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Seismic landslide susceptibility 
assessment using principal 
component analysis and support 
vector machine
Ziyao Xu , Ailan Che * & Hanxu Zhou 

Seismic landslides are dangerous natural hazards that can cause immense damage to human lives and 
property. Susceptibility assessment of earthquake-triggered landslides provides the scientific basis 
and theoretical foundation for disaster emergency management in engineering projects. However, 
landslide susceptibility assessment requires a massive amount of historical landslide data. Evidence 
of past landslide activities may be lost due to changes in geographical conditions and human factors 
over time. The lack of landslide data poses difficulties in assessing landslide susceptibility. The aim of 
this study is to establish a generalized seismic landslide susceptibility assessment model for applying 
it to the Dayong highway in the Chenghai area, where earthquakes occur frequently but with a lack 
of landslide data. The landslide data used comes from the 2014 Ludian Ms (Surface wave magnitude) 
6.5 earthquake in a region with geographical conditions similar to those in the Chenghai area. The 
influencing factors considered include elevation, slope, slope aspect, distance to streams, distance to 
faults, geology, terrain wetness index, normalized difference vegetation index, epicenter distance and 
peak ground acceleration. The frequency ratio method is used to eliminate influencing factors with 
poor statistical dispersion of landslides. Principal component analysis (PCA) is utilized to reduce the 
dimensionality of landslide conditioning factors and to improve the transferability of the assessment 
model to different regions. A support vector machine model is used to establish the susceptibility 
assessment model. The results show that the accuracy of the PCA–SVM model reaches 93.6%. The 
landslide susceptibility of the Chenghai area is classified into 5 classes, with the “Very high” landslide 
susceptibility class accounting for 0.63%. The 13-km section in the middle of the Dayong highway, 
which accounts for 8.9%, is identified as the high-risk area most obviously impacted by seismic 
landslides. This study provides a new approach for seismic landslide susceptibility assessment in areas 
lacking in landslide inventory data.

Landslides represent one of the most destructive and frequent natural hazard phenomena reported  worldwide1. 
It creates a significant constraint in the pace of economic development due to the disruption of infrastructures 
and blockades of transportation  facilities2. Landslide susceptibility assessment is an effective approach which 
has been widely used to restrict and affect project planning to reduce damage from landslides to public property, 
infrastructure, and people’s  lives3–5.

A wide range of qualitative and quantitative approaches have been used for landslide susceptibility 
 assessment6. The approach mainly includes assessments based on expert experience and sophisticated mathemati-
cal  methods7. The assessments based on expert experience contain discriminant  analysis8, analytical hierarchy 
 process9,10. Those methods based on experts’ knowledge and experience, ratings by different experts often lead 
to different assessment  results11. The main mathematical and statistical methods include the logistic regression 
model and the weight of evidence  method12, and the Index of Entropy (IoE) and Dempster–Shafer (DS) models. 
Those methods based on the available landslide data, assess various classifications of landslide influence  factors13, 
and figure out the correlation between landslide susceptibility and influence factors. However, neither of them 
is suitable for dealing with data imbalance and nonlinearity problems.

With the development of computing power and geospatial data, many machine learning methods such as sup-
port vector machine (SVM), logistic  regression14, random forester (RF), boosted regression tree (BRT), artificial 
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neural network (ANN)15, recurrent neural networks (RNNs)16 and convolutional neural network (CNN)17,18 have 
been developed. The machine learning models performed better on nonlinear problems. In particular, SVM 
becomes popular in the landslide susceptibility assessment due to its characteristics like small number of samples, 
nonlinearity, high dimension, and fast learning  capacity19,20. Based on the statistical learning theory, SVM aims 
to find a linear hyperplane in the feature space which could separate the positive and negative samples with the 
maximum margin. Therefore, the SVM is widely used in identification of landslides.

In the past decades, many studies have been conducted to assess the susceptibility of landslide using SVM or 
other machine learning  methods21. The performance of the SVM and other different machine learning algorithms 
are compared in assessment of earthquake-triggered landslide  susceptibility22,23.  Zhou24 applied the SVM, ANN 
and a multivariate statistical model, the logistic regression for landslide susceptibility modeling.  Huang25 pro-
posed a hybrid modeling approach using support vector machines and random subspace. Tested it in the Wuning 
area to produce a landslide susceptibility map.  Razavi26 employed adaptive neuro-fuzzy inference system in an 
ensemble with the ant colony optimization and differential evolution algorithms for the landslide susceptibility 
map of the Fahliyan sub-basin. In addition, many studies assessed the direct losses resulting from landslides on 
engineering such as  highway27–30.  Yin31 combined the PCA and SVM model for the susceptibility mapping and 
zoning of highway landslide disasters in China. According to the aforementioned methods, most researches on 
landslides along the highway based on historical landslides samples in the area.

However, previous studies on machine learning and SVM mostly focused on the accuracy comparison. The 
limitation of these research is that the landslide susceptibility models are highly dependent on the number of 
landslide samples, resulting in poor performance confronting the data deficiency. Due to unique topographi-
cal features of different areas, it is difficult to apply the landslide susceptibility model trained by landslide data 
from one area to another landslide data deficiency area. Therefore, it is crucial to improve the robustness of the 
assessment model through data processing method and to apply it to the area with a lack of landslide data but 
frequent earthquakes.

This study focuses on the application of the seismic landslide susceptibility assessment in the area where 
earthquakes occur frequently and there is an absence of landslide data. Dayong Highway located in Chenghai 
region is a representative area to be selected as the research background which is affected by Chenghai fault zone 
with earthquakes occurred frequently but landslide data deficiency. The seismic landslide susceptibility model is 
established based on the 716 landslides caused by Ludian earthquake and 10 influenced factors. PCA is adopted 
for reducing complexity of input variables and making the influence factors dimensionless. The robustness of 
model is further increased for applying in Dayong Highway of the Chenghai earthquake-prone area with geo-
logical conditions similar to Ludian area. We use Gutenberg-Richter model and Dieterich model to assume an 
earthquake in Chenghai area based on historical earthquakes. Finally, the study ends up with the assessing the 
landslide risk class of Dayong highway in Chenghai region based on the Inverse Distance Weight (IDW) method.

Study area
Chenghai area is located in the northwest of Yunnan Province. Because of the relative movement of the Eura-
sian and Indian Plate, a series of N–S, N–W and N–E trending faults formed the diamond-shaped Dali fault 
 system32. This region is affected by many active faults, with frequent occurrence of strong earthquakes, which 
poses very serious risks of earthquakes triggering geological disasters. The geographical location of Chenghai 
area is shown in Fig. 1.

Chenghai fault zone lies to the Midwest of the diamond-shaped Dali fault system and is surrounded by three 
regional active faults, including Heqing fault (W), Eryuan-Midu fault (SW), Pingchuan faults (E) and Jianchuan 
fault (NW). The dense distribution of faults and special geological conditions lead to the frequent seismic activi-
ties in this area. Most of the earthquakes occurred are closely related to these fault structures. From 1970 to 2015, 
there were 575 earthquakes above magnitude 3 in Chenghai region, among which 3 were strong earthquakes 
above magnitude 4. Such as the Yaoan Ms6.5, 2009, Yongsheng Ms4.9, 2019 and Ninglang Ms5.7, 2012. These 
earthquakes were characterized by frequent occurrences and small magnitudes, they mostly occurred near the 
fault, thereby indicating that the tectonic activity in this area is  vigorous33. The fault with the largest effect on 
the Dayong Highway is the Chenghai fault. Dayong highway in the east of Chenghai fault zone. The strike of the 
line is roughly parallel 60 km to the Chenghai fault zone, and most of the lines passes through this zone. In 1915, 
the activity of the Chenghai fault zone was one of the causes for the occurrence of the 7.8 magnitude Yongsheng 
earthquake. Figure 2 describes the regional earthquakes in Chenghai area.

The Dayong Expressway is located in the Chenghai area. It is a bidirectional four-lane highway with a total 
length of 126 km. The areas surrounding this expressway are affected by geological structures and historical 
earthquakes, with the presence of many adverse slopes. Through the analysis of historical earthquakes in the 
Chenghai region, it is believed that the environment around the Dayong Expressway is influenced by the Cheng-
hai fault structure. Earthquake activities are very likely to occur in the future, which would affect the safety of 
the expressway.

Methodology
In this study, two methods—Principal Component Analysis (PCA) and a Support Vector Machine (SVM) 
model—are combined in a GIS environment for seismic landslide susceptibility assessment. As shown in Fig. 3, 
the entire process is divided into two parts: data collection and model application. First, seismic landslide influ-
encing factors and landslide samples from the Ludian earthquake are selected. Then, a seismic landslide suscep-
tibility model is established using the SVM based on Ludian seismic landslide data. Next, the frequency ratio 
method and PCA are used to eliminate the influence of regional characteristics factors and reduce the dimensions 
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of the remaining influence factors. Finally, the SVM model is applied to assess landslide susceptibility under an 
assumed earthquake along the Dayong Highway in the Chenghai earthquake-prone area.

PCA-based methods
PCA is a well-known multivariate analysis technique for reducing data  dimensions34. It helps in reducing the 
data dimensionality by rotating coordinate axes. The PCA involves an eigenvalue decomposition to produce 

Figure 1.  Highway and Chenghai fault zone of study area. (Credit: 1,2,5,6,11,12, ArcGIS10, URL: https:// gisse 
rver. domain. com: 6443/ arcgis/ manag er).

Figure 2.  Regional seismic activity of Chenghai area. (Credit: 1,2,5,6,11,12, ArcGIS10, URL: https:// gisse rver. 
domain. com: 6443/ arcgis/ manag er).

https://gisserver.domain.com:6443/arcgis/manager
https://gisserver.domain.com:6443/arcgis/manager
https://gisserver.domain.com:6443/arcgis/manager
https://gisserver.domain.com:6443/arcgis/manager
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eigenvalues and eigenvectors for detecting the change range of data and transforming high dimensional data into 
low dimensional data. With the help of principal component analysis, a large number of sample data are replaced 
by a small number of principal components, which can not only maintain the classification of the original data 
but also reduce the dimension of features and eliminate the physical meaning of parameters, so as to facilitate 
more intuitive and effective classification. The variables obtained after dimensionality reduction contain most of 
the required information and avoid the interaction between variables. Mathematically, the reduction process is 
achieved by taking p variables X1,X2, . . . ,Xp which are then combined to produce principal components (PCs) 
PC1, PC2, . . . ,PCp , that are uncorrelated. These PCs are also termed eigenvectors. The model between the prin-
cipal components and the dependent variables is established after the extraction of the principal components.

Support vector machine
The SVM is a commonly used machine learning algorithm that combines the Vapnik–Chervonenkis Dimension 
from statistics with Structure Risk Minimization Theory. It is widely used in decision-making and prediction in 
various fields, and can also classify and regress the data. The two main principles of SVM are the optimal clas-
sification hyperplane and the use of a kernel  Function35. SVM can also manage linearly inseparable problems by 
utilizing current data for training and selecting several support vectors from training data to represent all data. 
Compared to both the logistic regression and neural networks, the support vector machine or the SVM some-
times gives a cleaner and sometimes more powerful way of learning complex nonlinear functions. Illustrations 
of the basic principles of SVM are shown in Fig. 4. By leading to a mapping function, the kernel function maps 
the sample feature attributes from low dimensional space to high dimensional space and then transforms the 
nonlinear classification problem into a linear classification problem in high dimensional space. The commonly 
used kernel functions include linear kernel function, polynomial kernel function, radial basis function kernel 
and sigmoid kernel function. According to the experience of some scholars in the application of landslide sus-
ceptibility classification, the Gaussian kernel function is selected for training which has the advantages of less 
training parameters and low complexity of the model. The calculation process is as follows Eq. (1)

(1)K
(

x1, y1
)

= e−y(x1−x2)
2

Figure 3.  Flow chart of landslide susceptibility assessment.
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Susceptibility assessment model of seismic landslides based on historical 
earthquake
seismic landslides sample selection
On August 3, 2014 (at 4:30 p.m.), the Ms6.5 earthquake occurred in Ludian County, Zhaotong City, Yunnan Prov-
ince. The epicenter of the earthquake was located at 27.1° N, 103.3° E and the focal depth was 12 km. Conducted 
by the Earthquake Administrator in Yunnan Province, 716 new landslide points triggered by this earthquake 
were recognized through field surveys and UAV tilt photography. (Fig. 5). This damaging earthquake caused 
approximately 400 deaths, 1800 injuries, and the destruction of at least 12,000 houses.

Selection of seismic landslide sample points
In this paper, a DEM with a resolution of 30 × 30 m is adopted for the grid computing units of the study area. 
According to the landslide inventory map, there are 716 slope units containing the entire known landslide body. 
Landslide buffer zones are created around the landslide points. Specifically, circular buffer zones with a radius 
of 1000 m are generated around each landslide point as the center. The collection of all the circular buffer zones 
is called the landslide buffer zone. To meet the modelling requirements and improve the operation accuracy, 
the random sampling method is used to generate non-landslide points (2130) which is the 3× the number of 
landslide units outside the landslide buffer zone. The landslide and non-landslide units in the study area are 
shown in the Fig. 6.

Landslide influence factors
Based on previous research, Landslides are triggered by various processes including geological, geomorphologi-
cal, meteorological factors, human engineering activities, groundwater level coefficient and ground motion. There 
is no unified standard for the selection of assessment indexes. Landslides in the Ludian area are mostly affected 

Figure 4.  Illustrations of the basic principles of SVM.

Figure 5.  Landslide distribution of the Ludian area. (Credit: 1,2,5,6,11,12, ArcGIS10, URL: https:// gisse rver. 
domain. com: 6443/ arcgis/ manag er).

https://gisserver.domain.com:6443/arcgis/manager
https://gisserver.domain.com:6443/arcgis/manager
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by seismic activity. The factors influencing landslides can be divided into internal factors and external factors. 
In this study, the external incentive factors of seismic landslides mainly consider earthquake factors, includ-
ing epicenter distance and PGA. In addition, eight factors including elevation, slope, slope direction, distance 
to stream, distance to fault, geology, terrain wetness index (TWI) and normalized difference vegetation index 
(NDVI) are selected as internal influencing factors. The selection and sources of indicators are shown in Table 1, 
and the elevation, slope, slope direction and terrain wetness index are calculated by DEM grid map in ArcGIS. 
The DEM data is from the geospatial data cloud and the accuracy is 30 m.

Model established and verification
Ten seismic landslide impact factors are normalized and entered the support vector machine. Equation (2) is 
implement to normalize the values of the impact factors of Ludian seismic landslide.

where xi′ and xi indicate the normalized and original values of each impact factor, xmax and xmin indicate the 
maximum and minimum values of each impact factor. In the training process of SVM model, the main purpose is 
to determine the kernel function parameter γ and penalty factor C. The five-fold cross-validation method is used 
to validate the models and to overcome the shortage of landslide data and the problem of model  overfitting36. The 
calculation step is dividing all the landslide and non-landslide point data into 5 folds. Each fold is used in turn 
as the validation set, while the remaining folds are used as the training set. This process was repeated 5 times. By 
constantly changing the parameter values, the corresponding classification accuracy can be calculated, and then 
the classification accuracy can be used to determine the optimal parameter combination. Through the above 
training, we have obtained the optimal kernel function parameter γ and penalty factor C.

(2)x′i =
xi − xmin

xmax − xmin

Figure 6.  The landslides units and non-landslides units digital map in Ludian area. (Credit: 1,2,5,6,11,12, 
ArcGIS10, URL: https:// gisse rver. domain. com: 6443/ arcgis/ manag er).

Table 1.  Selection of assessment indexes.

First class Second class Third class Data Type

External factors Seismic factor
Horizontal PGA PGA records of seismic stations Data sheet

Epicenter distance DEM Raster map

Internal factors

topographic features

Elevation

DEM (30 m accuracy) Raster map

Slope

Aspect

Hydrogeology
Distance to stream

TWI

Geology
Geology geological map

(1:200,000 scale)
Vector image
Raster mapDistance to fault

Vegetation cover NDVI modis(16 day NDVI data, 250 m accuracy) Raster map

Inventory of landslides Landslide area distribution Vector map of original landslide distribution Vector image

https://gisserver.domain.com:6443/arcgis/manager
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Receiver operating characteristic curve (ROC) is often used as a quantitative analysis method to assessment 
the prediction accuracy of landslide sensitivity model. The abscissa of the curve is false positive rate (FPR), N is 
the number of real negative samples, and FP is the number of positive samples predicted by the classifier. The 
ordinate is true positive rate (TPR), P is the number of real positive samples, TP is the number of positive samples 
predicted by the classifier. The formula is as follows Eq. (3):

Introduce the calculation formula of accuracy using Eq. (4), where TN is the true negative and FN is the 
false negative.

The area under the curve is called AUC (area under ROC curve), AUC is generally between 0.5 and 1, the 
larger AUC value indicates that the performance of the model is better. when γ = 0.8 , C = 0.5, the model accuracy 
is the highest, AUC = 96.1%. The ROC curve is as shown in the Fig. 7. The results demonstrate the accuracy and 
rationality of the assessment model in landslide prediction.

Application in Chenghai earthquake-prone area
Improvement of model universality
Screening of influencing factors
In order to reduce the dependence of the model on specific landslides data and increase model universality, FR 
method is used to screen the impact factors of seismic landslides. The calculation process is described in Eq. (5)

FR is frequency relative of landslide, L is the number of landslide points in the classification, L1 is total num-
ber of landslide points in research area. S is the acreage of classified area, and S1 is the total study area. The line 
chart of the frequency ratio of all influence factors is shown in the Fig. 8, from the frequency ratio results, the 
landslide frequency under the influence of elevation, geology, and TWI factors are concentrated in the local 
range. Therefore, the relationship between those factors and regional characteristics is relatively close. For other 
factors shown in Fig. 8a, the distribution of landslides frequency in this area is discrete. The relationship between 
landslide distribution and the external trigger factor of PGA and epicenter distance is shown in Fig. 8b, the curve 
indicates the frequency of landslides rising with the increase of PGA and epicenter distance. There is no doubt 
that PGA and epicenter distance are the main factors affecting seismic landslides. However, it can be concluded 
that elevation, geology, and TWI conditions can be defined as regional influence characters because of their 
direct linear relationship with the occurrence of earthquake-induced landslides. Therefore, those influence fac-
tors should be deleted to improve the generalization ability of the model in the seismic landslide susceptibility 
assessment of the Chenghai region.

Dimension reduction of influencing factors
The reasonable application of the seismic landslide susceptibility assessment model based on SVM in the Cheng-
hai area requires good robustness. PCA method is used to extract feature vectors and reduce the dimensions of 

(3)TPR =
TP

P

(4)Accuracy =
(TP + TN)

(TP + TN + FP + FN)

(5)FR =
L/L1
S/S1

Figure 7.  ROC curve of SVM model.
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input variables. Through Spearman’s rank correlation coefficient, the linear correlation relationships of influence 
factors are summarized as follows in Table 2. It proves that there is a low linear correlation between the influenc-
ing factors. Meanwhile, the value for KMO is 0.602 and the degrees of freedom of Butler’s spherical test is 21. 
It is reasonable and feasible to extract the susceptibility assessment indexes of seismic landslides according to 
the PCA method.

Table 3 shows, the five principal components represent 84.618% content of the impact factors. Generally, the 
external factors including PGA and epicenter distance have the most effect on principle components P1 indi-
cates more than 28.025% input variables variance proportions. It is reasonable to take the impact of the Ludian 
earthquake on landslides into consideration. Moreover, the slope has the most effect on principle components P2 , 
slope direction has the most effect on principle components P3 . P4 principle component includes the distance to 
fault as the main effective factor. And the distance to stream is the main effective factor of the principle compo-
nents P5 . By using the PCA method, the input slope, PGA and other influencing factors of the seismic landslide 

Figure 8.  Frequency statistics of landslide influence factor. (a) Internal factors. (b) External factors.

Table 2.  Component matrix in Ludian area.

Component matrix Slope Slope direction Distance to stream Distance to fault NDVI PGA Epicenter distance

Slope 1

Slope direction 0.023 1

Distance to stream 0.089 − 0.021 1

Distance to fault 0.089 − 0.021 0.385 1

NDVI 0.18 − 0.014 0.103 0.103 1

PGA 0.123 0.041 − 0.352 − 0.352 0.058 1

Epicenter distance 0.126 − 0.03 0.127 0.127 0.1 0.689 1

Table 3.  Results of PCA method in Ludian area.

Principal components P1 P2 P3 P4 P5

Slope − 0.159 0.74 0.232 0.13 0.556

Slope direction 0.002 − 0.195 0.751 0.6 − 0.12

Distance to stream 0.4 − 0.511 − 0.011 − 0.059 0.709

Distance to fault 0.194 0.122 0.598 − 0.745 − 0.096

NDVI 0.462 0.485 − 0.212 0.153 − 0.11

PGA − 0.877 − 0.028 − 0.078 − 0.027 0.034

Epicenter distance 0.87 0.058 − 0.054 0.107 − 0.11

Contribution rates/% 28.025 15.714 14.714 13.864 12.301

Accumulative contribution rate/% 28.025 43.739 58.453 72.317 84.618
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susceptibility assessment model are transformed into dimensionless principal components. The dependence of 
the model on original geographic information data and seismic data is reduced, and the robustness of the model 
is increased. The parameters of the PCA–SVM are consistent with those of the original SVM model, and the 
accuracy is the highest. Figure 9 shows, that after FR and PCA methods for data processing, the accuracy of the 
PCA–SVM is 93.6%. Compared with the original support vector machine model, the accuracy of the PCA–SVM 
model has not significantly decreased and maintained over 90%.

The coefficient of determination R2 is adopted for judging the fitting degree of models. The coefficient of 
determination R2 is calculated as:

where y is the actual label value, ŷ is the predicted value, and y is the average of the actual values. The coef-
ficient of determination ranges from 0 to 1. The closer the predicted value is to the actual label value, the smaller 
the error, and the closer the coefficient of determination is to 1. After calculation, the  R2 of the original SVM 
model is 0.915, and the  R2 of the PCA–SVM model is 0.875.

Assuming an earthquake in the Chenghai area
To apply the SVM model for assessing the seismic landslide susceptibility of the Dayong highway, we assume that 
an earthquake caused by the Chenghai fault zone in the future. The G–R model is used to study the relationship 
between magnitude and frequency, and then the upper limite of magnitude is determined. The G-R model is 
expressed as Eq. (6).

where N(M) is the frequency of earthquakes with magnitude greater than or equal to M , a and b are param-
eters. The G–R model was used to fit the regional magnitude-frequency relationship. The seismic statistics are 
collected in the recent ten years (2011–2021) from the Earthquake Administration of Yunnan Province. The 
magnitude-frequency relation curve is shown in the Fig. 10. The data is complete and the linear relationship is 
well when the magnitude is between 2.5 and 6.0, this data is used in the G-R model for calculating the maximum 
magnitude in the Chenghai area.

According to the G-R model and the calculation rules of the least square method, the values of parameters 
a and b can be calculated,a = 4.362 , b = 0.671 . In general, the upper limited of magnitude is the maximum 
magnitude that can occur in the region, and the number of occurrences is once. Therefore, through assume the 
N(Mmax)=1, the Mmax is calculated. Mmax = 6.5. Probability of occurrence of maximum magnitude is calculated 
based to the Dieterich model expressed as Eqs. (7) and (8).

where P represents the occurrence probability, r is the frequency of the target seismic magnitude, which is 0.01, 
�CFS is the Coulomb stress, which is 0.024, Aσ = 0.1, and ta is assumed to be 10. According to the Dieterich 

R2
= 1−

∑

(yi − ŷi)
2

∑

(yi − y)2

(6)logN(M) = a− b×M

(7)
R(t) =

r
[

e

(

−�CFS
Aσ

)

− 1

]

e

(

− t
ta

)

+ 1

(8)P = 1− e(−R)

Figure 9.  ROC curve of PCA–SVM model.
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model, the occurrence probability of an Ms6.5 earthquake induced by the Chenghai fault in the next 10 years is 
1.1%. The epicenter can be located at 26.20° N and 100.60° E. This position is selected as a potential epicenter 
because it is the epicenter of the Yongsheng Ms 6.0 earthquake. Yongsheng Ms 6.0 earthquake is induced by the 
Chenghai fault, and seismicity is vigorous in this area where the latest Ms4.9 earth-quake occurred at 26.16° N 
and 100.62° E on July 21, 2019. We assume that the PGA distribution is the same as that of the Ludian earthquake, 
and obtain the PGA distribution of the Chenghai area by Kriging interpolation.

Regional topographic and geological characteristics
The topographic, geological, and ground motion digital map of the study area is obtained by ArcGIS with a spatial 
resolution of 30 m × 30 m (Fig. 10). The elevation ranges from 1000 to 4000 m, the slope is mostly between 10 and 
40° and the terrain is higher in the northeast and northwest. The main strata in the area are Quaternary Holocene, 
Permian, Carboniferous, and Devonian, which consist of limestone and basalt. Generally, the topographic and 
geomorphological characteristics in this area are very similar to those in the Ludian area. Therefore, the rational-
ity of applying the landslide susceptibility assessment model trained using the Ludian seismic landslide data to 
the Chenghai area is much higher than that of other regions. Moreover, the PCA–SVM model with improved 
robustness through FR and PCA methods can maintain high accuracy when applied to the Chenghai earthquake-
prone region. The digital map of influence factors in the Chenghai area is shown in Fig. 11.

Through the PCA, five principal components were extracted from ten landslide factors in the Chenghai 
area, the five principal components are shown in Table 4. The five principal components represent 90% of the 
original data in the Chenghai region. By using the PCA method, generous seismic landslide influence factors 
data is dimension reduced. The factors that have the greatest impact on principal components in the Chenghai 
area are basically consistent with those in the Ludian area. It is profitable to prevent excessive deviation in the 
application process of the seismic landslide susceptibility assessment model.

Seismic landslide susceptibility mapping
By inputting the dataset from the Chenghai area into the PCA–SVM model which is trained by using Ludian 
earthquake data. The landslide susceptibility zoning map of the Chenghai area is obtained. According to the 
classification of the landslide susceptibility by the natural break, the seismic landslide susceptibility values are 
classified into five classes (Very low, Low, Moderate, High, and Very high). This class is based on natural group-
ings inherent in the data and boundaries are determined statistically where there are relatively large jumps in 
the susceptibility data  values37. The seismic landslide susceptibility zoning map is shown in Fig. 12. The “Very 
low” class area is represented by dark blue, and the “Very high” class area is represented by crimson. The colors 
changing from cold to warm shows that the susceptibility class of landslide increases gradually.

Figure 12 shows that the landslide susceptibility class distribution which is similar to the attenuation law of 
ground motion decreases gradually from the inside out around the epicenter. The landslide susceptibility map-
ping show that under the influence of hypothetical ground motions, the “Very high” areas are distributed in the 
range of 14.5 km around the earthquake center. The spatial distribution is concentrated on both sides of the 
epicenter. The “High” areas are distributed in the range of 20 km around the earthquake center. Different from 
the “Very high” areas, the “High” areas are mainly distributed within 20 km from the epicenter and are mostly 
concentrated on the outer side. The distribution range of the “Moderate” is basically consistent with the distri-
bution range of the PGA and extends towards the northwest and southeast directions. As the distance from the 
epicenter continues to increase, the landslide susceptibility class declines. It is worth noting that there are still 
some areas with high landslide susceptibility class in areas over 25 km from the epicenter, the PGA of these areas 
is relatively small. This is due to its own internal reasons leading to a higher landslide susceptibility class, such 
as slope, distance to faults and distance to stream. Figure 13a shows the number of grid cells of the susceptibility 
class represented by a histogram. The “Low” and “Very Low” areas account for over 80% of the entire Chenghai 
region. “Moderate” or above accounting for 17.38% of the total Chenghai area. However, the “Very High” area 
accounts for only 0.6% of the total Chenghai region. According to the seismic landslide susceptibility mapping, 
the landslide susceptibility class is higher within a range of 15 km from the epicenter, and lower in other regions.

Figure 10.  Magnitude-frequency curves.
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Assessment results
According to the landslide susceptibility results in the Chenghai area, the susceptibility of landslides along dif-
ferent sections of the Dayong highway is assessed. The risk level of the Dayong highway is affected by both the 
seismic landslide susceptibility level and landslide travel distance. Based on statistics of the travel distances for 54 
seismic landslides triggered by the 2008 Wenchuan  earthquake38, most landslides travelled 0–2000 m. Therefore, 
the travel distance along the Dayong highway is divided into four parts from 0 to 2000 m. The resulting landslide 
susceptibility map and estimated seismic landslide travel distances provide the basis for the risk assessment of the 
Dayong highway. Table 5 illustrates a risk matrix used to generate the risk heatmap by integrating the landslide 

Figure 11.  The influence factors digital map. (a) Slope, (b) Slope direction, (c) the distance to stream, (d) The 
distance to fault, (e) NDVI, f PGA, (g) Epicenter distance. (Credit: 1,2,5,6,11,12, ArcGIS10, URL: https:// gisse 
rver. domain. com: 6443/ arcgis/ manag er).

https://gisserver.domain.com:6443/arcgis/manager
https://gisserver.domain.com:6443/arcgis/manager
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Table 4.  Component matrix in Chenghai area.

Principle components P1 P2 P3 P4 P5

Slope 0.228 0.875 0.035 − 0.347 0.074

Slope direction − 0.05 0.047 − 0.013 0.214 0.972

Distance to stream 0.638 − 0.051 − 0.429 0.114 − 0.012

Distance to fault 0.638 − 0.051 − 0.429 0.114 − 0.012

NDVI 0.313 0.305 0.514 0.449 − 0.14

PGA − 0.874 0.457 − 0.32 0.289 − 0.089

Epicenter distance 0.464 − 0.432 0.615 − 0.292 0.099

Contribution rates/% 27.228 21.488 17.161 13.867 11.955

Accumulative contribution rate/% 27.228 48.716 65.877 79.744 90.699

Figure 12.  The seismic landslide susceptibility zoning map. (Credit: 1,2,5,6,11,12, ArcGIS10, URL: https:// gisse 
rver. domain. com: 6443/ arcgis/ manag er).

Figure 13.  (a) Statistics of grid data of landslides susceptibility class of Chenghai area. (b) Statistics of grid data 
of risk class sections of Dayong Highway.

https://gisserver.domain.com:6443/arcgis/manager
https://gisserver.domain.com:6443/arcgis/manager
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susceptibility results along the highway and landslide travel distances. Considering the seismic landslide suscep-
tibility mapping and the landslide travel distance, the Inverse Distance Weight (IDW) method can be used for 
drawing the risk heatmap, which can visually show the risk ranking of the Dayong Highway. The IDW gridding 
method can be either an exact or a smoothing interpolator. With IDW, data are weighted during interpolation 
such that the influence of one point relative to another declines with distance from the grid  node39. Approxi-
mately 35% of the highway passes through the “Very high” and “High” landslide susceptibility class area, mainly 
concentrated in the middle section of Dayong Highway. The coincidence length between the middle section of 
the Dayong Highway and the Chenghai fault zone is about 13 km. The nearest distance is only approximately 
4.5 km away from the Dayong Highway, the earthquake center, which is greatly affected by ground motion and 
has the highest susceptibility class resulting from landslides. In the south and north of the middle section of the 
Dayong highway, a total of 34 km section is parallel to the Chenghai fault zone. This section passes through the 
“High” landslide susceptibility class area and with high susceptibility landslide-prone points nearby. Approxi-
mately 60% of the highway sections are in moderate and below moderate susceptibility areas.

Based on the assessment principle, Fig. 13b shows the proportion of sections in Dayong Highway with dif-
ferent landslide risk classes. High-risk sections account for 8.9% of the total highway, which is most vulnerable 
to landslides. Moderate-risk sections account for 37.1%, and it is located on the north and south sides of high-
risk sections. The low-risk sections are located on the north and south sides of Dayong Highway and have the 
largest proportion 54%.

Figure 14 shows the seismic landslide risk of the Dayong highway. The “High” risk class section is about 20 km 
and is concentrated in the middle part of the Dayong highway. Most of them are over 1000 m away from the 
Dayong highway and near the potential epicenter. The “Moderate” risk class section is distributed on the north 
and south sides of the “High” risk class section. The southern part is about 36 km, and the northern part is about 
44 km. The “Low” risk class section is mainly located at the north and south ends of the Dayong Expressway. The 
north part is about 30 km, and the south part is about 70 km.

Table 5.  Risk matrix of Dayong Highway.

Landslide susceptibility

Landslide travel distance

0–500 m 500–1000 m 1000–1500 m 1500–2000 m

Very high High High High Moderate

High High High Moderate Low

Moderate High Moderate Moderate Low

Low Moderate Moderate Low Low

Very low Moderate Low Low Low

Figure 14.  Landslide risk class of Dayong Highway.
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Discussions
PCA is a linear dimensionality reduction method that can reduce the dimensionality of geological and envi-
ronmental factors that affect landslides while minimizing information loss. This is beneficial for improving the 
robustness and applicability of machine learning models. As a data processing method, PCA has the following 
advantages: (1) effectively reducing the data dimensions of landslide impact factors and improving machine 
learning computational efficiency; (2) Being able to retain the main information in landslide impact factor data 
and reduce the difficulty of data processing. (3) It can eliminate the physical significance of landslide impact factor 
data and improve the robustness of machine learning. Hence, the PCA method can simplify the ML processes 
and improve their robustness.

This work used basic classifiers SVM for the landslide susceptibility map. Optimizing input data and param-
eters is a suitable method to exert the model’s generalization performance. The SVM model performs well in 
fitting small sample size data. When the sample size is small, SVM can achieve good classification results. Based 
on the research  findings40, we compared the performance of SVM and RF models in landslide susceptibility 
analysis under small sample nonlinear conditions. The accuracy of SVM is 0.998, and the accuracy of RF is 0.999, 
with only a 0.1% difference. Moreover, compared with the random forest method, the SVM model has strong 
generalization ability. It tends to maintain high accuracy to control model complexity and avoid overfitting. 
However, the random forest method is prone to overfitting training data. After PCA analysis, the influencing 
factor data was transformed into low dimensional nonlinear data, and the SVM model has more advantages in 
dealing with nonlinear binary classification problems and has a shorter training time than Random Forest and 
more stable results. The Random Forest results are affected by the decision tree growing process, and each run 
may be different. In this landslide susceptibility analysis, the sample size is small, and more attention is paid 
to generalization capability, so SVM is a better choice. But Random Forest also has advantages, such as better 
adaptability to nonlinear classification and high dimensional data. The choice needs to be made according to 
the specific situation.

This research illustrates that the PCA–SVM model performs better in application ability. Meanwhile, the 
decrease in prediction accuracy is not significant. SVM models have significant advantages when dealing with 
problems with small sample sizes. Some authors have specifically discussed the performance of SVM models in 
predicting landslide hazards and showed that the SVM model might derive a higher prediction accuracy than 
other models when dealing with binary classification and lack of data problems (Huang, Kamila, Miloš, Yao.). 
Our result is consistent with the conclusions of these authors.

The landslide susceptibility of the Chenghai area has also been modelled by other authors. One Tang et al. 
proposed a risk assessment method in the Chenghai area based on the fractal theory and the K-means cluster 
method. Compared with the previous works, the application ability of this work is greatly improved, and the 
seismic landslide mapping is basically consistent. Thus, the methodology proposed in this study is considered 
effective and extendable to other areas where geographic environment information is similar for landslide hazard 
mapping.

Conclusions

(1) In this study, 10 influencing factors including internal and external factors are selected as the landslide 
susceptibility assessment indexes based on the Ludian earthquake. Three impact factors including elevation, 
geology, and TWI with poor dispersion were removed through the frequency ratio method. The seven last 
seismic landslide influence factors are reduced to the five-principal components which represent 84.618% 
content by principal component analysis. The reduced index system is used as the input to improve the 
universal of the SVM model. The results show that the accuracy of the support vector machine is 93.6% 
through AUC.

(2) The possibility of an earthquake in the Chenghai area is relatively large in the future after analyzing the 
historical earthquake activities. An assume earthquake occurred in the Chenghai area by use of the Guten-
berg-Richter method. The PCA–SVM model is applied in the Chenghai area and the seismic landslide 
susceptibility mapping is obtained. The landslide susceptibility assessment is optimal for dividing into five 
classes (Very low, Low, Moderate, High, and Very high).

(3) The landslide susceptibility assessment results in the Dayong highway region indicate that under an assumed 
earthquake, the area with the “Very high” landslide susceptibility accounts for 0.23% and seismic landslide 
has the most obvious impact on the middle section part of Dayong highway which is parallel to Chenghai 
fault zone. Approximately 54% of the highway sections are in moderate and the following landslide sus-
ceptibility areas.

(4) The landslide buffer zone is established around the Dayong highway and divided into four parts from 0 to 
2000 m. “Very high” landslide susceptibility prone points are concentrated in the buffer zone of 1500–2000 
and more than 2000 m. “High” landslide susceptibility prone points are distributed in 500–1500 m buffer 
zones on both sides of the Dayong highway. Most of the landslide-prone points are “moderate”, and minute 
quantities are “High” concentrated in a 0–500 m buffer zone. The landslide risk class of Dayong highway is 
obtained based on the seismic landslide susceptibility assessment and landslide travel distance. High-risk 
sections account for 8.9%, moderate-risk sections account for 37.1%, and low-risk sections account for 
54%. Considering the maximum magnitude and occurrence probability in the Chenghai area, the landslide 
risk of Dayong Highway can be borne.

Our findings open several research directions for improving the generation ability of the earthquake landslide 
susceptibility model. It is worth emphasizing that in an earthquake-prone area, seismic landslide susceptibility 
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analysis is very important for the large infrastructure projects construction. The PCA–SVM model presented in 
this paper can conduct seismic landslide susceptibility analysis when landslide data in the region is lacking, in 
order to reduce the risk of landslide disasters and formulate further development strategies.

Data availability
The data that support the findings of this study are available on request from the corresponding author, [Ailan 
Che], upon reasonable request.
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