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Response of a three‑species 
cyclic ecosystem to a short‑lived 
elevation of death rate
Sourin Chatterjee 1,6, Rina De 2,6, Chittaranjan Hens 3,4, Syamal K. Dana 4,5, 
Tomasz Kapitaniak 4 & Sirshendu Bhattacharyya 2*

A balanced ecosystem with coexisting constituent species is often perturbed by different natural 
events that persist only for a finite duration of time. What becomes important is whether, in the 
aftermath, the ecosystem recovers its balance or not. Here we study the fate of an ecosystem by 
monitoring the dynamics of a particular species that encounters a sudden increase in death rate. 
For exploration of the fate of the species, we use Monte-Carlo simulation on a three-species cyclic 
rock-paper-scissor model. The density of the affected (by perturbation) species is found to drop 
exponentially immediately after the pulse is applied. In spite of showing this exponential decay as a 
short-time behavior, there exists a region in parameter space where this species surprisingly remains 
as a single survivor, wiping out the other two which had not been directly affected by the perturbation. 
Numerical simulations using stochastic differential equations of the species give consistency to our 
results.

Coexistence of diverse biological organisms is essential to maintain a stable ecosystem. An extinction of any 
species can jeopardize biodiversity and hence cause a threat to the survival of other natural inhabitants. Hence, 
understanding various intraspecies and interspecies interactions are the most significant part of studying evo-
lutionary dynamics. It has been the most challenging part of the study because of its diversity and complexity. 
Again the stability thus obtained is not robust at all and may be disrupted at times due to a small change in any 
of the controlling parameters. The study of transients as well as long-time dynamics following such disturbances 
in an ecosystem is itself an important area of study because nature frequently faces numerous perturbations that 
are potential threats to the stability of the ecosystem.

From various reports1,2 it has been assumed that the competitive interactions among various species in a com-
munity are the determining factor for a community structure. However, many ecologists have argued that inter-
specific competition among existing species does not play a major role in ecological diversity, but disturbances 
such as storms, floods, drought, pandemics, etc. are important events that control community diversity3–5. So it 
becomes important to understand the system’s response to disturbances to understand the fate of biodiversity. 
The relationship between the disturbances and their consequence on species diversity has been addressed by 
ecologists empirically6–8 and also from a theoretical point of view9–13 over a long time. According to the inter-
mediate disturbance hypothesis (IDH)14,15 diversity is high for intermediate disturbance and the disturbance-
diversity relationship (DDR) shows a peak response. But related empirical studies7 show positive, negative, and 
U-shaped DDR in nature. Miller et al.16 in their model based on stochastic finite difference equations showed 
that increasing, decreasing, or U-shaped DDR can be recognized, and each of the shapes will depend only on dif-
ferent aspects (such as intensity, duration of disturbance, and timing) of the disturbances being used. Hastings17 
showed for predator-prey systems that the long transient dynamical analysis is more useful for explaining the 
persistence of the system. Several studies18–21 have been done on the response of ecosystems in the presence of 
disturbances by considering the various dimensions of stability of the system. Kondoh10 through his simple model 
explained how the interaction of productivity and disturbances control the diverse pattern of species abundances, 
which was obtained from empirical studies. Characterizing the disturbances as pulse and press Inamine et al.22 
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have analyzed the effect of pulse and press disturbances on asymptotic and transient community dynamics of 
the Lotka-Volterra model for understanding their implications on species coexistence. Holt23 has shown for a 
competitive Lotka-Volterra system in the presence of disturbances, the competition being reduced may lead to 
the extinction of some of the competing species. Although the disturbances are most often viewed as a key fac-
tor for reducing ecological divergence there are reports24 that suggest the coexistence of many similar species 
in the presence of environmental uncertainty. In another report25, authors have shown the effect of intra- and 
interspecies epidemic spreading on species circumstances where species are considered mobile. The results are 
substantiated by theoretical interpretation based on a nonlinear differential equation.

The motivation of our present work is to study the transient and long-time dynamics of a simple three-species 
model ecosystem perturbed by a disturbance. The long-time dynamics (i.e. dynamics at a large time after the 
perturbation is gone) is particularly important because it reflects the fate of the ecosystem: Whether it would 
be able to preserve the coexistence or not. Earlier, the issue of maintaining biodiversity has been addressed 
mathematically by different models based on the game theory and statistical mechanics26–29. Among various 
models, the cyclically interacting rock-paper-scissor (RPS) model has been widely studied30–40 and is found to 
provide more insights on the mechanism of coexistence of species41–44. Various reports have been published on 
this RPS model focusing on spatial pattern formation45–48, the impact of mobility49–55, the effect of mutation56–58 
to check coexistence. Using this RPS model in the May-Leonard formalism we tried to explore the dynamics of 
coexisting species after applying a pulse of increment in death rate on one of the species in the presence of other 
non-variable interactions. The idea behind considering an increase in death rate for a finite period lies in the fact 
that an ecosystem is often affected by catastrophic events like epidemics or any natural disaster that spike up the 
deaths of some selected species. For example, Plague hit the mammals only59, avian influenza affects only birds60, 
and COVID-19 has increased the death rate of humans for a finite amount of time61. The death rates of the cor-
responding species generally come down to normal (lower) values once the effects of the diseases are over. Even 
in the case of environmental impacts, species are seen to be affected selectively sometimes. Lately there have been 
some significant works on mimicking the impact of the environment on the population dynamics62–64. One of 
these works has incorporated the environmental effect by random switching of the reproduction-predation rate 
of a particular species between two values62. Periodic and random switching of another form of environmental 
impact have also been considered63. In our present work, we have considered only one pulse-like change in the 
death rate of one particular species instead of random or periodic switches. Again in the context of real-world 
phenomena, there are reports on some sub-species of the coral reef in the ocean’s ecosystem that are found to be 
selectively vulnerable to the effect of marine heatwaves65,66. These examples indicating that one or a few species 
can face a sudden increase in death rates for a finite time in an ecosystem makes our model relevant, particularly 
in the context of epidemic outbreaks and mortality occurring in endangered species. The theoretical model 
thus could help in understanding and predicting the community outcome such as how much the species itself 
or the entire ecosystem is affected by the disturbance. We have calculated the probability of existence of each 
species under varying conditions (e.g. with varying strength and duration of the pulse or disturbance). Against 
an intuitive guess or expectation that coexistence goes at stake with increasing pulse strength and duration, we 
find a narrow region of the parameters where the particular species vulnerable to the disturbance surprisingly 
survives alone while pushing the other two to extinction. This phenomenon is counter-intuitive to our common 
perception of the response of an ecosystem under a threat. In addition, we find an exponential decay of the popu-
lation density of the endangered species within the persistence period of the disturbing pulse on the death rate.

In Sec. 2 we describe the model, the protocol, and the method of Monte-Carlo simulation executed on the 
system. We present the outcomes and also an analysis of the same through the numerical solution of stochastic 
differential equations in Sec. 3. Finally, conclusive remarks on the results are made with an outlook in Sec. 5.

Model and simulation
The stochastic dynamics of the system are studied primarily by Monte Carlo simulation mapping the entire 
system to a 2-dimensional square lattice with periodic boundary conditions applied. The sites of the square lat-
tice are either occupied by any of the three different species - A, B, C or remain vacant. The constituent species 
have corresponding predation rates, pa, pb, pc operating in a cyclic manner. In addition, the elements of the 
species have reproduction rates, ra, rb, rc , and death rates, da, db, dc . Here the term death may be interpreted 
as natural or accidental death for which no other member of the system is responsible. We adopt the May-
Leonard formulation32 where the total number of individuals is not conserved. Following this formulation we 
have also assumed that, in the process of evolutionary game dynamics, the predation strategy can create a vacant 
site in the adjacent neighbor whereas the reproduction replaces a vacant site with an individual67. Therefore, 
if the normalized species abundance of A, B and C are ρa , ρb and ρc respectively, the conservation rule will be 
ρa + ρb + ρc + ρv = 1 , with ρv being the fraction of vacant site with respect to the total number of sites. In the 
cyclic process, we can write the predation strategy with the following set of interactions

where V denotes a vacant site. Apart from the predation factor, each species may generate its own offspring. The 
reproduction equations may therefore be written as

In addition, our assumption of natural death may be represented by the following equations.

(1){A,B,C} + {B,C,A} −→ {A,B,C} + V with rate p{a,b,c}

(2){A,B,C} + V −→ 2 {A,B,C} with rate r{a,b,c}

(3){A,B,C} −→ V with rate d{a,b,c}
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Now we consider a situation when in a state of coexistence, one species (A) suddenly faces an increase in death 
rate for a finite period of time. It can be written as

The situation may be imagined as the species A encountering a pulse of death rate for a duration of time τ 
(Fig. 1). We perform Monte-Carlo simulation of the system under this protocol. The simulation starts from a 
randomly chosen initial densities of three species ( ρ0

a , ρ0
b , ρ0

c  ) with the constraint ρ0
a + ρ0

b + ρ0
c + ρ0

v = 1 where 
ρ0
v is the initial density of vacant sites. At each Monte-Carlo step, an individual sitting on a site can interact with 

any of the four nearest neighbors in the von Neumann neighborhood. The simulation starts with a random selec-
tion of a non-empty site and one of its four nearest neighbors. The two sites perform predation-prey interaction 
with probability, pa,b,c for a non-empty nearest neighbor. If the nearest neighbor is found to be empty, the fel-
low in the primary site attempts reproduction with probability, ra,b,c . In addition to these two possible actions, 
according to Eq. (3), the individual residing in the primary site may also die with a probability, da,b,c making 
the corresponding site vacant. At each Monte-Carlo step the algorithm checks the probability of death first and 
then, if failed, it moves to predation or reproduction. However the final result would not change if this order 
of actions is altered. The entire process i.e. the Monte-Carlo step is repeated for a large number of times until 
the desired equilibration is reached. The time unit of our calculation is defined by N Monte Carlo steps, where 
N (= L× L) is the total system size. For the entire work, we have assumed pa,b,c = p , ra,b,c = r and da,b,c = d.

Results
As mentioned in the previous section, all the three species are supposed to start their journey from a coexisting 
state and therefore we choose a convenient set of parameters for which the system shows coexistence of all the 
constituent species68,69. Here, for a coexisting state, the densities of all the species oscillate around an average 
value. In our present work, we have taken p = 0.2 , r = 0.4 , d = 0.1 and the resulting densities ( ρa , ρb , ρc ) oscillate 
around 0.21. At the moment a death pulse of strength �d is administered on A. We set t = 0 here. The pulse then 
stays for time τ which is referred sometimes to as the pulse width. The natural death rate of species A returns to 
da (= d) after the death pulse is over (see Fig. 1). Given this situation, we study the long-time dynamics of the 
system to find the effect of the pulse. The system size taken here is N = 200× 200.

The detailed long-time dynamics after the application of the pulse is reflected in Fig. 2. The plots are for three 
different initial configurations (I, II, III). For each configuration, the densities of the three species have been 
investigated with increasing pulse-width, keeping the strength of the pulse fixed at �d = 0.2 . In Fig. 2, Ia and 
Ib show coexistence of the species with small amplitude oscillation in the long run. As the duration of the pulse 
increases, Ic, Id, and Ie show the existence of the single species B only. A different initial configuration gener-
ates coexistence for τ = 15 in plot IIa of Fig. 2. For the same configuration, further increment of τ results in the 
single species existence of A first (IIb and IIc) and then, of B (IId and IIe). Another initial configuration shows 
coexistence for τ = 15, 25 (IIIa and IIIb respectively), the existence of single species A for τ = 35, 45 (IIIc and 
IIId) and that of B for τ = 55 onwards (IIIe). This kind of appearance i.e. coexistence or existence of only A or 
B, has been found over time for different initial configurations as well. Nevertheless as we go on increasing τ in 
different configurations, the final scenario is always the same where the single species B exists. The result also 
remains the same for different sets of {d, r, p} which produce coexistence. We have demonstrated another result 
for a different value of r in Figure S1 of the Supplementary Material.

(4)da(t) =

{

da +�d for 0 ≤ t ≤ τ

da for t > τ

t = τ

da ∆d+

da

∆d

t = 0

τ

Figure 1.   Schematic diagram of the death-pulse applied on species A. The elevated death rate remains active for 
the time duration τ.



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:20740  | https://doi.org/10.1038/s41598-023-48104-6

www.nature.com/scientificreports/

We have explored the effective region on the �d − τ plane to investigate the probabilities of existence of all 
the species as presented in Fig. 3. The figures explain the probability of survival of a species with variations of 
�d and τ . For high �d , the survival of species B is observed to occur at small τ values. Hence it is possible to 
figure out different transition probabilities of any species with τ corresponding to a particular pulse height. The 
dominance of species B is also confirmed by this figure.
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Figure 2.   Real time dynamics of the densities of A (red line), B (blue dashed line), and C (green dot-dashed 
line) for different initial configurations and different τ , all having �d = 0.2 : Three rows (I, II, III) are for three 
different initial configurations, and five columns (a - e) are for five different values of τ : 15, 25, 35, 45, 55.

Figure 3.   Probabilities of occurring (A, 0, 0) or (0, B, 0) or (0, 0, C) as a final state on �d − τ plane. Large value 
of pulse and pulse duration steers the system such a way that only B survives (see red color in middle panel). 
Note that, for all cases, if the pulse or pulse duration is significantly high, the C species can never outperform the 
species A or B (right panel).
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The appearance of the state (A, 0, 0), as observed in Figs. 2 and 3, even after the death pulse is applied to 
the species A is intriguing. This apparently counter-intuitive result occurs as an aftermath of certain values of 
�d and τ , starting from different initial configurations generated randomly. However, the reason behind this 
occurrence is that for those particular combinations of parameters, species C gets abolished very fast, leaving 
behind a very small amount of species A and a considerably large amount of species B. As the death rate of A 
decreases (from d +�d to d) and A also predates B, the density of A grows eventually and that of B diminishes. 
As a result, B is abolished at a point in time and A becomes the lone survivor. In other cases of single-species 
survival where species B only exists, the dynamics after the abolition of A reveal quicker decay of species C than 
that of species B at higher τ values.

Analysis with stochastic differential equation
In addition to the Monte Carlo simulation, we verify our results using stochastic differential equations using 
Euler’s method with the reproduction parameter having an intrinsic noise to add the variability in the system. 
We use Euler’s method because of the action of generating a random number from the distribution at each time 
point, making the function non-differentiable. Hence, we have assumed the discrete-time system, and on each 
step, all the random numbers are drawn independently. The simulation started with initial condition (0.3, 0.3, 0.3) 
and all other identical rates and after some time we applied additional death pulse with a depth �d for a time 
period of τ and after that, we set �d = 0.

In the Monte-Carlo simulation, the time evolution of the system before the commencement of the pulse was 
absent. Instead, the initial densities were taken to be ( ρ0

a , ρ0
b , ρ0

c  ) which were the densities the system would have 
arrived for ra = rb = rc = r , pa = pb = pc = p and da = db = dc = d . The scenario is as if an ecosystem reaches 
a coexistent state ( ρ0

a , ρ0
b , ρ0

c  ) for a particular set of reproduction, predation and death rates, and then species A 
suddenly faces an increase in the death rate for a time duration τ . Thus both schemes present equivalent pictures. 
Following the deterministic equations30–32, the stochastic differential form of the rate equations mimicking this 
perturbation can be written as

with

    Here N(0, 1) denotes normal distribution with mean 0 and standard deviation 1. We do not make a choice 
of very high noise strength because it can make r negative which is physically meaningless. On the other hand, 
the noise should be substantially large enough to give rise to heterogeneity. A different value of noise other than 
0.05 can also be chosen keeping in mind the above points and it will lead to similar results. It is also important 
to note that adding noise to different parameters also leads to similar results but we need to be careful about 
the non-negativity of parameters and as the value of r is greater than p, we apply the noise in the reproduction 
parameter. Also, as the death pulse is given in parameter d, we kept it outside the scope of adding noise here. 
We have found that for multiplicative lognormal noise, the results remain the same. This has been discussed in 
Sec. 4 of the Supplementary Material and shown in Figure S4 therein. The simulation of the system was run 1000 
times with a step size of 0.001. One may note that we have not used the ordinary differential equations (ODE). 
This is because the coexistence cannot be observed in ODE as after long term evolution, it eventually converges 
to an absorbing point33,68,70 (See Sec. 3 in the Supplementary Material).

It is quite intriguing that anytime we apply a death pulse, we always observe one species living for a very long 
time. This has been shown in Supplementary Material Figure S3. In spite of the initial condition remaining the 
same, we start to see various species survive in different runs when we add a modest amount of white noise to 
the reproduction rate. Therefore it shows an apparent disagreement with the results obtained from Monte-Carlo 
simulations. To establish the credibility of this approach, we simulate the system without any death pulse and 
for identical initial conditions and find that for 1000 identical runs, species A survives in 33.1% cases, species 
B in 34.3% cases, and species C in 32.6% cases. This matches with the fact that under equivalent conditions all 
three species have equal survival probability (small deviation is due to randomness). Instead of noise following 
normal distribution, uniform noise with the width 0.2 around reproduction rate has been simulated and found 
that species A survives in 32.7% cases, species B in 34.9% cases, and species C in 32.4% cases signifying that sym-
metrically distributed noise will give rise to similar results. In the case of this stochastic approach, we find that 
results do not depend upon initial conditions. While simulating without any noise from identical parameters 
and identical initial conditions, we find all species’ densities to attain a steady state at the value of 0.22, which is 
the same as Monte Carlo simulations. The results obtained from the two approaches thus happen to be consist-
ent with each other.

Under varying death rates (in species A) and time duration of the pulse, the results are summarized in Fig. 4. 
Here, the survival probability of a species denotes how many times it survives as a single species out of all the 
runs conducted. This result is in line with the result obtained through Monte Carlo simulation (Fig. 3) except 
for a scaling factor of 10 in the death pulse, �d . Here, we have used a 10-times lower death rate than that of the 

(5)

dρa

dt
=ρa(t)

[

(r + 0.05N(0, 1))ρv(t)− pρc(t)− (d + d′)
]

dρb

dt
=ρb(t)

[

(r + 0.05N(0, 1))ρv(t)− pρa(t)− d
]

dρc

dt
=ρc(t)

[

(r + 0.05N(0, 1))ρv(t)− pρb(t)− d
]

d
′(t) =

{

�d for 0 ≤ t ≤ τ

0 otherwise
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Monte-Carlo simulation. Similar to Fig. 3, we have seen in Fig. 4 that species B is completely dominant for higher 
values of �d and τ . Species A have greater survival probability at a small patch in the �d − τ plane. For very 
small values of �d and τ , we observe species C to be dominant, whereas, in the case of Monte-Carlo simulation, 
this region shows coexistence. Though we can not get coexistence from this method, still we see that in this 
region all the species have comparable probabilities of survival. This indicates the coexistence in an indirect way.

Effectively, the Monte-Carlo simulation that has been run for this system gives us a result that is averaged 
over a large equilibration time and over different initial configurations as well. Thus the results produced from 
the simulation may be thought of as an ensemble average. On the other hand differential equations only give 
us one realization of the ensemble. That is why we need to simulate the differential equations multiple times to 
obtain the ensemble average. This way the comparison of the results obtained from the two methods appears 
legitimate and consistent as well.

If we compare the results of probabilities of survival obtained from Monte-Carlo (MC) simulation in Fig. 4 
and stochastic differential equations (SDE) in Fig. 5, we observe a difference of scaling of factor 10 in the values of 
�d . In particular, the �d ’s in the case of SDE is 1/10th of that in the case of the Monte-Carlo simulation required 
for producing the same probabilities at the same τ . To the best of our knowledge, we can affirm that this differ-
ence does not counter the consistency of the two results. It may originate due to the difference in the concept 
of time units in two completely different schemes. We have checked the results for many different parameters 
and observed that the difference of scaling always remains the same (see Figure S5 of Supplementary Material 
for more results).

Deterministic decay of species A within pulse
Now let us focus on the dynamics of A within the pulse duration. Fig. 5 shows the variation of ln ρa against time 
for different pulse durations and heights of the death-pulse ( �d ). The vertical lines in all three figures mark the 
three pulse durations, τ = 15, 25, 35 on the time axis. The density of A shows an exponential decay for a small 
time after the commencement of the pulse. This can be understood analytically following the deterministic part 
of the Eq. 5 (i.e., excluding the random noise in the reproduction rate) for t < τ . In this region, the dynamics of 
ρa is mainly governed (at least initially) by �d because the boundary conditions

i.e., the coexistent fixed-points make the term (rρv(t)− pρc(t)− d) = 0 (see Ref.68 for details). Therefore, for a 
small time, say �t after the commencement of the pulse, the dynamics of ρa is described by the equation

ρa(0) = ρ0
a , ρb(0) = ρ0

b , ρc(0) = ρ0
c

Figure 4.   Probabilities of occurring (A, 0, 0) or (0, B, 0) or (0, 0, C) as a final state on �d − τ plane obtained 
through numerical solution of stochastic differential equations. The results are almost consistent with the 
Monte-Carlo simulation (Fig. 3).

0 10 20 30 40 50
t

0.001

0.01

0.1

1

ρ

τ = 15
τ = 25
τ = 35
0.21*exp(-0.1*t)

a

0 10 20 30 40 50
t

1e-05

0.0001

0.001

0.01

0.1

1

ρ

τ = 15
τ = 25
τ = 35
0.21*exp(-0.2*t)

a

0 10 20 30 40 50
t

1e-05

0.0001

0.001

0.01

0.1

1

ρ

τ = 15
τ = 25
τ = 35
0.21*exp(-0.3*t)

a
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which brings about the decay of ρa in an exponential Malthusian manner27 of the form

In the three cases of Fig. 5 we have plotted Eq. (7) alongside the numerical data with respective values of �d . It 
is however to be noted that after a short time, the other species’ densities come into play and the numerical plots 
begin to deviate from the Malthusian manner.

Conclusions
Our aim was to study the transient as well as the long-time behavior of a species as a part of cyclic interaction 
within an ecosystem when it was exposed to a sudden increase in the death rate and to check the possibility of 
survival with coexistence of the species. Our principal interest was to investigate the fate of a species and the 
entire ecosystem it belongs to if suddenly attacked by some disease or a natural calamity that might threaten its 
existence. By applying a pulse of death rate for a finite duration time to one of the species in a three-species rock-
paper-scissor model we investigated the dynamics by Monte-Carlo simulation and later by numerical solution 
of stochastic differential equations. One of our main observations is an exponential decay of the affected species 
during the short duration of the pulse that could be determined analytically. Another important observation is 
in the long-time behavior when the affected species remains in the system as a lone survivor for certain strengths 
and durations of the death pulse.

While the exponential decay and its deviation shortly after the withdrawal of the pulse can be understood 
analytically from the differential equation, the atypicality lies in the long-time time dynamics when it upholds 
species A as the only survivor. This is attributed to the abolition of species C before the other two. We see that 
for a range of the values of τ and �d , coexistence remains intact in the long time limit. This means that the dis-
turbance in these cases are not strong enough and the parameters d, r and p are able to recover the coexistence. 
However, if τ (or �d ) is slightly increased, both A and C become susceptible to the abolition: The decay of A is 
ascribed to the increase of its death rate, whereas the decay of C is due to the growth of predation of B (because 
B gets privilege as A dies out). In this situation, there is a probability that C is abolished prior to A. When it 
happens, A having no predator, diminishes B and becomes the only survivor in the long run. This probability 
decreases with increasing τ (or �d ) and for large τ and �d , species A always dies out first keeping B and C. Then 
B survives eventually wiping out C.

Question may arise on the role of the parameters d, r, and p. These parameters are significant in bringing 
about as well as maintaining coexistence. We have to start with a set of {d, r, p} for which the coexistence can 
be achieved. Otherwise, the system would go to a single-species state and the application of death-pulse would 
have no meaning then. Even after the pulse is over, these parameters try to bring back coexistence within the 
system. Therefore the effects of the pulse parameters ( τ and �d ) actually counter the effects of {d, r, p} and try 
to jeopardize coexistence. For any set of {d, r, p} that results in coexistence, the effect of the pulse is the same.

This simple model may be useful in studying the aftermath of an ecosystem facing a disease spread, natural 
calamities, or any other catastrophe that usually persists for a finite duration of time. An estimate of the strength 
and the duration of the perturbation may be obtained upto which the ecosystem can revive its biodiversity. In 
this connection, this model may help study and innovate revival strategies for an ecosystem under such exem-
plary situations.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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