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On the inadequacy of nominal 
assortativity for assessing 
homophily in networks
Fariba Karimi 1,2* & Marcos Oliveira 3*

Nominal assortativity (or discrete assortativity) is widely used to characterize group mixing patterns 
and homophily in networks, enabling researchers to analyze how groups interact with one another. 
Here we demonstrate that the measure presents severe shortcomings when applied to networks with 
unequal group sizes and asymmetric mixing. We characterize these shortcomings analytically and 
use synthetic and empirical networks to show that nominal assortativity fails to account for group 
imbalance and asymmetric group interactions, thereby producing an inaccurate characterization 
of mixing patterns. We propose the adjusted nominal assortativity and show that this adjustment 
recovers the expected assortativity in networks with various level of mixing. Furthermore, we 
propose an analytical method to assess asymmetric mixing by estimating the tendency of inter- and 
intra-group connectivities. Finally, we discuss how this approach enables uncovering hidden mixing 
patterns in real-world networks.

Understanding how groups interact in networks is fundamental for uncovering mechanisms underlying diverse 
phenomena, from protein interactions to social  communication1–3. Such group-level interactions often generate 
mixing patterns in networks, commonly assessed with single-valued measures such as nominal  assortativity4,5. 
Though these measures help analyze group mixing concisely, they may be grounded on unrealistic assumptions 
about the network structure, which might produce imprecise estimates of group mixing tendencies, limiting our 
understanding of groups in networks.

Recent advances in relational data collection have enabled studies on mixing patterns to investigate funda-
mental processes that drive such  tendencies6. In particular, much research has characterized homophily—nodes’ 
tendency to connect with alike—in a variety of social settings due to processes such as selective mixing and 
in-group  favoritism2,7. For instance, sexual partnership networks are assortative by race in the United States, 
meaning that individuals form ties with partners of the same race more often than one would expect by  chance4. 
Similarly, college students are more likely to have friendships with peers of the same gender, major, residence, and 
 year8. These homophilic tendencies have been documented in various other social phenomena such as research 
 collaboration9, artist  partnerships10,  lawmaking11, and book  readership12. Beyond social networks, previous 
works have also demonstrated homophily in biological domains such as networks of protein  similarity13 and 
dolphin  companionship14.

Researchers in network science generally use the so-called nominal assortativity to characterize mixing pat-
terns regarding categorical attributes (e.g., race, gender, protein type)4, such as those mentioned above. Nominal 
assortativity or attribute assortativity describes how intra- and inter-group connectivity diverges from what we 
expect solely due to degree connectivity of the nodes and groups. The advantage of this measure compared to 
other existing measures of homophily is that it takes into consideration connectivity patterns of groups to assess 
the statistical significance. Its straightforward definition produces an intuitive quantity that ranges from −1 
(i.e., complete disassortative mixing) to 0 (i.e., neutral) to +1 (i.e., complete assortative mixing), which enables 
researchers to analyze group mixing in networks concisely. Recently, Cinelli and colleagues showed that the 
assortativity coefficient, r, is bounded, analogous to the constraints that exist on Pearson correlation  coefficients15. 
They demonstrated that the assortativity coefficient can range between rmin and rmax , which are dependent on 
the edge counts in the networks. This specifically implies that r = 1 is only achievable when the sum of the inter-
group edge counts is equal to the total number of edges in the network. Conversely, r = −1 is attainable solely 
in cases where this sum is zero. Crucially, this work exposes the influence of certain network attributes such as 
metadata assignment and degree sequence on the bounds of r.
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Here we demonstrate that nominal assortativity presents two fundamental inadequacies. First, it overlooks 
the group-size imbalance, implicitly assuming that groups are relatively equal. This assumption neglects that 
smaller groups have fewer possibilities to connect with themselves, misrepresenting mixing patterns in sce-
narios of group-size imbalance (see Fig. 1a). Second, the measure consists of a uni-dimensional value, only 
characterizing symmetric group mixing (or an average mixing). This restriction ignores potential asymmetries 
in networks, thereby missing relevant mixing patterns (Fig. 1b). Both inadequacies are problematic, particularly 
when analyzing real-world data and in the presence of minorities.

In real-world networks, groups tend to have unequal sizes, and some groups (i.e., minority groups) might be 
much smaller than the largest group. For instance, women are underrepresented in STEM fields, such as Com-
puter Science and Physics, making them a minority group in professional  networks16–18. When analyzing such 
networks and other imbalanced data sets, we must consider group sizes to estimate the likelihood of in-group 
mixing biases. Besides unequal group sizes, networks might display asymmetries in how groups interact. For 
example, in male-dominated scientific fields, established researchers could be primarily men due to historical 
first-mover  advantages18. Thus, senior men have the resources to drive their collaboration network, implying 
that the tendency for male-male collaboration may not be the same as female-female  collaboration19,20. In such 
settings, homophily is asymmetric, having different strengths for the minority and majority groups. These asym-
metries, however, are lost when using a single-valued measure to characterize group mixing, such as nominal 
assortativity.

In this work, we demonstrate how nominal assortativity misses relevant mixing patterns in networks with 
unequal group sizes or asymmetric mixing and show how to tackle these shortcomings. First, we use genera-
tive network models with adjustable mixing parameters to show that nominal assortativity fails to recover the 
expected assortativity in synthetic networks. We characterize this limitation analytically and numerically by 
examining the relationship between assortativity, group size, and asymmetric mixing. Second, we propose the 
adjusted nominal assortativity and show that this adjustment recovers the expected assortativity from synthetic 
networks. Third, we propose to assess asymmetric mixing in networks by estimating group-mixing tendencies 
using our analytical formulations. Finally, we discuss how our approach enables characterizing hidden mixing 
patterns in real-world networks.
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Figure 1.  Nominal assortativity misses relevant mixing patterns in networks. (a) Nominal assortativity 
shows different mixing values for networks that have the same group mixing—a misrepresentation due to 
group-size imbalance. We generate these networks using a model with a group-mixing parameter h that 
corresponds to the probability of same-group nodes being connected; the generated networks are in a 
heterophilic regime with h = 0.2 (left) and a homophilic regime with h = 0.8 (right). These networks have 
a fixed group mixing h but varying minority fraction f0 . In the plots, solid lines represent the analytical 
formulation, whereas dots are values from simulations. (b) Nominal assortativity is a single-valued measure 
and ignores asymmetries in group mixing. In all scenarios, nominal assortativity is zero r = 0 , while there can 
be significant asymmetric mixing patterns between green and blue groups. In the plots, data points represent 
numerical simulation of networks with 300 nodes, repeated over 150 independent runs.
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Results
Nominal assortativity characterizes mixing patterns by assessing the significance of the intra-group. To that end, 
this definition employs the B× B mixing matrix e to account for groups connectivity, where B is the number of 
groups, and each matrix element eij corresponds to the fraction of edges connecting nodes from group i to nodes 
from group j. The nominal assortativity measure is then defined as follows:

where ai and bi are the fraction of edges that, respectively, begin and end at nodes from group i, defined as 
ai =

∑
j eij and bi =

∑
j eji

4. This definition produces an intuitive quantity that equals zero when groups lack 
intra- and inter-group tendencies (i.e., eii = aibi ). The quantity reaches to its maximum r = 1 when intra-group 
ties dominate the network (i.e., 

∑
i eii = 1 ) and becomes negative when inter-group ties are predominant.

Nominal assortativity on networks with groups of unequal sizes
To examine how nominal assortativity represents mixing patterns, we use generative network models in which 
we have a prior knowledge on what to expect from the value of mixing. We aim to evaluate assortativity’s ability 
to recover the expected mixing value. More precisely, we generate random networks using a model with a tunable 
group mixing parameter h that corresponds to the probability of same-group nodes being connected, whereas 
its complement, 1− h , is the probability of inter-group ties (see “Methods”). Here, we focus on the case of two 
groups, B = 2 , in which nodes possess a binary attribute (e.g., red/blue, male/female). The case of beyond two 
groups is discussed in the Supplementary Note 4. We examine networks with a fixed h and varying group sizes, 
finding that nominal assortativity goes to zero as the minority group decreases in size (Fig. 1a). For example, 
when h = 0.8 (i.e., homophily), assortativity can vary from 0.6 to 0, depending on the proportional size of the 
minority group, despite fixed group mixing.

To investigate why nominal assortativity varies with the minority fraction, we turn to the analytical formu-
lation of the assortativity. Let us use a more general notion of group mixing in which hii denotes the intrinsic 
tendency of a node from group i connecting to a node of the same group; its complement hij = 1− hii is the 
tendency of a node in group i to connect to a node in group j. Therefore, in a random network, the probability of 
finding an edge between group i and group j express as pij = fifjhij , where f corresponds to the proportional size 
of groups, implying that each mixing matrix element can be defined as eij = pij/

∑
ij pij , where the denominator 

is a normalizing factor.
Thus, 

∑
i eii and 

∑
i aibi can be expressed as follows:

and

where 0 and 1 are the labels for the minority and majority group, respectively. Finally, inserting Eqs. (2) and  (3) 
into Eq. (1), the nominal assortativity can be written as:

This equation reveals that nominal assortativity is a function of group sizes f0 and f1 . We verify this group-size 
dependency by comparing our analytical formulation with the assortativity measured on synthetic networks, 
finding a perfect agreement between Eq. (4) and simulations (Fig. 2a, b). Our results confirm the group-size 
dependence and reveal that this dependence increases with smaller minority groups (Fig. 2c). In contrast, when 
groups have similar sizes, we observe, as expected, a linear relationship between group mixing h and nominal 
assortativity. More precisely, when groups are equal in size, f0 = f1 = 0.5 , Eq. (4) becomes r = h00 + h11 − 1 . The 
group-size dependency occurs in other types of networks such as scale-free networks. For instance, we simulate 
the Barabási–Albert homophily (BA-Homophily) model, which incorporates group mixing preferences with 
the preferential  attachment21, and demonstrate that nominal assortativity is a function of group sizes on such 
networks and in scenarios involving more than two groups (see Supplementary Notes 2 and 4). Overall, these 
findings imply that nominal assortativity is unadjusted for group sizes and introduces an artifactual bias into 
mixing analyses in imbalanced scenarios.

The adjusted nominal assortativity
Here we propose to adjust the nominal assortativity for group sizes by normalizing the elements of the mixing 
matrix. This approach accurately retrieves the expected assortativity in networks, enabling us to assess mixing 
patterns in imbalanced networks. To that end, we define the adjusted mixing matrix e⋆ , which accounts for the 
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network’s pool of opportunities, namely, the fact that larger groups have more opportunities to connect. We 
define each element of the adjusted mixing matrix e⋆ to be

where fk corresponds to the proportional size of group k. This adjustment ensures that the elements of the mix-
ing matrix only represents the mixing tendencies (h) that are relevant for measuring intrinsic homophily and 
assortativity and not other factors. For instance, in the case of two groups, where original mixing elements are 
e00 ≃ f 20 h00 and e11 ≃ f 21 h11 , the adjusted elements of the matrix are expressed as e⋆00 ≃ h00 and e⋆11 ≃ h11.

Moreover, we define the adjusted nominal assortativity, radj , as follows:

where a⋆i =
∑

j e
⋆
ij and bi =

∑
j e

⋆
ji . This adjustment considers the effects of group-size imbalance on the mixing 

matrix, leading to a consistent assessment of mixing patterns in imbalanced scenarios.
We verify the proposed measure by generating synthetic data with different group-imbalance and mixing 

scenarios. We examine networks generated with a fixed h and varying group sizes, revealing that adjusted nomi-
nal assortativity accurately recovers the expected mixing independent of group sizes (Fig. 2d-e). Thus results 
show that the adjusted nominal assortativity has a linear relationship with group mixing h, regardless of f0 
and f1 as expected (see Fig. 2f). We find similar results for scale-free networks and three-groups scenarios (see 
Supplementary Note 2 and 4). In sum, the adjusted nominal assortativity accounts for group sizes and pool of 
opportunities, enabling us to assess group mixing preferences accurately.

Assessing group mixing in empirical networks
Next, we explore nominal assorativity in different real-world networks with unequal group sizes, showing that 
nominal assortativity underestimates the mixing patterns compared to the adjusted nominal assortativity (see 
Table 1). We analyze social networks of academic collaboration and face-to-face interactions with annotated 
binary gender information (see Supplementary Note 6 for detailed data descriptions)22–24. In most cases, assorta-
tivity r is lower than the adjusted assortativity radj , especially in the cases of small minority groups. For example, 
in the collaborative coding platform GitHub, where women are only 6% of the network, nominal assortativity is 
r = 0.04 , implying the absence of assortative collaboration; in contrast, the adjusted assortativity is radj = 0.16 , 
suggesting a potential gender assortativity. Similarly, nominal assortativity might mislead us to mistake changes 
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Figure 2.  Adjusted assortativity retrieves the expected assortativity in networks with group-size imbalance. 
(a) Nominal assortativity has a group-size dependence that (b) underestimates the strength of group mixing in 
networks. (c) This underestimation is more severe in the presence of smaller minority groups. (d) We propose 
the adjusted assortativity that tackles this misrepresentation by adjusting for group sizes in the network. (e) The 
measure has a linear relationship with group mixing h and (f) is independent of group sizes. In all plots, solid 
lines represent the analytical formulation, whereas dots are values from simulations. The simulations are done 
on networks with 500 nodes and 60 independent runs.
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in group mixing for changes in group sizes. For instance, in the collaboration network among computer scientists 
(DBLP), assortativity r increases from r = 0.04 in 1980 to r = 0.10 in 2010, which could imply a possible change 
in group mixing over time. However, this change might be merely due to the growth of the minority group. The 
minority size almost doubled, from 11% to 21%, and the adjusted assortativity indicates a stable mixing around 
radj = 0.15 . Overall, these findings underscore the importance of accounting for group sizes when analyzing 
mixing patterns and the risks of ignoring group imbalance in networks.

Mixing patterns in networks with asymmetric mixing
A single measure of assortativity reduces information about the B× B mixing matrix into a single value, leading 
to a concise measure but potentially missing relevant asymmetries in mixing. The idea that a single summary 
statistic may not be representative of a dataset is, of course, not new and has been shown in prior  works25. More 
recently, Peel and colleagues showed heterogeneity in local  assortativity5, and Piraveenan et al.26 showed the 
extent to which each node contributes to the measure of assortativity. Here, we pay a special attention to the 
asymmetric nature of group mixing while assuming no heterogeneity at the node level.

To characterize r and radj in asymmetric scenarios, we relax the assumption of h00 = h11 = h and use our 
analytical formulation (Eq. 4) to evaluate the nominal assortativity over the whole parameter space of h00 and 
h11 (see Fig. 3). We find that the adjusted nominal assortativity is consistent and independent of group size in 
asymmetric cases, whereas the unadjusted version is size-dependent. Both measures, however, might characterize 
contrasting mixing patterns with the same value. In particular, these measures might indicate an absence of inter- 
or intra- group mixing tendency despite significant group mixing. For instance, when h00 = 0.8 and h11 = 0.2 , the 
minority group has a strong homophilic tendency, whereas the majority has a strong heterophilic tendency; yet, 
nominal assortativity equals zero, incorrectly suggesting a lack of assortative or disassortative patterns (Fig. 3).

Table 1.  Nominal assortativity and adjusted assortativity in empirical networks.  N denotes number of 
nodes, f0 is the minority fraction, E is the total number of edges, and label 0 refers to the minority group and 
label 1 refers to the majority group.

Network N f0 E E00 E11 E01 r radj

APS (2000) 8285 0.11 9071 126 1539 7406 0.05 0.11

GitHub 311,755 0.06 1,537,570 7432 149,069 1,381,069 0.04 0.15

DBLP (2010) 170,984 0.21 322,052 17,468 91,738 212,846 0.10 0.14

DBLP (2000) 54,966 0.18 72,369 3123 18,101 51,145 0.11 0.16

DBLP (1990) 13,764 0.15 12,178 384 2701 9093 0.09 0.16

DBLP (1980) 2664 0.11 1765 24 274 1467 0.06 0.16

INFORMS (2010) 1426 0.16 1009 34 247 728 0.07 0.12

SocioPatterns 4 180 0.27 2220 182 762 1276 0.09 0.12

SocioPatterns 5 327 0.44 5818 1471 2348 1999 0.19 0.19
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Figure 3.  Unidimensional measures of assortativity overlook asymmetry in networks. (a) The nominal 
assortativity is dependent on group size in asymmetric cases, whereas (b) the adjusted version is size-
independent. Yet both versions of assortativity ignore asymmetric mixing; they reduce a mixing matrix into 
a unidimensional value, producing a concise measure but missing asymmetry in networks. These measures 
might indicate an absence of mixing tendency despite significant asymmetric group mixing. In particular, both 
measures are zero when h00 = 1− h11 (i.e., the dashed lines). In the plots, each heatmap displays the respective 
measures in varying mixing scenarios of minority mixing h00 and majority mixing h11 in the presence of 
minority sizes f0 = 0.05 and f0 = 0.10.
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To better understand the underlying reason for this misrepresentation, note that when r = 0 , the numerator 
in Eq. (4) is zero, leading to the following equation:

Simplifying this equation by using the expression of Eq. (6), we find that h00 = 1− h11 satisfies this condition. 
In other words, in many cases when nominal assortavitiy reports a zero value (i.e., lack of any dis/assortative 
preferences), the group mixing tendencies could be widely different. These findings show that compressing the 
mixing matrix into a single value, such as assortativity, can hide relevant asymmetric mixing patterns that are 
present in networks. It is worth noting that paying attention to asymmetries in mixing patterns between groups 
is important in other applications, such as the emergence of core-periphery  structures27.

Assessing asymmetric mixing patterns in networks
In order to assess asymmetric mixing among groups, we propose to turn to the mixing probabilities in a network 
given an assumption of its generative process. For example, in a random homophilic networks described earlier 
(ER-Homophily), the diagonal of the mixing matrix can be expressed as:

which can be re-written as follows:

where

and E is the total number of edges, and E00 and E11 are the number of intra-group edges of the minority and 
majority groups, and e00 and e11 are fraction of intra-group edges normalized by E. By combining the equations 
above, 

∑
ij pij can be expressed as:

By using Eqs. (5) and  (7), we can retrieve h00 and h11 from data, given we know basic information about the 
network (i.e., E, E00 , E11 , and f0).

We verify this method by generating networks with varying mixing parameters and compare the estimated 
parameters with the ground truth in Supplementary Note 5. Similar methodology can be applied to scale-free 
networks, finding equivalent results (see Supplementary Note 6). Though this approach requires prior knowledge 
about the underlying generative processes in networks, it is plausible to argue that many small-scale and large-
scale social networks often fall into these two categories of topologically random or scale-free  structure28–30. 
Once the plausible topology is identified by examining the degree distribution, the appropriate formulation can 
be used to extract the group mixing asymmetries. In Supplementary Note 3, we discuss the relationship between 
asymmetrical homophily and adjusted nominal assortativity in undirected networks.

Discussion
Despite its popularity and relative accuracy in capturing homophily and assortative mixing in a variety of net-
works, nominal assortativity can produce distorted assessments of mixing patterns in networks with unequal 
groups and asymmetric mixing. In this work, we demonstrated this inadequacy and proposed ways to tackle 
these limitations.  By using generative network models with adjustable mixing, we show that nominal assortativity 
fails to assess homophily accurately in certain scenarios. Our results demonstrate (1) the need for accounting for 
group sizes in such analyses and (2) the inability of single-valued measures to capture asymmetries in networks.

To tackle these limitations, we develop two approaches to assess group mixing in networks. First, we pro-
pose adjusted nominal assortativity to solve the group-size limitation, which accurately recovers the expected 
symmetric assortativity from networks. Our analysis of real-world networks reveals that nominal assortativity 
underestimates the strength of mixing patterns compared to the adjusted assortativity. Second, we propose to 
assess asymmetric mixing in networks by estimating the intra-group mixing probabilities accounting for group 
size differences and other group-level topological features. It is worth mentioning that there are a variety of other 
segregation and assortativity measurements in the social network literature beyond the nominal assortativity. 
Future works should focus on comparing the sensitivity, equivalency, and compatibility of those measurements 
against each other and baseline scenarios similar to this paper and the previous  efforts31.

Accurately measuring biases in group mixing in social networks is crucial because mixing biases affect per-
ception of  minorities32, access to social  capital33, and algorithmic  visibility34, to name a few. Our work lays a 
novel foundation by proposing an accurate measure of assortativity that can be applied to a wide range of social 
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networks. Better assessment of group-level tendencies and asymmetries in networks provides the means to under-
stand how diverse groups interact—a fundamental step for uncovering mechanisms governing our social lives.

Methods
Random networks with group mixing
To analyze assortativity in networks, we develop a simple model that incorporates group mixing and random tie 
formation in networks. In this model, an edge between two nodes depends on their group memberships via a 
stochastic process by tuning the homophily parameter ranging from 0 to 1, h ∈ 0, 1 . That means the probability 
of a node from group i to establish a tie with a node from group j is denoted as hij . The probability of connecting 
with nodes of the same group is thus the complementary function so that hii = 1− hij , likewise hji = 1− hjj . At 
each simulation step, one random node is selected, and it connects to a random target based on this probability. 
Note that this model has equivalencies with a simple version of stochastic block models in cases where group 
memberships are known and are the drivers of block  formations35. Analytical derivations of the mixing prob-
abilities are described in Supplementary Note 1, and the code is available in the GitHub repository.

Data availability
The sources of all empirical data used in our analyses are described in Supplementary Note 6.

Code availability
All relevant code used in this study will be available at https:// github. com/ macoj/ assor tativ ity.
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