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FT‑Raman data analyzed 
by multivariate and machine 
learning as a new methods 
for detection spectroscopy marker 
of platinum‑resistant women 
suffering from ovarian cancer
Marta Kluz‑Barłowska 1, Tomasz Kluz 2,3, Wiesław Paja 4, Jaromir Sarzyński 4, 
Monika Łączyńska‑Madera 2, Adrian Odrzywolski 5, Paweł Król 6, Józef Cebulski 7,9 & 
Joanna Depciuch 5,8,9*

The phenomenon of platinum resistance is a very serious problem in the treatment of ovarian cancer. 
Unfortunately, no molecular, genetic marker that could be used in assigning women suffering from 
ovarian cancer to the platinum‑resistant or platinum‑sensitive group has been discovered so far. 
Therefore, in this study, for the first time, we used FT‑Raman spectroscopy to determine chemical 
differences and chemical markers presented in serum, which could be used to differentiate platinum‑
resistant and platinum‑sensitive women. The result obtained showed that in the serum collected from 
platinum‑resistant women, a significant increase of chemical compounds was observed in comparison 
with the serum collected from platinum‑sensitive woman. Moreover, a decrease in the ratio between 
amides vibrations and shifts of peaks, respectively, corresponding to C–C/C–N stretching vibrations 
from proteins, amide III, amide II, C = O and CH lipids vibrations suggested that in these compounds, 
structural changes occurred. The Principal Component Analysis (PCA) showed that using FT‑Raman 
range, where the above‑mentioned functional groups were present, it was possible to differentiate the 
serum collected from both analyzed groups. Moreover, C5.0 decision tree clearly showed that Raman 
shifts at 1224  cm−1 and 2713  cm−1 could be used as a marker of platinum resistance. Importantly, 
machine learning methods showed that the accuracy, sensitivity and specificity of the FT‑Raman 
spectroscopy were from 95 to 100%.

Ovarian malignancies are heterogenous neoplasms of the distinct origin, precursor lesions, clinical course, risk 
factors, molecular profiles, treatment and outcomes. Histologically, WHO classifies the ovarian malignancies 
in distinct groups based on their origin, the most frequently encountered are epithelial ovarian cancers (EOC), 
constituting 90% of malignant ovarian  tumors1.

The data published by GLOBOCAN in 2020 showed that there had been 313 959 new cases and 207 252 
deaths due to ovarian cancer, which made it 8th most commonly diagnosed cancer in females and was ranked 
8th as far as cause of cancer deaths is  concerned2. Interestingly, ovarian carcinoma is the leading cause of death 
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in women diagnosed with gynecological  cancers3, 4. Since there is no reliable screening program and the course 
of disease is often asymptomatic, many patients have clinically advanced cancer at the time of the diagnosis. The 
staging is determined by FIGO classification which is based on both surgical and histopathological assessment. 
In the vast majority of cases the therapy of ovarian cancer cannot be based solely on cytoreductive surgery, and 
systemic treatment is crucial.

Platinum-based compounds are currently in use not only for ovarian cancer, but also lung cancer, head and 
neck cancer, breast cancer and many others. Platinum-based compounds target cancer cells by forming adducts/
crosslinks with DNA purine bases, with a preference for guanine. These crosslinks result in DNA damage that 
impedes proper genome replication, transcription, and triggers cell  apoptosis5. The accumulation of platinum 
antitumor agents inside the cells is the necessary assurance of cytotoxicity, so decreased influx or increased efflux 
is responsible for platinum  resistance6.

Nowadays, the  1st line treatment in ovarian carcinoma consists of the following: either cytoreductive surgery 
or neoadjuvant chemotherapy, addition of bevacizumab to carboplatin and paclitaxel to the protocol, and in the 
case of positive response to platinum-based compounds, and the implementation of PARP  inhibitors7. However, 
up to 25% of women with ovarian cancer have so-called platinum-refractory disease. Even if patients are sensitive 
to  1st line platinum therapy, they may develop recurrence and acquire progressive resistance over  time8. Gener-
ally, patients treated for ovarian cancer may be divided into the following categories:

• Platinum refractory—disease progressing during therapy or within 4 weeks after the last dose
• Platinum resistant—disease progressing within 6 months of platinum-based therapy
• Partially platinum sensitive—disease progressing between 6 and 12 months
• Platinum sensitive—disease progressing with an interval of more than 12  months9, 10.

Both platinum refractory and platinum resistant groups of patients have poorer prognosis and are perfect 
candidates for clinical trials. Drugs used in such cases include cisplatin (PLD) and paclitaxel, sometimes in 
combination with bevaciziumab as the first line chemotherapy. As the second line we usually apply topotecan, 
gemcitabine and doxorubicin. Cisplatin is able to crosslink with the purine bases on the DNA causing the DNA 
damage. Paclitaxel targets microtubules causing mitotic arrest. On the other hand bevacizumab inhibits VEGF 
(Vascular endothelial growth factor). Topotecan binds to the topoisomerase I—DNA complex and prevents 
relegation of these single strand breaks. Gemcytabine interferes with DNA synthesis and targets ribonucleotide 
reductase. Doxorubicyn inhibits the progression of topoisomerase II. Drugs used in such cases include topote-
can, PLD, gemcitabine and paclitaxel in combination with bevacizumab. However, cisplatin is used as the first 
anyway. Therefore, a method is needed to determine whether a given patient is platinum-sensitive or platinum-
resistant in order to increase her chance of recovery. The Raman spectroscopy may be a method. This technique 
provides information about chemical characterization of the sample under the study. Consequently, chemical 
fingerprint of the analyzed sample could be  obtained11. Moreover, the Raman spectroscopy is a fast, non-invasive, 
non-expensive and non-destructive technique, which means, that in a short time results could be  obtained12. 
Furthermore, a small amount of sample is needed, which causes that in a lot of medical and biological research 
the Raman spectroscopy is used, also in oncology research, e.g. to differentiate cancer and non-cancer  tissues13, 
to show effectiveness of a  treatment14 or to determine tumor resection  margin15. Consequently, in this study, 
for the first time, chemical differences occurred in the serum collected from platinum-sensitive and platinum-
resistant women suffering from ovarian cancer using the FT-Raman spectroscopy will be determined. To show 
significance of these differences, a statistical analysis will be performed. In order to show differentiation between 
the analyzed samples, a multivariate analyses will be done. Finally, to show accuracy, selectivity and sensitivity of 
the FT-Raman spectroscopy, a machine learning (ML) method will be used. For this purpose, four ML algorithms 
were applied: decision trees C5.0, Random Forest (RF), k-Nearest Neighbors (kNN) and Support Vector Machine 
(SVM). The first one was used to obtain information about the most significant Raman shifts, which could be 
used as a FT-Raman marker of platinum-resistance. In turn, random forest is an ensemble learning algorithm 
that combines multiple decision trees to create a more robust and accurate model. Next, SVM algorithm was 
used to find a hyperplane that maximizes the margin between different classes while minimizing classification 
errors. Finally, The KNN algorithm was used to measure the similarity between data points. For classification 
tasks, the class labels of the k nearest neighbors are used to predict the class of the query point.

Results
The FT-Raman spectroscopy was used to determine chemical differences in the serum collected from women 
suffering from ovarian cancer, where one part of patients were platinum-resistant women and the second part—
platinum-sensitive ones. In both the FT-Raman spectra vibrations from hydroxyproline (~ 890  cm−1), C-H in-
plane bending mode (~ 1000  cm−1) and C–C vibrations (~ 1090  cm−1) was  noticed16. Moreover,  CH3 bonds from 
lipids and proteins were visible around ~ 1370  cm-117. Amide III, amide II and amide I vibrations were located 
at ~ 1280  cm−1, ~ 1550  cm−1 and ~ 1670  cm−1 Raman  shifts18, while lipids C = O and C–H vibrations were visible 
around ~ 1770  cm−1 and ~ 2950  cm−119. Moreover, the additional peak around 1467  cm–1 corresponding  CH2 
bonds from lipids and proteins was visible in the FT-Raman spectra of serum collected from platinum-sensitive 
 women17, Fig. 1a. The detailed positions of the described peaks for each analyzed diseases were located in Table 1.

Figure 1b showed that in the FT-Raman spectrum of serum collected from platinum-resistant women a 
significant increase of hydroxyproline (888  cm−1), C–C band (1085  cm−1), C–C/C-N stretching vibrations from 
proteins (1182  cm−1), three amides vibrations (1270  cm−1, 1590  cm−1, 1660  cm−1),  CH3 and  CH2 groups from 
lipids and proteins (1467  cm−1, 1367  cm−1, respectively), as well as CH lipids vibrations (2940  cm−1) were observed 
in comparison with the FT-Raman spectrum of serum collected from platinum-sensitive woman. Moreover, 
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Fig. 1c showed an increase in the ratio between (i) amide III/amide II, (ii) amide III/amide II in platinum-
resistant woman in comparison with the platinum-sensitive one. Moreover, higher lipids, as well as amides level 
was observed in the platinum-resistant women. In the same group an increase in the ratio between lipids and 
amides vibrations was noticed.

Table 1 showed that in the FT-Raman spectrum of serum collected from platinum-resistant woman, a signifi-
cant shift of peaks corresponding to C–C/C–N stretching vibrations from proteins, amide III,  CH2 from lipids 
and proteins, C = O and CH lipids vibrations toward lower Raman shifts were observed. These suggested that in 
these chemical compounds changes in the structure could occur.

To show if it was possible to differentiate serum collected from platinum-resistant and platinum-sensitive 
women using the FT-Raman spectroscopy, the PCA analysis was performed, Fig. 2a. This analysis was done 
for two FT-Raman ranges: 800–1800  cm−1 and 2800–3000  cm−1. In the case of the first range, the PCA analysis 
showed that the samples collected from platinum-sensitive women had the negative value of PC1, and positive 
as well as the negative value of PC2, Fig. 2a1. Therefore, PC1 played the most important role in distuinguish-
ing the samples collected from two analyzed groups of women. Loading plots of PC2 showed positive peaks 
at 1182  cm−1, 1467  cm−1 and 1590  cm−1, 1660  cm−1 Raman shifts and negative peaks at 950  cm−1, 1085  cm−1, 
1270  cm−1 and 1425  cm−1 Raman shifts, Fig. 2b1. In the Raman range between 2800  cm-1 and 3000  cm−1, the 
values of PC1 and PC2 for the samples collected from platinum-resistant and platinum-sensitive women were 

Figure 1.  Average of FT-Raman spectra ± Standard Deviation (SD) of serum collected from platinum-sensitive 
(blue curve) and platinum-resistant (pink color) women suffering from ovarian cancer (a); average value of 
peaks intensities ± SD, where # mean significant differences between platinum-sensitive and platinum-resistant 
woman. The degree of significance was denoted as p < 0.05 (b); the ratio between respectively amides and lipids 
vibrations, as well as the sum of amides (= A), lipids (= L) and the ratio between lipids and amides (L/A) (c).

Table 1.  Peaks analyzed in the FT-Raman spectra of platinum-sensitive and platinum-resistant patients with a 
band assigned and differences between positions, where “*” means the shift higher than 8  cm−1.

Sensitive (S)  (cm−1) Resistant (R)  (cm−1) S–R  (cm−1) Band assigned

888 892  − 4 Hydroxyproline

993 996  − 3 C-H in-plane bending mode

1085 1085 0 C–C

1182 1197  − 15* C–C/C–N stretching vibrations from proteins

1270 1286  − 16* Amide III

1367 1371  − 4 CH3 band from proteins and lipids

1467 1452 15* CH2 from lipids and proteins

1590 1590 0 Amide II

1660 1668  − 8 Amide I

1772 1783  − 11* C55O from lipids

2940 2964  − 24* Cholecterol and cholesterol ester
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the same as for ranges 800–1800  cm−1, Fig. 2a2. In the loading plots negative peaks at 2852  cm−1 and 2897  cm−1 
and one negative peak at 2978  cm−1 were noticed, Fig. 2b2.

Furthermore, HCA analysis showed creation of two similarity groups, where in the first group all the samples 
collected from platinum-sensitive women were placed, and in the second one—all the samples from other ana-
lyzed group. It was visible for both analyzed FT-Raman regions, Fig. 2c1,c2. The results suggested that changes 
in the proteins and lipids could play an important role in platinum resistance phenomenon.

To sum up, the FT-Raman results showed significant differences in the chemical compositions of serum col-
lected from platinum-resistant and platinum-sensitive woman. Consequently, machine learning methods were 
used to show accuracy, selectivity and specificity of this technique. The results of the analysis of four created 
datasets using ML algorithms were shown in Table 2. The calculated values of parameters showed that accuracy 
was from 95 to 100%, sensitivity—from 89 to 100% and specificity from 97 to 100%.

The analysis of the difference in the spectrum of Raman intensity values (Fig. 3, Table 3) for the categories of 
positive and negative cases shows that about 6 Raman shifts ranges can be identified, which clearly distinguishes 
the serum collected from platinum-sensitive and platinum-resistant women.

For the 800–1800   cm−1 analyzed FT-Raman range, a strong difference in absorption was seen at the 
800–926  cm−1, 969–1016  cm−1, 1035–1074  cm−1, 1081–1441  cm−1, 1455–1479  cm−1 and 2700–3000  cm−1 ranges, 
Table 3. Consequently, these ranges could be used as strong markers that differentiate platinum-sensitive and 
platinum-resistant women.

Also, the C5.0 decision tree learning model generated from these data (Fig. 4) indicates that 1224  cm−1 was 
the most important Raman shift, and was a value that unambiguously distinguishes the two categories of patients. 
Similarly, for the 2800–3000  cm−1 range, a another FT-Raman range under the study, could be used as a marker 
that differentiates platinum-sensitive and platinum-resistant women.

Figure 2.  PCA analysis (a) with loading plots (b) and HCA analysis (c) of FT-Raman data of serum collected 
from platinum-sensitive (blue curve) and platinum-resistant (pink color) women suffering from ovarian cancer. 
The analyses were done using two spectral ranges: 800–1800  cm−1 range (1) and 2800–3000  cm−1 (2).
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Table 2.  FT-Raman mean values of the quality assessment parameters of the four obtained learning 
algorithms, using 4 datasets.

Dataset No. of features Algorithm Accuracy Sensitivity Specificity Precision f1 mcc

800–1800  cm−1 260

C5.0 0.95 0.89 1.00 1.00 0.91 0.94

RF 0.98 1.00 0.97 0.96 0.97 0.98

kNN (k = 1) 0.98 1.00 0.97 0.96 0.97 0.98

SVM 0.98 1.00 0.97 0.96 0.97 0.98

800–1800 selected wavenumbers 176 selected

C5.0 0.95 0.89 1.00 1.00 0.91 0.94

RF 0.98 1.00 0.97 0.96 0.97 0.98

kNN (k = 1) 0.98 1.00 0.97 0.96 0.97 0.98

SVM 0.98 1.00 0.97 0.96 0.97 0.98

2800–3000  cm−1 79

C5.0 0.98 0.96 1.00 1.00 0.97 0.98

RF 0.98 1.00 0.97 0.96 0.97 0.98

kNN (k = 1) 0.98 1.00 0.97 0.96 0.97 0.98

SVM 1.00 1.00 1.00 1.00 1.00 1.00

2800–3000 selected wavenumbers 79 selected

C5.0 0.98 0.96 1.00 1.00 0.97 0.98

RF 0.98 1.00 0.97 0.96 0.97 0.98

kNN (k = 1) 0.98 1.00 0.97 0.96 0.97 0.98

SVM 1.00 1.00 1.00 1.00 1.00 1.00

Figure 3.  Significant ranges of Raman shifts in the differentiation serum collected from platinum-sensitive and 
platinum-resistant woman obtained using machine learning algorithms. Significant ranges were calculated for 
two Raman ranges: 800–1800  cm−1 (a) and 2700–3000  cm−1 (b).

Table 3.  Identified significant ranges of wavenumbers.

Raman 800–1800  cm−1

800–962  cm−1

969–1016  cm−1

1035–1074  cm−1

1081–1444  cm−1

1455–1479  cm−1

Raman 2800–3000  cm−1 2700–3000  cm−1
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Discussion
The survival rates of the ovarian cancer are poor. It is caused by advanced disease stages and disease recurrence, 
which results of platinum chemotherapy  resistance20. Until now, ovarian cancer has been treated by paclitaxel/car-
boplatin combination chemotherapy, and unfortunately the majority of patients became platinum-resistant with 
subsequent relapses of the  disease8. Moreover, platinum resistance can be detected only after 6 months, which is 
associated with a decrease in patients’ chances of  recovery21. Therefore, it is needed to find platinum-resistance 
biomarkers, which will show if patient should be treated by platinum compounds or not since in histopathologi-
cal examination we cannot observe any indicators which will differentiate these two groups. Moreover, also the 
mechanism of platinum-resistant in ovarian cancer is still not well known, which causes additional problems in 
chemotherapy of this kind of cancer. Ottevanger et al. showed that the most probable mechanism of platinum 
resistant is the fact that during chemotherapy it remains, the cancer stem cells remain at rest, consequently drugs 
have no effect on cancer stem  cells22. Nowadays, the most likely marker of platinum resistance is bone mor-
phologenetic protein 2 (BMP2), which is upregulated in ovarian cancer cells, and which is correlated with poor 
 prognosis23, 24. However, although the evidence, that these proteins could be biomarkers of platinum resistance 
is compelling, prognostic testing or development of targeted treatments are still not accessible. Moreover, only 
by means of expensive methods, the level of BMP2 in platinum-resistant and platinum-sensitive patients can be 
investigated. Therefore, in this study, we wanted to investigate if it is possible to find another platinum-resistance 
marker, which could be found fast and, which will be inexpensive. For this purpose, the FT-Raman spectroscopy 
in combination with machine learning and multivariate analyses were used. Indeed, the results obtained showed 
that the greatest differences between platinum-sensitive and platinum-resistant patients occurred in the region 
of vibration of protein functional groups (Fig. 1a,b), which reflected the proposal of BMP2 protein as a marker 
of platinum  resistance23, 24. Furthermore, in platinum-resistant women suffering from ovarian cancer, higher 
expression of low density lipoprotein receptor (LDLR) was  visible25, which also showed that the FT-Raman 
marker region obtained could have a potential application. This is even more convincing as the result of C5.0 
decision tree method indicated the amide II region as a potential spectroscopic marker region, Table 3. Moreover, 
in platinum-resistant women, higher amount of amides, as well as changes in the amides balance was observed 
(Fig. 1c), which suggested, that changes in the proteins expression and structure  occurred25. However, analyses 
of the FT-Raman spectra also showed that C-H lipids functional groups could be used as a platinum-resistant 
marker (Figs. 2a2, 4b Table 3). Indeed, in chemotherapy, where platinum drugs were used, the fatty acid bind-
ing protein 4 (FABP4) plays a very important role as itis responsible for promotion the uptake of long chain 
fatty acids into  cells26, 27. Consequently, in platinum-sensitive woman a lower amount of free fatty acid should 
be noted. Our results showed that in platinum-resistant women higher amount of lipids functional groups, as 
well as global lipids fraction and changes in the lipids balance were observed, Fig. 1. Moreover, PCA analysis of 
lipids FT-Raman region clearly showed that using this FT-Raman range it was possible to differentiate platinum-
resistant and platinum-sensitive women with ovarian cancer. Importantly, in this study we used baseline cor-
rection and normalization of all obtained spectra using the same methods. It means that we minimalized the 
influence of sample thickness and homogeneity changes on the results obtained, especially quantitative ones. 
Moreover, we used the same volume of samples for measurements. Taking into account results obtained by other 
Authors, which used molecular biology  methods23–27 and these which we showed, the correlation between the 
data obtained by different techniques was visible and, what is the most important, has a sense with medical data 
about platinum-resistant mechanism.

Summarizing, we showed, that using the FT-Raman spectroscopy, functional groups distinguishing samples 
obtained for two analyzed groups of women suffering from ovarian cancer could be found. These functional 
groups build protein and lipid structures. In the case of the protein structures, the results are consistent with 
protein molecular platinum-resistant  markers23, 28. The indication of lipids as markers of platinum resistance 
is a novelty, however, the correlation with molecular studies also  exists26. Additionally, taking into account the 
fact that PCA, HCA and machine learning methods confirm that lipids may have an impact on platinum resist-
ance, we believe that the result is valid and noteworthy. However, further research in this direction should be 
conducted.

Figure 4.  Decision tree for FT-Raman ranges 800–1800  cm−1 (a) and 2700–3000  cm−1 (b).
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Conclusions
In the presented study, the FT-Raman spectroscopy was used to determine chemical differences in serum col-
lected from platinum-resistant and platinum-sensitive women. Moreover, using multivariate and machine learn-
ing methods the spectroscopy data was analyzed to show specific chemical features which could be used to 
differentiate both studied groups of serum. The results obtained clearly showed that quantitative and qualitative 
differences between serum collected from both groups of women suffering from ovarian cancer existed. In the 
FT-Raman spectrum of serum collected from platinum-resistant women significant increase of functional groups 
building hydroxyproline, three amides vibrations,  CH3 and  CH2 groups from lipids and proteins, as well as CH 
lipids vibrations was observed in comparison with the FT-Raman spectrum of serum collected from platinum-
sensitive woman. Furthermore, structural differences were visible as changes in the value ratio between, respec-
tively, amides vibrations and shift of peak at 1182  cm−1, 1270  cm−1, 1590  cm−1, 1772  cm−1 and 2940  cm−1. Using 
these differences, it is possible to differentiate serum collected from both groups of women, which was presented 
in PCA and C5.0 decision tree methods. Importantly, calculated values of parameters showed that accuracy, sen-
sitivity and specificity were around 95%. Consequently, the results showed a possibility of using the FT-Raman 
spectroscopy to determine if women were platinum resistant or not. Of course, larger studies with more cases 
from each category have to be required to confirm these results. Moreover, these are the first studies of this type.

Materials and methods
Participants
All the patients who participated in this study signed informed consent. Moreover, the study was approved by 
the Bioethics Committee of the Regional Medical Chamber in Rzeszow–24 November 2016 (Resolution No. 
90/B/2016). Furthermore, all research was performed in accordance with relevant guidelines/regulations, and 
from all participants (patients) the consent was obtained.

The study group of patients consisted of 21 women with histopathological diagnosis of high-grade ovarian 
adenocarcinoma who were treated at the Fryderyk Chopin University Hospital in Rzeszow between 2017 and 
2020. Among them, 12 were platinum-resistant and 9 were platinum-sensitive. All the samples were collected 
during the primary surgery before any adjuvant therapy (i.e. chemotherapy, immunotherapy, hormonal therapy 
and radiotherapy. All of the patients were ranked as stage III according to FIGO (International Federation of 
Gynecology and Obstetrics) classification and the histopathological type was endometrioid Adenocarcinoma. 
None of the patients had any type of malignancy ever diagnosed in medical history. The average age of patients 
was 52,3. In the study group 63% of patients were suffering from arterial hypertension and 27% from obesity. 
As far as genetic studies are concerned, based on next-generation sequencing (NGS) no mutation, neither in 
BRCA1 and BRCA 2 gene, nor homologous recombination deficiency (HRD) were found.

Methods
All obtained blood samples were centrifuged for 15 min at 3000 rpm to obtain pure serum. Next, the serum 
samples were stored at − 80 °C. The samples were dispersed just before taking measurements on the FT-Raman 
spectrometer.

FT‑Raman measurements
FT-Raman spectra were recorded using a Nicolet NXR 9650 FT-Raman spectrometer (Thermo Fisher Scientific, 
USA). In this spectrometer an Nd:YAG laser (1064 nm) and a germanium detector was used. The measurements 
were performed in the range from 150 to 3.700  cm−1 with a laser power of 1 W. Unfocused laser beam was used 
with a diameter of approximately 100 μm and a spectral resolution of 8  cm−1. Raman spectra were processed by 
the Omnic/Thermo Scientific software based on 64 scans. The spectra were normalized using vector normaliza-
tion in OPUS 7.0 software (Bruker Optik GmbH, Ettlingen, Germany). Moreover, each spectrum was smoothed 
using 21 points by Savitzky–Golay algorithm.

Analyses of FT‑Raman spectra
To determine significant differences in the Raman intensity of peaks presented in the FT-Raman spectra of serum 
collected from platinum-resistant and platinum-sensitive women, one-way ANOVA with Tukey’a post hoc test 
was done using Past 4.0. software. Furthermore, to show differences in the ratio between amides and lipids vibra-
tions, respectively, the ratio between Raman intensity of peaks originating from amide III, amide II, amide I, as 
well as C = O and C-H lipids vibrations were used. Finally, to determine global amount of amides (= A) and lipids 
(= L), the sum of the intensities of peaks at 1270  cm−1, 1590  cm−1 and 1660  cm−1 (amides) and the sum of intensi-
ties of peak at 1772  cm−1 and 2940  cm−1 (lipids) was calculated. Furthermore, using results of these sums, the 
ratio between lipids and amides (L/A) was shown. Significance was defined as less than a 0.05 p-value. Moreover, 
to obtain information about differentiation as well as similarity between the samples collected from platinum-
resistant and platinum-sensitive women, the spectroscopic data was analyzed using PCA and HCA with Euclid-
ean distance and paired group (UPGMA) algorithm analyses. For this purpose, two different FT-Raman range 
were analyzed: 800–1800  cm−1, where 260 points was taken and between 2700  cm−1 and 3000  cm−1 (52 points). 
Both analyses were performed using in Past software (developed by Oyvind Hammer). Next, in order to apply 
ML algorithms, the data obtained from FT-Raman spectroscopy experiments were transformed into the form of 
a so-called decision system. Such the system takes the form of a decision table wherethe columns denote features 
describing the object (in this case, Raman shifts), while the rows are specific learning objects (in this case, disease 
cases). The last column in the table is a decision column containing the value of the category class assigned to each 
learning object (in this case, the platinum-sensitive or platinum-resistant class). This form of data was the input 
for the ML algorithms. To sum up, the columns represent the individual: 260 Raman shifts for the 800–1800  cm−1 
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range and 79 Raman shifts for the 2700–3000  cm−1 range. The rows represents the Raman intensity values of these 
Raman shift for specific patients, the last column is the patient category: resistant (positive) and non-resistant 
(negative) to cisplatin. Four ML algorithms were used for the analysis: decision trees C5.0, Random Forest (RF), 
k-Nearest Neighbors (kNN) and Support Vector Machine (SVM). C5.0 is a popular decision tree algorithm for 
data mining and machine learning. It is primarily used for classification tasks, where the goal is to assign a label 
or a category to a set of input features. C5.0 works by creating a decision tree that recursively splits the data into 
subsets based on the most informative attributes, ultimately leading to a classification for each instance. In turn, 
random forest is an ensemble learning algorithm that combines multiple decision trees to create a more robust 
and accurate model. It was introduced as an improvement over individual decision trees, which can suffer from 
overfitting and instability. Multiple decision trees are built independently using the bootstrapped datasets and 
the randomly selected features. Then each tree "votes" for a class, and the class with the most votes becomes the 
predicted class. The primary goal of SVM algorithm is to find a hyperplane that maximizes the margin between 
different classes while minimizing classification errors. The margin is the perpendicular distance between the 
hyperplane and the nearest data point of each class. Support vectors are the data points closest to the hyperplane, 
and they have an influence on the position and orientation of the hyperplane. These support vectors are used to 
calculate the margin and determine the optimal hyperplane. The KNN algorithm makes predictions based on 
the similarity between a query point and its k nearest neighbors in the training dataset. KNN relies on a distance 
metric (e.g., Euclidean distance, Manhattan distance, or others) to measure the similarity between data points. 
For classification tasks, the class labels of the k nearest neighbors are used to predict the class of the query point. 
These models were tested on test cases using a leave-one-out cross validation (LOOCV) approach. Additionally, 
to determine the most significant differences (specific Raman shifts), the process of relevant feature selection will 
be carried out, known in machine learning, For this purpose, an algorithm will be used to assess the relevance of 
features using a random forest. Feature selection using a Random Forest algorithm is a technique that leverages 
the importance scores assigned to features by a Random Forest model to select the most relevant features for a 
given task. Random Forests are well-suited for this purpose because they can assess feature importance based 
on the impact of individual features on the model’s performance. Common measures of feature importance in 
Random Forest include Gini impurity, mean decrease in impurity, or mean decrease in accuracy. The features 
with higher scores are considered more important, while those with lower scores are less important. In addition, 
the Boruta algorithm will be used to distinguish between relevant and irrelevant features. Boruta is based on the 
concept of "shadow features" that are essentially duplicates of original features from dataset. The shadow features 
make it possible to delineate relevant features from irrelevant features in such a way that all original features 
having a significance higher than the shadow features are considered essential features.

Data availability
The data supporting this study’s findings are available from the corresponding author upon reasonable request.
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