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An efficient framework 
for obtaining the initial cluster 
centers
B. K. Mishra 1, Sachi Nandan Mohanty 2, R. R. Baidyanath 1, Shahid Ali 3*, D. Abduvalieva 4, 
Fuad A. Awwad 5, Emad A. A. Ismail 5 & Manish Gupta 6

Clustering is an important tool for data mining since it can determine key patterns without any 
prior supervisory information. The initial selection of cluster centers plays a key role in the ultimate 
effect of clustering. More often researchers adopt the random approach for this purpose in an urge 
to get the centers in no time for speeding up their model. However, by doing this they sacrifice 
the true essence of subgroup formation and in numerous occasions ends up in achieving malicious 
clustering. Due to this reason we were inclined towards suggesting a qualitative approach for 
obtaining the initial cluster centers and also focused on attaining the well-separated clusters. Our 
initial contributions were an alteration to the classical K-Means algorithm in an attempt to obtain the 
near-optimal cluster centers. Few fresh approaches were earlier suggested by us namely, far efficient 
K-means (FEKM), modified center K-means (MCKM) and modified FEKM using Quickhull (MFQ) which 
resulted in producing the factual centers leading to excellent clusters formation. K-means, which 
randomly selects the centers, seem to meet its convergence slightly earlier than these methods, 
which is the latter’s only weakness. An incessant study was continued in this regard to minimize the 
computational efficiency of our methods and we came up with farthest leap center selection (FLCS). 
All these methods were thoroughly analyzed by considering the clustering effectiveness, correctness, 
homogeneity, completeness, complexity and their actual execution time of convergence. For this 
reason performance indices like Dunn’s Index, Davies–Bouldin’s Index, and silhouette coefficient were 
used, for correctness Rand measure was used, for homogeneity and completeness V-measure was 
used. Experimental results on versatile real world datasets, taken from UCI repository, suggested that 
both FEKM and FLCS obtain well-separated centers while the later converges earlier.

In every aspect of our day to day requirements it is often necessary to sensibly organize data into their relevant 
groups. This not only gives clarity about their whereabouts but also helps us to pick them from their respec-
tive assemblage much faster. So, the most important thing that needs to be considered is the correct grouping 
among them. Consequently, in order to expedite the retrieval of relevant information from a group or sub-group, 
numerous consistent practices have been developed, one of which is data clustering (Odell and Duran 1). The 
main goal is to create divisions for the whole data set into reasonably smaller homogenous subdivisions so that 
the objects present in a subgroup will be having similar characteristics with each other and reasonably differ 
from those present in other subgroups.

For any clustering technique to come to practice, the first and foremost step is the selection of initial cluster 
centers which defines the number of clusters to be created. There are various ways in which the initial cluster 
centers are initialized. This initialization plays a crucial role for the end result of clustering. Random selections 
of the initial centroids are preferred by many clustering algorithms. This adds to the simplicity of the approach 
and also to the computation time of the algorithm. When the initial centroids are chosen randomly, roughly no 
time is spent on their selection step, which lessens the overall execution time as well as the time complexity of 
the algorithm. However, with random initialization of centroids, different runs will produce different clustering 
results. Sometimes, the result will show excellent subgroups formation while in most cases the resulting clusters 
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are often poor. It is possible to obtain an optimal clustering when the two randomly selected initial cluster centers 
fall somewhere in a pair of clusters, because the cluster centers will reorganize among themselves, one to each 
cluster. Unfortunately, in some cases if the number of clusters is more, it is more and more likely that in any case 
one pair of clusters will have merely one initial cluster center. In this case, since the pairs of clusters are farther 
apart than clusters within a pair, the clustering algorithm will fail to reallocate the centroids among the pairs of 
clusters, and simply local minima will result. In other words, empty clusters may be achieved if no points are 
allocated to a cluster during the assignment phase of clustering. “Because of the problems with using randomly 
selected initial centroids, which even repeated runs may not overcome, there is an need to develop some ways 
for better initialization of initial center of clusters.”

In most cases it is found the clustering model designed for the purpose faces difficulties in identifying the 
“natural clusters”. These cases arise when the clusters have widely different shapes, sizes and compactness. For 
example, while considering a dataset to be grouped into three clusters, if one of the clusters formed is relatively 
bigger than the other two, the bigger cluster is broken down and one of the smaller clusters is combined with 
a section of the bigger one. In another instance, a clustering model may fail to create well separated subgroups 
when the two smaller clusters are much compact than the bigger one and obviously lead to inaccurate conclu-
sions about the structure in the data. “There is a need to design a clustering model which will be efficient enough 
to perform the required formation of subgroups with improved reliability and accuracy and more importantly 
achieving the result much faster with varying datasets”.

These are the two motivational factors which gave us a direction to continue our work in this aspect.
Although, we as individuals are exceptional cluster seekers, but there is a necessity of excellent clustering 

algorithms which can operate on versatile data sets and provide us with effective cluster formation. A bunch 
of clustering ensemble methods proposed by eminent researchers has been projected over the last few years to 
present a solution for selection of initial cluster centers as well as obtaining good cluster formation. A few of 
those are discussed here.

Na et al.2 conducted an examination of the constraining facets of the K-Means algorithm, proposing an 
alternative approach for assigning data points to distinct clusters. Their method mitigates the computational 
time required for K-Means. In a comprehensive survey, Xu et al.3 scrutinized a diverse array of clustering meth-
odologies along with their practical applications. Additionally, they deliberated on various proximity criteria 
and validity metrics that influence the resultant cluster configuration. Cheung4 introduced a tailored K-Means 
variant capable of achieving precise clustering without the need for initial cluster assignments. This technique 
demonstrates notable efficacy in clustering elliptically-shaped data, a pivotal aspect of the research. In an inno-
vative endeavor, Li5 advocated for the adoption of the nearest neighbor pair concept in determining the initial 
centroids for the K-Means algorithm. This method identifies two closely neighboring pairs that exhibit significant 
dissimilarity and reside in separate clusters. This represents one among several approaches aimed at advancing 
the determination of initial cluster centroids. Nazeer et al. 6 proposed a further progression towards ascertaining 
nearly accurate initial centroids and subsequently assigning objects to clusters, albeit with the stipulation that the 
initial number of clusters must be specified as input. In order to mitigate the stochastic selection of initial cluster 
centers in the K-Means algorithm, Cao et al.7 introduced a model wherein the cohesion degree within a data 
point’s neighborhood and the coupling degree among neighborhoods are defined. This model is complemented 
by a novel initialization technique for center selection.

Kumar et al.8 suggested a kernel density-based technique to determine the initial centers for K-Means. The 
plan is to pick an initial data from the denser part of the data set since it actually reflects the characteristics of 
the data set. By doing this the presence of outliers are avoided. The performance of their method was tested on 
different data sets using various validity indices. The result showed that the given method has superior clustering 
performance over the traditional K-Means and K-Means++ algorithm. Kushwaha et al.9 proposed a clustering 
technique based on magnetic strength with an objective to locate the best location of centroids in their respec-
tive clusters. Data generate force directly to magnetic force and the best possible position for centroids is when 
the force by all data draws nearer to zero. Results from experiments imply that the suggested method getaway 
from local optima. However, it’s only limitation is, it needs to have prior information of the number of clusters 
to be created. Mohammed et al.10 introduced WFA selection, a modified weight-based firefly selection algorithm 
designed to attain optimal clusters. This algorithm amalgamates a selection of clusters to generate clusters of 
superior quality. The results demonstrate that this algorithm yields newly condensed clusters when compared 
to a subset of alternative approaches.

In a recent study, Fahim11 conducted a comprehensive review of the classical Density-based spatial clustering 
of application with noise (DBSCAN) algorithm, scrutinizing its inherent limitations and proposing a method 
to mitigate them. The suggested technique identifies the maximum allowable density level within each cluster, 
enabling DBSCAN to evaluate clusters with varying densities. Comparative analysis confirmed the effectiveness 
of the proposed method in accurately determining the actual clusters. Fahim12 suggested a technique to discover 
an optimal value for ‘k’ and initial centers of K-means algorithm. A pre-processing step is used for this purpose 
before K-means is applied. Density-based method is used for this purpose as it does not need to initially mention 
the number of clusters and also it calculates the mean of data in each cluster. The suggested method also uses the 
DBSCAN algorithm as a pre-processing step. Experimental data suggested that, this method ultimately improves 
the final result of clustering and also reduces the number of iterations of K-means. Khandare et al.13 presented a 
modification to the K-Means and DBSCAN clustering algorithms. Their proposed approach enhances clustering 
quality and establishes well-organized clusters through the incorporation of spectral analysis and split-merge-
refine methods. Notably, their algorithm addresses the minimization of empty cluster formation. Experimental 
assessments were conducted, taking into account parameters such as cluster indices, computation time, and 
accuracy, on datasets of diverse dimensions.



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:20821  | https://doi.org/10.1038/s41598-023-48220-3

www.nature.com/scientificreports/

Yao et al.14 grouped the non-numeric attributes present in the dataset according to their properties and discov-
ered the analogous similarity metrics in that order. They proposed a method for finding the initial centroids based 
on the dissimilarities and compactness of data. Once the centers were obtained, clustering was performed on 
modified inter-cluster entropy for miscellaneous data. Results concluded that since the initial centers determined 
were optimal so it resulted in good clustering accuracy rate (CAR). Ren et al.15 suggested a two-step structure 
for scalable clustering in which the initial step determines the frame structure of data and the final step does the 
actual clustering. Data objects are initially placed across a 2-D grid and are clustered using different algorithms, 
each giving a set of partial core points. These points correspond to the dense parts of data, which form centers 
for center-based, modes for density-based or means for probability-based types of clustering. This method can 
speed-up the computation and produces robust clustering. Results have shown the usefulness of the method.

Franti et al. 16 suggested a better initialization technique that improves the clustering efficiency of K-means. 
When there are overlapping clusters, using farthest point heuristic, malicious clusters may be reduced from 15 
to 6% and when the method was repeated for 100 times, a further reduction to 1% was noted. However, they 
remarked that dataset with well separated clusters depends mostly on proper initialization of centers.

Mehta, et al.17 discussed and analyzed several proximity measures and suggested a way for choosing a prox-
imity measure that can be used in hierarchical and partitioned clustering. They concluded that the average 
performance of clustering changes when diverse proximity measures were implemented. Mehta et al.18 further 
researched in document clustering in text mining and proposed a method by hybridizing the statistical and 
semantic features. The technique uses a fewer number of features but this hybridization improves the textual 
clustering and provides better precision within acceptable time limit.

Shuai19 proposed an improved feature selection and clustering framework. This model initially does the 
data processing and then uses the feature selection to obtain important features from the dataset. This was fol-
lowed by hybridizing K-means and SOM neural network to perform the actual clustering. Finally, collaborative 
filtering was used to cluster datasets which constituted missing data to make sure that all samples can acquire 
results. Results obtained showed high accuracy in clustering and interpretability. Nie et al.20 proposed a cluster-
ing technique where there is no need to calculate the cluster centers in each iteration. In addition, the proposed 
technique provides an efficient iterative re-weighted approach to solve the optimization problem and shows a 
faster convergence rate.

Ikotun et al.21 broadly presented a summary and taxonomy of the widely used K-means clustering algorithm 
and its different variants created by various researchers. The record of K-means, recent developments, different 
issues and challenges, and suggested potential research viewpoint are discussed. They have found most of the 
research work has been carried out on solving the initialization issues of K-means however, very little focus has 
been given on addressing the problem of mixed data type. This survey will help practitioners to work on this 
aspect.

Methods
One of the major drawbacks of traditional K-Means approach is the initial center selection which is done ran-
domly. Random selection of centers may perhaps result in incorrect creation of clusters. Due to this issue, there 
are few suggestions mentioned in this work with an aim to minimise this limitation. In addition to this, there 
are suggestions for reducing the time complexity, actual computation time and the convergence criteria of the 
projected methods. Subsequently, all the methods are evaluated to verify how good each of them creates the 
subgroups. The methods for choosing the initial cluster centers are discussed below:

Method‑1: K‑means
This is an unsupervised learning algorithm (Mac Queen22) to find K sub-groups from a given set of data, where 
the value of K is defined by the user. Initially, random K data points are selected as cluster centers. Each data point 
is assigned to its nearest cluster center to form disjoint sub-groups. Then the cluster centers are overwritten with 
the values obtained by taking mean of the data points present inside it. This process of reassigning data points 
to the nearest center and updating the cluster centers is repeated until there are no changes to the centers. The 
steps followed in K-means are:

•	 Take random K data points as initial centers
•	 Assign each data to nearest cluster center
•	 Update cluster centers by taking mean
•	 Repeat steps 2–3 until convergence

K-Means is the simplest way for getting different sub-groups of a given input. However, taking K random 
centers in step-1 makes it unpredictable. Every time this algorithm is executed it produces different results. So 
there is no precision in the clustering outcome. Even there is a possibility that at times it may result in creation 
of empty clusters.

It has an indefinite time complexity, since it is computationally a NP-hard problem. Step-2 of the procedure 
may repeat for an uncertain amount of time. However, if we constraint the clustering loop to a fixed value i, such 
that i < n, then the complexity of the algorithm will become O (i * K * n * d), where K and n are the number of 
clusters and data points respectively and d is the dimension of each data. Practically, the values of K and dare 
fixed and significantly smaller than n, hence the complexity is O (n).



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:20821  | https://doi.org/10.1038/s41598-023-48220-3

www.nature.com/scientificreports/

Method‑2: far efficient K‑means (FEKM)
To overcome the limitations of selecting the initial cluster centers randomly, Mishra et al.23 suggested an innova-
tive approach. The central idea of their approach is to obtain distant points as initial center which will result in 
disjoint, tight and precise cluster formation. The pseudo code representation of algorithm is as follows:

1. // Farthest pair is determined 

for di in dataset: 

for dj in dataset: 

dist [i, j] = distance (di, dj) 

n2

2. n)]j,i[tsid(xam=]2[c,]1[c 2

3. //Cluster data to its nearest center till threshold is reached 

set i = 0 

1 

4. while( i < (0.5 * (no_data  /  k) ): 

     assign dataset[i] to its nearest center 

          remove dataset [i]  from dataset 

n 

          increment i 

5. 1sretnecetadpU//)]1[retsulc(naem=]1[c

6. 1)]2[retsulc(naem=]2[c

//Computing remaining (K - 2) centers 

7. set i = 3 

1 

8. while (i<= k): 

  for each ci in range (0, i): 

           set j = 0 

           for each dt in dataset: 

if ci = 0: 

distnc = distance (c[ci], data) 

    add distnc to minlst[ ] 

else: 

distnc = distance (c[ci], data) 

    if (minlst[j]  > distnc): 

minlst[j] = distnc 

        increment j 

       add max (minlst) to c 

       increment i 

n 

9. n)c,k,tesatad(snaemk=sretsulc

The algorithm works as follows. Distance of each data point to all other points present in the data set are 
computed and the data pair which lies farthest from each other are considered as first two initial centers in step 
1 and step 2. Step 4 assigns data points to their nearest center until a pre-defined threshold value is reached. In 
step 5 and 6 centers are updated by taking mean of the partial clusters formed in previous step. The remaining 
K−2 centers are computed in step 8. The process of obtaining the centers is illustrated in Fig. 1.

Due to brute force comparisons between all the data points to find the farthest pair in Step 1, the loop has to 
run n2 times making its complexity Ɵ (n2). Hence, the overall complexity of FEKM is Ɵ (n2). The major drawback 
of FEKM is its worst case running time complexity which is Ɵ (n2). Methods like FEKM with quadratic time 
complexity are feasible for small data sets.

Method‑3: modified center K‑means (MCKM)
Considering the quadratic time complexity of FEKM, (Mishra et al. IJISA24) suggested MCKM for selecting the 
initial cluster centers with complexity less than Ɵ (n2). The idea is to sort the data points with respect to a fixed 
point of reference, which is the last data as present in the data set matrix. Then divide the data set into K equal 
subgroups and compute the mean of each group to find initial centers. The procedure is presented as a pseudo 
code which is as follows:
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1. set 1][=retnec

2. cent.append (dataset [length(dataset)])     // last element of dataset is 

considered as first center 
1 

3. // find distance of all data from first center and store them 

set i = 0      

4. for each d in dataset:        

distnc = dist(center[0] , d) 

           add d to dist_list[ ] 

increment i 

n 

5. dist_list.sort( )                                           //sort the data n*log(n)  

6. grp = split (dist_list, k)                            // divide sorted list into k equal 

parts 
n 

7.   seti = 1                                                              // find remaining k-1 

centers 

for i<  k: 

center.append (mean (grp[i])) 

n 

8. n)retnec,k,tesatad(naemk=sretsulc

Step 2 sets the very last element present in the data set matrix as the first center which is the point of refer-
ence. In step-4, distance of each element is determined from the point of which makes its complexity O (n). Step 
5 sorts all data using a sorting technique of complexity O (n* log (n)). In step 6, the sorted list is splitted into K 
equal subgroups which will cause the loop to run n times making its complexity as Ɵ (n). The centers are updated 
and mean of each group gives the rest k-1 center in step 7 whose complexity is Ɵ (n). Thus, overall complexity 
of MCKM is O (n* log (n)). This method is able to provide a systematic and efficient procedure to obtain initial 
centers. Unlike FEKM it has a better running time complexity. However, FEKM has an upper hand over MCKM 
in obtaining distant initial centers which results in better cluster formation.

Hastening FEKM by constructing convex hull
FEKM uses brute force technique to find the farthest data pair and considers them as the first two initial centers. 
This results in quadratic time complexity of the algorithm. So, in order to reduce the complexity of FEKM, the 
concept of convex hull (Cormen25) is used. Convex hull is the smallest convex polygon that encloses all the data 
points of a given data set. These points are selected in such a way that, there exist no other points which remains 
outside the hull. By computing the convex hull, it is only required to compare the data points which form the 
vertices of the hull instead of considering every data points to obtain the farthest pair. There are two approaches 
considered in this research to achieve the farthest centers using convex hull. They are as follows:

Figure 1.   Computation of centers (a) farthest pair p1–p2 are two initial centers (b) distance of each point to its 
nearest center calculated (c) p3 is selected as third center since it is at maximum distance from its nearest center.
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Farthest centers using graham scan (FCGS)
Graham scan approach (Graham26) maintains a stack which contains only the vertices of the hull. The procedure 
pushes all the data points into the stack and ultimately pops the point that is not a vertex. The distance between 
each vertex is determined to obtain the farthest pair to be considered as first two centers. Hence, it is not required 
to compare the distance between all other points. This reduces the complexity of the algorithm. The algorithm 
for FCGS is as follows:

// compute lower most point or leftmost point if two or more points have 
n 

same y-coordinates 

1. Find point p0 with min. y-coordinate or min.  x-coordinate in case of a tie

// sort in ascending  order 

2. sort remaining points of dataset w.r.t polar angle in anti-clock wise 

direction around p0

n * log (n) 

3. set 1kcatsaezilaitini//][=kcats

// compute stack that is present on hull vertices 

4. stack.push([p0, p1, p2])//pushing first 3 elements onto stack 

1 

5. for i in range (3, n):  // as three elements are pushed 

while direction of lines formed by stack.top, stack.sec_top and pi is 

non-left 

stack.pop( ) 

stack.push(pi) 

n 

// distance based comparison of each vertex in stack 

6. set i = 0 

7. for pi in stack: 

for pj in stack: 

dist[i] = [dist(pi, pj), pi, pj] 

increment i 

8. ]3[)tsid(xam,]2[)tsid(xam=]2[retnec,]1[retnec

9. nsretnec2–KgniniamerniatbootMKEFfo8-petstaeper

10. ngniretsulcrofsnaeM-Ketucexe

Step 1 of the algorithm chooses a point p0 with smallest y-coordinate value or the leftmost x-coordinate 
value if two or more points have equal y-coordinates. For this step 1 need to traverse to reach every data points 
which make its complexity Ɵ (n). In step 2 data points excluding p0 are sorted as per the polar angle around p0 
in anti-clockwise order using a sorting algorithm of complexity O (n * log (n)). First three points of the sorted 
data set i.e. p0, p1, p2 are pushed into a stack in step 4. In each iteration of step 5, a data point is pushed into the 
stack and the orientation (Cormen25) formed by top three elements of the stack is checked. If the orientation is 
clock wise or non-left then pop( ) operation is performed. As it traverses n−3 points, step 5 has a complexity of 
O (n). After obtaining the stack of hull vertices, each vertex is distance-wise compared to find the farthest pair 
in step 7. Assuming number of elements in stack is m, the complexity of step 7 is Ɵ (m2). The remaining k−2 
centers are computed in step 9 following FEKM. As m will be always less than n, overall complexity of FCGS is 
O (n * log(n)). Therefore, this method is able to obtain initial centers which will boost clustering performance 
with a reduced complexity of O (n * log(n)).

However, Graham scan is designed only for data sets with two attributes. If the dataset consists of more than 
two attributes then the algorithm fails because there are multiple values of polar angles. Dimensionality reduc-
tion is a way but may increase the running time of the algorithm drastically. Now, one of the solutions of FCGS 
is by using a method which can construct the convex hull in multiple dimensions. Modified FEKM using Quick 
hull is a solution to this aspect.

Modified FEKM using Quickhull (MFQ)
Quickhull proposed by (Bradford Barber27) may be used to construct convex hull for n-dimensional data. It com-
putes the convex hull in a divide and conquer approach recursively. The pseudo code of algorithm is as follows:
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1. 1][=lluhtes

2. find two points min_x and max_x with min and max x-coordinates 

respectively 

3. add min_x and max_x to hull 

n 

1 

4. construct a line L joining min_x and max_x      // line will divide dataset into 

two parts 

1 

5. nlluhotpddadnaLmorftsehtrafsihcihwptniopdnif

6. form a triangle with p and two end points of L //data inside this triangle can 

never be part of hull  

1 

7. // for data points outside the triangle 

For each L which is a side of triangle, repeat steps5and 6 until no points left 

outside the new triangle formed  

n* 

log(n)  

8. find farthest pair by comparing vertices of hull  // first two initial centers  

9. nsretnec2-KgniniamerrofMKEFfo8-petstaeper

10. ngniretsulcrofsnaeM-Ketucexe

First seven steps of the algorithm are used to construct a convex hull. In this method, a list named hull is 
declared which store the vertices of the convex hull. The points with maximum and minimum x coordinate 
values are assigned to variables max_x and min_x respectively. A line L is constructed by joining min_x and 
max_x. This line will divide the data sets into two parts. A point p is found which is farthest from L and is added 
to hull. A triangle is formed by joining p and two end points of L. The points lying inside the triangle are not 
considered for further construction of the hull. For the remaining points present outside the triangle, each side 
of the triangle is assigned as L and steps5& 6of the algorithm are repeated recursively until there are no points 
left outside the last triangle formed. After obtaining the convex hull, the vertices lying on it are compared with 
each other to find the farthest pair, which is considered as first two initial cluster centers. Finally, step8 of FEKM 
is repeated to obtain K−2 remaining centers. The above procedure is illustrated in Fig. 2.

Step 2 of the method costs O (n) for traversing the data set to find minimum and maximum x-coordinate 
values. Step 5 computes a point farthest from line L making its complexity O (n). Step 5 and 6 is repeated recur-
sively until no points are left outside the new triangle formed. The worst case complexity of Quickhull is O (n 
* log (n)) if dimension of the data is less than or equal to three. When the number of attributes is more than 
three then the complexity of this method increases. Next step8 of FEKM is called to determine the remaining 
K-2 initial centers which make its complexity O(n). So, unlike FCGS this method is able effectively operate on 
datasets with more number of attributes with a worst case of O (n * log (n)).However, the worst case complexity 
of this algorithm may exceed O (n2) when we have large number of attributes in data sets. In these cases, this 
method will prove to be inefficient than FEKM. For this reason, we suggest a method called Farthest Leap Center 
Selection (FLCS) to compute the farthest data pair in less than quadratic time complexity.

Figure 2.   Illustration of MFQ (a) Step 1–7 of the algorithm is used to construct convex hull (b) Step 8 of 
algorithm compares all the vertices of the hull to find farthest pair as first two initial centers (c) Step 8 of FEKM 
is used to find remaining K−2 centers.
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Proposed method: farthest leap center selection (FLCS)

Due to the limitations of Graham Scan and Quick hull mentioned above, we came up with a new approach 
called FLCS, to solve the farthest pair problem. FLCS takes a greedy approach to solve this problem. Instead 
of traversing every data point, it only leaps to the next point which is at a maximum distance from the current 
point. The method stops leaping when the next farthest point is the same previous point. The pseudo code of 
algorithm is as follows:

1. set mn = mean of all data points 

2. set data1= mn 

3. set prev = mn 

4. set i = 0 

n 

// find pair of data points which are farthest from each other 

5. while (i < n ): 

//find data point at maximum distance from data1

data2= max_dist(data1,  dataset)  

if (data2 = prev): 

break 

prev = data2

data1= data2

increment i 

i *n 

6. center[1], center[2] = data1, data2

7. nsretnec2‒KgniniamerrofMKEFfo8-petstaeper

8. n)retnec,k,tesatad(naemk=sretsulc

Initially, the mean of all data points is calculated and is assigned as data1 and prev. The farthest point from 
data1 is computed by comparing it with other data points and assigned to data2. Then, data2 is assigned to data1 
and data1 is assigned to prev. Again the farthest point from data1 is determined and assigned to data2. These steps 
are repeated until data2and prev refers to the same data point. These steps are illustrated in Fig. 3. The farthest 
pairs data1 and data2 obtained are assigned as first two initial centers. To obtain remaining K−2 centers step-8 
of FEKM is repeated.

Step 1 of the algorithm traverses all data points once to find their mean making its complexity Ɵ (n). Step 5 is 
used to leap from the current data point to the farthest point in order to skip redundant comparisons needed to 
compute the farthest pair. If we assumes number of leaps is i, then step 5 iterates i * n times. However, i is much 
smaller than n. So, the complexity of step5 is O(n).Then step 8 of the FEKM is used to compute remaining K−2 
centers making complexity of step7 of FLCS O (n). Therefore, overall complexity of FLCS is O (n).

Lemma:  The number of leaps in FLCS will always be less than the total number of data points.

Given: A set of data points S, and number of leaps I.
To prove: I <|S|

Proof:  Let us construct a convex hull on data set S with a set of vertices V. So, there exist no data points which 
will be present outside the hull (Cormen25).

Now, there are exactly two spaces from which the method can leap.
Case I: Leaping from within the convex hull:

The farthest point from any point inside the convex hull is a vertex of the hull, as there exist no other 
points beyond the convex hull.

Case II: Leaping from any vertex of the convex hull:

The farthest point from a vertex of the hull will be another vertex.

By considering the above two cases it can be concluded that, once the procedure starts leaping from the first 
point present inside the convex hull (the first point is obtained by taking the mean of all data points), then it 

(1)and,|V| ≤ |S|(2/3) as suggested byV.Jarnik28;
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is not possible to leap to any other points present inside the hull. The only possibility is a leaping between the 
points which belongs to V.

Therefore, number of leaps, I ≤|V|≤ <|S|
2
3|S| (Hence, proved).

Parameters for evaluation
The quality of clusters formed after the clustering process is evaluated by using few validity indices such as DI, 
DBI and SC. These indices measure the goodness of clusters on basis of their inter-cluster, intra-cluster distance 
and similarity of instances present in their created clusters. The data sets contain the class label which is used as 
ground truth label to compute the clustering accuracy through Rand Index. The clustering outcomes are assessed 
to verify if they generate perfectly homogenous and complete subgroups. For this V measure was chosen as a 
parameter for evaluation. The execution time of all considered methods is recorded for each of the input data 
sets to practically verify their efficiency.

Validity indices
Cluster validation techniques are used to measure the quality of a cluster appropriately. Few validity indices used 
for this purpose are given as follows:

Dunn’s index (DI)
DI measure (Dunn29) is used to minimize the intra-cluster and maximize the inter-cluster distances. It can be 
defined as follows-

(2)DI(c)=min
i∈c







min
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
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δ
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Figure 3.   Selection of first two initial centers by discovering the farthest pair (a) Mean of data set is assigned as 
data1 and prev (b) Farthest point from data1 is data2 (c) Farthest point from data2 found and new farthest point 
is labeled as data2 and original data2 is labeled as data1 (d) data1 is labeled as prev(e) Step (c) and (d) are repeated 
until prev and data2 refers to the same data point (f) data1 and data2 are the farthest pair and two initial centers.
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d is any given distance function used for this purpose, and Aj is a set consisting of the data points which are 
assigned to the ith cluster. Usually, any method which produces a larger value of DI determines that the cluster 
formed is compact and well-separated from other clusters.

Davies–Bouldin’s index (DBI)
DBI (Davies et al.30) is the ratio of the sum of data currently present within a cluster to those data remaining 
outside it. The data present within ith cluster distribution is given by:

The data which are between ith and jth partition is given by:

where vi is denoted as the ith cluster center, and both q & t are numerical values that can be chosen independently 
of each other and (q, t) ≥ 1. |Ai| is the number of elements that are present in Ai.

Subsequently, Ri,qt is determined which is given by the equation:

Finally, Davies–Bouldin’s index is obtained which is specified as follows:

The objective of the clustering methods should focus on obtaining a minimum value of DBI for achieving 
proper clustering.

Silhouette coefficient (SC)
In SC (Rousseeuw and Silhouettes31), for any data point di , initially the average distance from di to all other data 
points belonging to its own cluster is determined, which is denoted as a. Then, the minimum average distance 
from di to all other data points present in other clusters are determined, which is b. Then the silhouette coef-
ficient is calculated as follows:

The silhouette value s ranges between 0 and 1. If s is close to 1, it indicates that the sample is well-clustered, if 
silhouette value is almost equal to zero, it indicates that the sample lies equally far away from both the clusters, 
and if silhouette value is equal to -1, it indicates that the sample is somewhere in between the clusters. The number 
of cluster with maximum average silhouette width is taken as the optimal number of the clusters.

Clustering accuracy
The accuracy of a cluster can be measured by using Rand Index (Rand32). Given N data points in a set D = {D1, 
D2, …, DN} and two clustering of them to compare C = {C1, C2, …, CK1} and C′ = {C′1, C′2, …, C′K1}, we define 
Rand index as:

where a is number of data pairs in D that are in the same subsets of both C and C′, b is number of data pairs in 
D that are in different subsets of both C and C′, c is number of data pairs in D that are in same subset of C and 
different subsets in C′, d is number of data pairs in D that are in different subset of C and same subsets in C′. The 
value for R is between 0 and 1, with 0 representing two clustering do not agree on any pair of data points and 1 
representing the clustering are precisely identical. Liu33, Guo et al.34, and Zou et al.35 investigated data collection 
in wireless powered underground sensor networks assisted by machine intelligence, matrix algebra in directed 
networks, and limited sensing and deep data mining, respectively. Shen et al.36, Cao et al.37, and Sheng et al.38 
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respectively examined the modeling of relation paths for knowledge graph completion, optimization based on 
mobile data, and dataset for semantic segmentation of urban scenes. Lu et al.39, Li et al.40, and Xie et al.41 consid-
ered multiscale feature extraction and fusion of images, patterns across mobile app usage, and a simple Monte 
Carlo method for estimating the chance of a cyclone impact. Recently, Liu et al.42, Li et al.43, and Fan et al.44 
developed a multi-labeled corpus of Twitter short texts, studied the long-term evolution of mobile app usage, 
and proposed axial data modeling via hierarchical Bayesian nonparametric models.

Homogeneity, completeness and V‑measure
A cluster is said to be perfectly homogenous when it contains data points belonging to a single class label. 
Homogeneity reduces as data points belonging to different class labels are present in the same cluster. Similarly, 
a cluster is said to be perfectly complete if all the data points belonging to a class label are present in the same 
cluster. When the number of data points of a particular class label are distributed in different clusters, the com-
pleteness of the cluster decreases.

If a data set contains N number of data, cl different class labels, separated into K clusters and d data points 
belonging class c and cluster i then,

where F(cl, K)=−
∑K

i=1
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where β can be set to favour homogeneity or completeness. If β is 1, then it favours both homogeneity and 
completeness equally. If β is greater than 1 then completeness is favoured and β less than 1 favours homogeneity.

Results and discussion
In order to analyze the practical performance of K-Means, FEKM, MCKM, MFQ and FLCS methods, we evalu-
ated their results on various real world data sets [UCI Repository]. The characteristics of the data set are given 
as follows:

A diverse range of datasets are considered to evaluate the performance of the discussed methods. These 
data sets in Table 1 vary in dimensions, properties and classifications. Iris data set consists of three flower 
classes–setosa, virginica and versicolor. It has fifty instances in each class and a total of a hundred fifty instances. 
Each instance has four attributes- petal length & width and sepal length & width. Similarly, seed data set consists 
of two hundred ten instances, seven attributes and it contains wheat kernel of three classes- Kama, Rosa and 
Canadian. Adult data set consists of fourteen attributes- age, work class, final weight, education, marital-status, 
occupation, relationship, race, sex, capital gain, capital loss, hours per week and native-country. The data set is 
classified into two classes- person earning more than 50 k and those with less than or equal to 50 k per year. Bal-
ance data set contains six hundred twenty-five instances of a psychological experiment. Each instance has four 
features which include left weight, left distance, right weight and right distance. All instances divided into three 
classes- scale tip to right, tip to left and balanced. Haberman is the record from study of patients who survived 
from surgery of breast cancer which contains a record of three hundred six patients. Patients are classified into 
two categories- who died within five years and who survived five years or longer. It has three attributes- age of 
the patient at time of operation, year of operation and number of positive auxiliary nodes detected. TAE contains 

(11)Homogeneity is given by h = 1−
F (cl, K)

F(cl)

(12)Completeness is given by c = 1−
F (K, cl)

F(K)

(13)Thus, V −measure
(

A. Rosenberg and J. Hirschberg, 2007
)

is given by, V =
(1+ β)hc

βh+ c

Table 1.   Characteristics of data sets.

Datasets No. of attributes No. of classes Instances present

Iris 4 3 150

Wine 13 3 178

Seed 7 3 210

Balance 4 3 625

Mushroom 22 2 8124

Abalone 8 3 4177

Glass 11 6 214

TAE 5 3 151

Adult 14 2 48,842

Haberman 3 2 306
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teaching performance of one hundred fifty-one teaching assistances categorized into- low, medium and high as 
per their performances. Wine data set is the result of chemical analysis of wine growth in Italy from three differ-
ent cultivators with one hundred and seventy eight samples. Each instance has thirteen features- alcohol, malic 
acid, ash, alkalinity of ash, magnesium, total phenols, flavonoids, no flavonoid phenols, proanthocyanins color 
intensity, hue, OD315 of dilute wines and proline. Mushroom data set is record of eight thousand one hundred 
and twenty four mushroom samples with their twenty two characteristics. The data set is classified into two 
categories of mushroom- edible and poisonous.

It was discussed earlier in Section “Parameters for evaluation”(A) that, a greater value of DI or SC and a 
smaller value of DBI suggests better quality of cluster formation. Tables 2, 3 and 4 contains the DI, DBI and 
SC scores respectively where clustering loop is restricted to twenty iterations and K = 3. From these tables it 
can be observed that methods FEKM, MCKM, MCQ and FLCS perform better and form quality clusters than 
K-Means. MCQ and FLCS shows promising performance, which can be seen from the tables. In each table the 

Table 2.   DI score of K-means, FEKM, MCKM, MFQ and FLCS where number of iterations is 20 and K = 3.

Data sets K-means FEKM MCKM MFQ FLCS

Iris 0.014 0.081 0.062 0.074 0.074

Balance 0.062 0.078 0.067 0.084 0.084

Abalone 0.007 0.015 0.012 0.023 0.023

Seed 0.058 0.062 0.067 0.064 0.064

TAE 0.075 0.082 0.072 0.076 0.076

Wine 0.025 0.045 0.039 0.052 0.052

Glass 0.038 0.071 0.064 0.078 0.078

Mushroom 0.061 0.075 0.069 0.079 0.079

Adult 0.066 0.073 0.079 0.072 0.072

Haberman 0.052 0.065 0.068 0.073 0.073

Table 3.   DBI score of K-Means, FEKM, MCKM, MFQ and FLCS where number of iterations is 20 and K = 3.

Data sets K-means FEKM MCKM MFQ FLCS

Iris 0.647 0.126 0.208 0.143 0.143

Balance 0.161 0.134 0.153 0.112 0.112

Abalone 0.796 0.578 0.624 0.499 0.499

Seed 0.348 0.205 0.167 0.191 0.191

TAE 0.175 0.118 0.183 0.132 0.132

Wine 0.52 0.439 0.501 0.346 0.346

Glass 0.812 0.147 0.204 0.134 0.134

Mushroom 0.142 0.138 0.164 0.129 0.129

Adult 0.487 0.142 0.128 0.145 0.145

Haberman 0.546 0.196 0.157 0.143 0.143

Table 4.   SC score of K-Means, FEKM, MCKM, MFQ and FLCS where number of iterations is 20 and K = 3.

Data sets K-Means FEKM MCKM MFQ FLCS

Iris 0.487 0.512 0.498 0.553 0.553

Balance 0.154 0.171 0.167 0.162 0.162

Abalone 0.483 0.491 0.494 0.515 0.515

Seed 0.452 0.468 0.473 0.461 0.461

TAE 0.321 0.337 0.341 0.334 0.334

Wine 0.513 0.571 0.554 0.559 0.559

Glass 0.372 0.546 0.389 0.537 0.537

Mushroom 0.234 0.259 0.248 0.281 0.281

Adult 0.552 0.542 0.546 0.559 0.559

Haberman 0.323 0.425 0.418 0.432 0.432
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best performing method is highlighted. Overall, it can be observed that for majority of the data sets for MCQ 
and FLCS performed better than other methods.

The accuracy of cluster formed is the next parameter for experimental evaluation. Rand index score which 
was discussed in Section “Parameters for evaluation”(b), was considered for this aspect. Normally, the value of 
Rand Index lies between 0 and 1 and value nearer to 1 signifies better accuracy. From Table Table 6 Homogene-
ity score of K-Means, FEKM, MCKM, MFQ and FLCS.Data setsK-meansFEKMMCKMMFQFLCSIris0.73640
.75020.73640.75140.7514Balance0.08450.15890.07770.34510.3451Abalone0.06750.05880.12090.09160.0916S
eed0.66450.70750.69340.70750.7075TAE0.01950.02650.02520.01860.0186Wine0.35610.37840.42880.39870.3
987Glass0.11560.12460.12130.11760.1176Mushroom0.14550.17590.16540.19350.1935Adult0.00020.000310.0
00280.000310.00031Haberman0.00060.00080.00080.00120.00125, the accuracy of clustering of each method 
can be observed on the referred data sets. MFQ and FLCS have scored better than other methods in majority of 
the data sets as their Rand index values are closer to 1. Only in few cases like seed, wine, glass and mushroom, 
FEKM and MCKM have a better Rand index value than FLCS and MCQ. Figure 4 shows the accuracy of different 
clustering methods performed on different datasets.

Next, an analysis was made to verify whether the random selection of centers as performed by K-Means will 
generate stable and accurate clusters or those using an approach where the centers are initially chosen by any 
innovative way. For better visualization, four datasets were preferred for this purpose viz, iris, seed, TAE and 
Haberman whose accuracy scores varies significantly. Each method including K-Means, FEKM, MCKM, MFQ 
and FLCS were executed seven times taking these four datasets as inputs. From Fig. 5a the unpredictability of 
K-Means can be clearly observed. For every execution there is a variable accuracy score Fig. 5b. Due to random 
initial centers, there is unpredictability in the formation of clusters due to which varied accuracy scores are 
generated Fig. 5c, d. This confirms that, in some cases when the random centers are chosen accurately, they 
produce well-organized clusters whereas in other cases, when the random centers are not precise they create 
malicious subgroups. Conversely, methods like FEKM, MCKM, MFQ and FLCS gives a stable and predictable 
output on each execution.

The following parameter for evaluation was based on determining the homogeneity and completeness of 
clusters using V-measure. Tables 6, 7 and 8 below illustrates these facts. For most of the data sets V-measure is 
closer to 1 or is on higher side for MFQ and FLCS. This implies that the clusters obtained for different data sets 
are precise. However, those using K-Means are not effective since the centers randomly chosen may not be the 
near optimal ones. Figure 6 presents an analysis of FLCS vs. K-Means, FEKM and MCKM respectively based on 

Table 5.   Clustering accuracy score of K-means, FEKM, MCKM, MCQ and FLCS using Rand Index.

Data sets K-means FEKM MCKM MFQ FLCS

Iris 0.848 0.867 0.859 0.879 0.879

Balance 0.561 0.602 0.566 0.674 0.674

Abalone 0.491 0.523 0.596 0.637 0.637

Seed 0.756 0.809 0.901 0.821 0.821

TAE 0.543 0.572 0.543 0.601 0.601

Wine 0.691 0.834 0.718 0.691 0.691

Glass 0.581 0.593 0.704 0.611 0.611

Mushroom 0.591 0.641 0.572 0.587 0.587

Adult 0.528 0.427 0.528 0.539 0.539

Haberman 0.499 0.471 0.456 0.501 0.501

Table 6.   Homogeneity score of K-Means, FEKM, MCKM, MFQ and FLCS.

Data sets K-means FEKM MCKM MFQ FLCS

Iris 0.7364 0.7502 0.7364 0.7514 0.7514

Balance 0.0845 0.1589 0.0777 0.3451 0.3451

Abalone 0.0675 0.0588 0.1209 0.0916 0.0916

Seed 0.6645 0.7075 0.6934 0.7075 0.7075

TAE 0.0195 0.0265 0.0252 0.0186 0.0186

Wine 0.3561 0.3784 0.4288 0.3987 0.3987

Glass 0.1156 0.1246 0.1213 0.1176 0.1176

Mushroom 0.1455 0.1759 0.1654 0.1935 0.1935

Adult 0.0002 0.00031 0.00028 0.00031 0.00031

Haberman 0.0006 0.0008 0.0008 0.0012 0.0012
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Table 7.   Completeness score of K-Means, FEKM, MCKM, MFQ and FLCS.

Data sets K-means FEKM MCKM MFQ FLCS

Iris 0.7474 0.7619 0.7474 0.7649 0.7649

Balance 0.0564 0.1324 0.0648 0.2882 0.2882

Abalone 0.0721 0.0796 0.131 0.1086 0.1086

Seed 0.6681 0.7126 0.6963 0.7126 0.7126

TAE 0.0171 0.029 0.0275 0.0201 0.0201

Wine 0.3984 0.4345 0.4287 0.451 0.451

Glass 0.2234 0.2158 0.2134 0.3893 0.3893

Mushroom 0.2013 0.2218 0.2013 0.1969 0.1969

Adult 0.0002 0.000314 0.000301 0.000311 0.000311

Haberman 0.0008 0.001 0.0009 0.001 0.001

Table 8.   V-measure score of K-means, FEKM, MCKM, MFQ and FLCS.

Data sets K-means FEKM MCKM MFQ FLCS

Iris 0.7419 0.756 0.7419 0.7581 0.7581

Balance 0.0676 0.1445 0.0707 0.3141 0.3141

Abalone 0.0697 0.0676 0.1258 0.0994 0.0994

Seed 0.6662 0.7101 0.6949 0.7101 0.7101

TAE 0.0182 0.0277 0.0263 0.0193 0.0193

Wine 0.3760 0.4045 0.4287 0.4233 0.4233

Glass 0.1523 0.1579 0.1546 0.1807 0.1807

Mushroom 0.1689 0.1962 0.1816 0.1952 0.1952

Adult 0.0002 0.000312 0.000299 0.000317 0.000317

Haberman 0.0007 0.0009 0.0008 0.0011 0.0011

Figure 4.   Clustering Accuracy performed on different Datasets.
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V-measure score for different datasets. The graph indicates V-measure score of FLCS is comparatively higher than 
K-Means, FEKM and MCKM which suggests that the clusters obtained with FLCS are homogenous and complete.

Further experiments were conducted for calculating the time taken by all the methods in determining the 
initial cluster centers and their convergence of clustering loop. All algorithms were executed on a machine with 
5th Gen Intel® i3 processor, 1.9 Ghz. clock speed and 4 GB RAM. Table 9 represents the actual execution time of 
all the algorithms for determining the initial centroids. From this table it can be seen that K-Means obtain the 
initial centers earlier than the others as this selection is done randomly. The average time taken for selection of 
cluster centers of each method is plotted in Fig. 7. The horizontal line in the graph represents the average time 
taken to select the initial centers of all the methods. From the graph it can be observed that FEKM and MFQ 
take slightly more time for finding the centers than the rest. MFQ by far takes the maximum out of them as its 
complexity increases with the increase in dimension of the data. MCKM and FLCS show similar performance, 
yet FLCS takes less time to compute the initial centers than MCKM due to its linear time complexity.

Figure 5.   Rand index analysis for stability check performed on iris, seed, TAE and Haberman datasets (a) 
K-means, (b) FEKM, (c) MCKM, (d) FLCS, each executed seven times.

Figure 6.   V-measure score analysis for different data sets (a) FLCS vs. K-means (b) FLCS vs. FEKM (c) FLCS 
vs. MCKM.
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The clustering loop convergence time i.e. time taken for the cluster formation by each method on the given 
datasets is noted in Table 10. The best performing method on particular data set is highlighted. It can be observed 
from the results that, FLCS has least convergence time in five out of ten data sets. MFQ performs similarly because 
their initial centers are same. FEKM also have smaller convergence time in few datasets. The average clustering 
loop convergence time of each method is plotted in Fig. 8. The horizontal line indicates the average clustering 
loop convergence time of all methods. The plot shows that K-Means takes more time for formation of clusters 
due to bad random initial centers. K-Means is the only method above the average line. Other methods decide 
the subgroup formation below the average line. FLCS perform faster than other methods due to its significantly 
distinct initial clusters which are obtained in less time.

Finally, overall execution time of each method employed on the given datasets is recorded. K-Means is the 
fastest in center selection but its random initial centers results in large convergence time. From Table 11 and Fig. 9 
it can be seen that, FEKM and MFQ have overall larger execution time than others since much of their computa-
tion is spent on selecting the near-optimal centers. On the other hand, MCKM and FLCS show promising results.

Table 9.   Execution time for determining the initial centers using K-Means, FEKM, MCKM, MFQ and FLCS.

Data sets K-means FEKM MCKM MFQ FLCS

Iris 0.000030 0.15787 0.00243 0.01866 0.00398

Balance 0.000030 3.03097 0.01759 0.01068 0.01332

Abalone 0.000039 5.01312 0.04713 5.34933 0.06515

Seed 0.000026 0.33564 0.00392 0.83359 0.00258

TAE 0.000032 0.16324 0.00243 0.02514 0.00607

Wine 0.000035 0.22144 0.00268 0.06315 0.00511

Glass 0.000028 0.35372 0.00318 1.30522 0.00266

Mushroom 0.000041 5.25642 0.07466 6.02473 0.04643

Adult 0.000052 8.23141 0.31084 10.32981 0.25333

Haberman 0.000021 0.67761 0.00275 0.01307 0.00174

Figure 7.   Average execution time for deciding initial centers using K-Means, FEKM, MCKM, MFQ & FLCS.

Table 10.   Execution time for clustering loop convergence of K-Means, FEKM, MCKM, MFQ and FLCS.

Data sets K-means FEKM MCKM MFQ FLCS

Iris 0.02698 0.01501 0.03621 0.01914 0.01512

Balance 0.11284 0.40028 0.11363 0.11412 0.10802

Abalone 1.43148 1.26409 1.07952 1.20457 1.21556

Seed 0.05547 0.06317 0.04802 0.02871 0.02562

TAE 0.02671 0.03224 0.09348 0.02504 0.02001

Wine 0.05622 0.02712 0.02541 0.03625 0.03849

Glass 0.16127 0.06624 0.13349 0.07648 0.07594

Mushroom 2.45328 1.94782 1.96487 2.42013 2.32307

Adult 19.48762 13.87514 11.84837 11.01519 9.51709

Haberman 0.05871 0.11392 0.03326 0.04456 0.04651
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The performance and accuracy scores of MFQ and FLCS are more or less equal because the outcomes of the 
methods are always same. This is due to the fact that, both methods obtain exactly same K initial centers. How-
ever, the process of computing initial centers is totally different. From Fig. 9 difference can be clearly observed, 
FLCS is more efficient than MFQ in execution time.

Conclusion
The initial centre of a cluster is a decisive factor in its final formation as erroneous centroids may results in 
malevolent clustering. In this research, few approaches were suggested to decide the near optimal cluster centers. 
FEKM was proposed with an idea to obtain well separated clusters. It was quite effective with most of the datasets, 
only with a complexity issue which is in the higher side. In order to get a solution to this, MCKM was suggested. 
It improved the computational time to some extend but still was higher than K-Means which randomly selects 
its centers. For these reason FCGS and MFQ were used which selects the centers present only on the convex hull 

Figure 8.   Average execution time of K-means, FEKM, MCKM, MFQ & FLCS for clustering loop convergence.

Table 11.   Actual Execution time of K-means, FEKM, MCKM, MFQ and FLCS.

Data sets K-means FEKM MCKM MFQ FLCS

Iris 0.0271 0.0819 0.0351 0.0378 0.0205

Balance 0.3728 0.6145 0.1304 0.1248 0.1214

Abalone 1.5892 5.569 1.2447 6.554 1.4216

Seed 0.0643 0.2531 0.0559 0.8423 0.0521

TAE 0.0253 0.0964 0.0836 0.0496 0.0249

Wine 0.0521 0.0828 0.0324 0.0984 0.0459

Glass 0.1656 0.4215 0.2018 1.3924 0.1314

Mushroom 2.1354 8.0181 1.7731 8.5278 2.552

Adult 13.494 23.796 11.763 25.645 8.315

Haberman 0.0577 0.8077 0.0375 0.0576 0.0529

Figure 9.   Average execution time of K-means, FEKM, MCKM, MFQ and FLCS.
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thereby, trims down the chance of considering all data points to be a candidate to form the centers. However, 
it was found that the clustering process was effective for datasets with two or three attributes only. Due to this 
reason, FLCS was suggested which is simple and effective in deciding the centers with lesser complexity. All 
these methods were thoroughly analyzed by considering the clustering effectiveness, correctness, homogeneity, 
completeness, complexity and their actual execution time of convergence. For this reason performance indices 
like DI, DBI, and SC index were used, for correctness Rand measure was used, for homogeneity and completeness 
V-measure was used. All these factors considered for testing the quality of cluster formation showed excellent 
results for all proposed algorithms as compared to K-Means clustering. This signifies the emergence of indi-
vidual groups in which data present within the group remain at a closer proximity and the separation of data of 
one group to that of another is very far. Zhou et al.45, Cheng et al.46 and Lu et al.47 investigated water depth bias 
correction of bathymetric LiDAR point cloud data, situation-aware IoT service coordination and IoT service 
coordination using the event-driven SOA paradigm respectively. Quantifiable privacy preservation for destina-
tion prediction in LBSs, spatio-temporal analysis of trajectory data and energy-efficient framework for internet 
of things underlaying heterogeneous small cell networks respectively examined by Refs.48–50. Peng et al.51, Bao 
et al.52, Liu et al.53 recently examined the community structure in evolution of opinion formation, limited real-
world training data and robust online tensor completion for IoT streaming data recovery respectively. Liu et al.54 
worked on federated neural architecture search for medical sciences. Refs.55–57 exhibits the recent and newly 
development in the IoT field like next-generation wireless data center network, fusion network for transporta-
tion detection and wireless sensor networks with energy harvesting relay.

This work guided us to quite a few exciting and innovative research opportunities which can be further 
explored viz, both the time complexity and computation time of the suggested methods can be further reduced, 
the concept of convex hull can still be properly used to obtain better cluster centers on versatile data sets.

Data availability
The data will be made available on a reasonable request to the corresponding author.
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