; has-miR-320d 
is an anti-inflammatory miRNA and was previously associated with COVID  responses36,37. hsa-miR-381-3p 
is among the most strongly down-regulated miRNAs in Zeng et al. study, and correlated well with our study 
(Fig. 2), and it is also physically located inside the 14q32 cluster on human chromosome 14 (Supplementary 
Fig. S12). We found that all 14 of the most highly correlated miRNAs are both down-regulated and from this 
14q32 cluster. MiRNA clustering is a well-known  phenomenon3 that has been shown to play significant roles 
in miRNA biogenesis and transcriptome regulation. Future studies that combine all cluster features have the 
potential to increase the robustness of models even further.

The DE and correlation analyses (Fig. 1) suggest that severe  (ARDS+) COVID and moderate COVID 
exhibit very similar (correlation > 0.98 for shared DE markers detected in both sets) transcriptomic responses. 
Consequently, only a limited number of markers were identified that could differentiate between severe and 
moderate COVID. Among the eight DE miRNAs, half (4) are from the 14q32 cluster on chromosome 14. The 
most down-regulated of these is hsa-miR-127-3p, which has been identified as a potential regulator of COVID 
through BCL6 and  cytokine38. However, despite being the most strongly down-regulated miRNA even after 
meta-analysis of three independent studies (Fig. S10), its expression levels vary largely among studies, and the 
confidence interval for marker effects suggests that this miRNA may not be the best marker to use in machine 
learning models to achieve generalization across studies. Indeed, it resulted in high training performance but 
not great generalization (data not shown). We argue that similar issues might have existed in other published 
studies that used only one set of experiment results for model training and highlights the value of meta-analysis.

We narrowed down the features in our model to four features for predicting COVID severity: (1) hsa-miR-
625-5p, is known to predictively target AKT2 to suppress inflammatory responses in human bronchial epithelial 
 cells39. (2) hsa-miR-671-5p is potentially involved in increasing apoptosis by downregulating BCL2 protein 
expression and modulating responses targeting MCL1 and NF-κB1A hub  proteins40. (3) hsa-miR-144-5p was 
found to be involved in cytokine and growth factor pathways and was previously used to distinguish between 
severe and moderate  COVID19. (4) We included an engineered (mean of multiple miRNAs) feature from the 
14q32 cluster on chromosome 14 in our model. This cluster has been previously associated with various types 
of cancer such as melanoma, ovarian cancer, head, and neck cancer, and more. However, our study is the first to 
explicitly link this cluster of miRNAs with COVID disease and progression. The 14q32 cluster is an evolutionarily 
conserved and parentally imprinted region that may play significant roles in aging (Supplementary Table S13, 
p = 2.15E-5) and disease progressions, including COVID and other conditions.

The GOEA analysis indicates that the identified miRNAs may be associated with pathways involved 
in COVID-19-induced ARDS leading to fatal respiratory failure. Previous studies have shown that miRNA 
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biomarkers can provide detailed molecular understanding of ARDS and related  diseases41. Our GOEA analysis 
also identified several pathways that could be implicated in SARS-CoV-2 pathogenesis. The c-Jun NH2-terminal 
kinase (JNK) signaling cascade, which can lead to inflammatory responses, cell proliferation, survival, or death, 
has been shown to play a critical role in SARS-CoV  infection42 and has been implicated in SARS-CoV-2-induced 
 apoptosis43. Our analysis identified several enriched GO terms associated with the JNK cascade (JUN, JNK, 
MAPK; Supplementary Table S6, Fig. 1G). SARS-CoV-2 infection may lead to upregulation of the p38 MAPK 
pathway due to loss of ACE2 activity upon viral entry and by direct viral  activation44. We identified nine GO 
terms associated with the pathway, which could result in upregulation of inflammatory cytokines, such as IL-6 
and TNF-α, and contribute to severe cardiac and pulmonary injury in COVID-19 patients.

Consistent with previous research, cytokines have been observed to play a role in the severity of SARS-
CoV-2 and related  coronaviruses45,46. Our findings of increased cytokine levels in severe COVID-19 patients 
are consistent with this, and GOEA identified 84 GO terms (Supplementary Table S5, Fig. 1G) associated with 
interleukin signaling pathways and secretion. Studies have reported abnormal levels of various interleukins, 
including IL-1, IL-2, IL-4, IL-10, IL-12, IL-13, and IL-17, which is also consistent with our GO analysis. Toll-
like receptors (TLRs) may contribute to the failure of viral clearance and subsequent development of severe 
secondary consequences. TLR activation causes the production of innate pro-inflammatory cytokines (IL-1, IL-6, 
TNF-α) and type I IFN-α/β, which are essential for anti-viral responses. GOEA predicted that these pathways 
may be perturbed by the identified miRNA. GOEA also suggested that type I interferon signaling pathway and 
interferon-γ-mediated signaling pathway may be differentially regulated in COVID-19. Recent studies suggest 
that deficiencies in interferon signaling are correlated with worse outcomes in COVID-19  patients12,47.

Predicting outcomes in different studies can be challenging due to several factors such as sample types, 
collection devices, and library preparation steps, among others. These factors can significantly affect the 
abundance and quantity of biomarkers, leading to high variability and overlapping roles among different miRNA 
biomarkers. In this regard, our study explored the complexity of predicting outcomes based on one study from 
another and found that the variability within groups but across studies, such as healthy controls, can be greater 
than the variability among groups but within studies (Supplementary Fig. S9). Certain published studies did 
not provide sufficient public data, which renders meta-analysis infeasible. Moreover, there are considerable 
differences in the software and analysis pipelines employed across different studies, as well as disparities in the 
p-value and logFC cut-offs that are utilized. Consequently, the differentially expressed (DE) genes defined in 
one study may not align directly with those defined in another study. We’ve observed only a low to moderate 
overlap (Supplementary Tables S3–S5) of DE genes defined across different studies. Despite these challenges, 
we managed to employ meta-analysis and correlation analysis to identify consistent patterns and to construct 
machine learning models that demonstrate robust performance. We found that Logistic Regression stands out 
for its superior AUC, F1-score, and Kolmogorov–Smirnov s statistic, suggesting a good trade-off between the 
various measures of model performance. SVM also presents as a good model with moderate-to-high values across 
different metrics. Random Forest and XGBoost are prone to overfitting data from our study given their perfect 
scores but reduced performance in the other studies (Supplementary Tables S9–S11).

Several of our study’s findings such as key miRNAs and prediction models were validated through multiple 
independent research, highlighting the potential of our approach (meta-analysis) to identifying DE miRNAs, 
pathways, and developing models, and providing insights for future studies in this field. The circulating miRNAs 
identified in our study have high predictive value and provide a comprehensive picture of patient pathogenesis. 
This detailed understanding of the disease could help physicians make informed decisions regarding treatment 
planning and guide the development of new therapeutics while monitoring their effectiveness.

Materials and methods
Clinical specimen
Adult patients hospitalized in Erie County, NY, with PCR-confirmed COVID-19 between March and November 
2020 were retrospectively identified by Discovery Life Sciences (DLS; Huntsville, AL). Plasma samples were 
collected within the initial seven days of hospitalization. Demographic and clinical profiles, encompassing 
laboratory data, were extracted from discharge summaries. The collection adhered to a protocol approved 
by the Institutional Review Board at Advarra, Inc. (IRB00000971). For comparative analysis, plasma samples 
and corresponding clinical data were procured from a pre-pandemic general adult volunteer population 
without known respiratory illnesses (July 2018 to December 2018), sourced from BioIVT (Westbury, NY). 
The collection of these normal samples adhered to a protocol approved by the Institutional Review Board at 
WCG™ IRB. (IRB00000533). From this pool, 18 samples were selected to match the COVID-19 patients’ age and 
sex distribution. Informed consent was obtained from all participants in both cohorts, and venipuncture into 
Vacutainer® tubes containing EDTA facilitated blood collection, followed by plasma separation. Adherence to 
relevant guidelines, regulations, and the Declaration of Helsinki was maintained throughout the procedures for 
both cohorts. Rigorous de-identification measures were applied to patient samples from both cohorts to uphold 
privacy and confidentiality. The study was conducted according to the guidelines for the use of human subjects’ 
materials of the “Declaration of Helsinki.”

miRNA extraction and sequencing
Plasma samples were confirmed to have absorbance value less than 1.2 A.U. at 415 nm, corresponding to < 0.3% 
 hemolysis48. Circulating miRNA was isolated from 100 µL of plasma using the miRNEasy Serum/Plasma 
Advanced Kit (Qiagen). Sequencing libraries were prepared using the QIAseq miRNA Library Kit (Qiagen), with 
5.8 µL of miRNA extracts as input, a 1:10 dilution of the 3’-adaptor, a 1:5 dilution of the 5’-adaptor, a 1:10 dilution 
of the RT primer, and 22 amplification cycles. Library concentrations were determined via Bioanalyzer (2100 
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Electrophoresis Bioanalyzer, Agilent). Libraries with an adaptor dimer peak (~ 160 nt) at least five times greater 
than the library peak (~ 180 nt) were not sequenced. miRNA counts for 2 nM samples were determined via next-
generation sequencing (NextSeq 550, Illumina) using 76 read cycles. Demultiplexing, trimming (read lengths 
between 18 and 40 bp, 5’-end base quality ≥ 30, read score ≥ 20, and 3’-end adaptor sequence to trim of AAC 
TGT AGG CAC CAT CAA T), and miRNA alignment (using “Homo sapiens/hg19” as the species) was performed 
using BaseSpace (Illumina), using the Small RNA v1.0.1, FASTQ Toolkit v2.2.0, and FASTQ Generation v1.0.0. 
Sequencing samples with less than 400,000 total reads were excluded from analysis.

Statistical analysis
Raw sequencing counts were normalized by total library size to obtain the reads per million (RPM), then by 
quantile normalization of the  log2 RPM. Differential expression analysis was performed in R (version 3.4.3) 
using the limma and voom software packages (version 3.28.10)49. A total of 100 bootstrap samplings were done 
to test/confirm the reproducibility of top DE miRNA results. Each miRNA with average sequencing counts > 5 
RPM were selected and COVID-19 patients were sorted into two groups based on arterial oxygen (PaO2) and 
fraction of inspired oxygen (FiO2),  PaO2:FiO2 ratio (or PF ratio). Specifically, patients with PF ratio less than 
300 mmHg is considered to be the class of acute respiratory distress syndrome  (ARDS+), patients with PF ratio 
greater than 300 mmHg or who were not deemed necessary to have measured PF ratio values were considered 
to be in the non-ARDS group. The clinical data such as AST, ALT, neutrophil and lymphocyte counts, and aPTT 
duration, and d-dimer values were compared between the three groups. Dunn’s test for multiple comparisons 
was performed, and the p-values were adjusted using the Holm’s method.

Differentially expressed miRNAs were also subjected to Gene Ontology Enrichment Analysis (GOEA). GOEA 
was  performed50,51 on these selected miRNAs by identifying miRNA-gene interactions using  miRTarBase52,53 and 
 miRWalk25,54. For each GO term in the “biological process” namespace, the genes associated with the GO term 
were identified using Homo sapiens GO annotations (http:// curre nt. geneo ntolo gy. org/ produ cts/ pages/ downl 
oads. html). Enrichment was calculated using Fisher’s exact test, as previously  described55. Statistical differences 
in laboratory and clinical data were calculated with the Mann–Whitney U test for two cohort comparisons and 
the Kruskal–Wallis test followed by Dunn’s multiple comparison test for three cohort comparisons.

We conducted a meta-analysis to investigate the effects of miRNA of interest, measured as the  log2 
transformed fold change (logFC) and standard error, using data from three independent studies (Gao et al. 
current, Zeng et al. and Gutmann et al.)9,10. The logFC marker effects and standard error data from each study 
were obtained using unified pipeline (limma-voom, as detailed above) and combined for further analysis. We 
used the ‘rma’ function from the R metafor package to fit a mixed-effects model to the combined data, which 
implemented the DerSimonian-Laird method for inverse variance weighting. We then computed the estimates 
and p-values for each marker to identify the effects of the biomarker of interest. Additionally, we re-analyzed 
the datasets (GSE182152) from Togami et al.12 using our pipeline to identify DE mRNAs which allowed us to 
assess the percentage of differentially expressed genes that are predicted to interact with differentially expressed 
miRNA. While our study does not constitute a comprehensive review analysis, we have nonetheless adhered to 
the PRISMA2020 guidelines, providing details on selection criteria, rationale, methods, and results whenever 
relevant.

Based on the results of the meta-analysis, we selected the top markers that differentiate the conditions of 
interest (COVID vs Healthy, ARDS vs non-ARDS) and built machine learning models with our data (and 
only our data) using the logistic regression (classification) algorithm with the Python scikit-learn module. We 
performed feature engineering by combining correlated chr14q32 cluster miRNAs into one feature. To validate 
the performance of our model, we utilized data from independently published studies and plotted the ROC_AUC.

Furthermore, in our pursuit of enhancing our results, we harnessed the power of an exhaustive feature 
selection tool, known as exhauFS, to refine and augment both our feature selection and model choices. In 
conducting this analysis, we leveraged our own data as the training set, utilized the Zeng et al. study as a filtration 
set, and employed the remaining studies as validation sets. Throughout our exploration, we delved into various 
methods including XGBClassifier, Support Vector Machines (SVM), and Random Forest. We computed a range of 
evaluation metrics such as sensitivity, specificity, precision, F1-score, Kolmogorov–Smirnov statistic, permutation 
p-values, among others. We ultimately opted for Logistic Regression as the preferred modeling approach for our 
COVID disease models. Additionally, we explored the application of Bayesian logistic regression, yielding results 
remarkably consistent with the frequentist version of logistic regression.

Research involving human participants and/or animals
The research was carried out in accordance with the 1975 Helsinki Declaration. The study protocol was accepted 
by the Institutional Review Board of Advarra, Inc. (IRB Number IRB00000971) for the COVID study and by 
Western Copernicus Group (WCG™ IRB00000533) for the Human Normal study. No animals were involved in 
the study. 

Data availability
Raw sequencing files, processed counts and metadata can be obtained from GEO (NCBI) with an accession 
number GSE240888. Additional data are available in the supplementary materials.
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