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Comparative analysis identifies 
genetic and molecular factors 
associated with prognostic clusters 
of PANoptosis in glioma, kidney 
and melanoma cancer
Raghvendra Mall 1,2 & Thirumala‑Devi Kanneganti 1*

The importance of inflammatory cell death, PANoptosis, in cancer is increasingly being recognized. 
PANoptosis can promote or inhibit tumorigenesis in context‑dependent manners, and a 
computational approach leveraging transcriptomic profiling of genes involved in PANoptosis has 
shown that patients can be stratified into PANoptosis High and PANoptosis Low clusters that have 
significant differences in overall survival for low grade glioma (LGG), kidney renal cell carcinoma 
(KIRC) and skin cutaneous melanoma (SKCM). However, the molecular mechanisms that contribute 
to differential prognosis between PANoptosis clusters require further elucidation. Therefore, 
we performed a comprehensive comparison of genetic, genomic, tumor microenvironment, and 
pathway characteristics between the PANoptosis High and PANoptosis Low clusters to determine 
the relevance of each component in driving the differential associations with prognosis for LGG, KIRC 
and SKCM. Across these cancer types, we found that activation of the proliferation pathway was 
significantly different between PANoptosis High and Low clusters. In LGG and SKCM, we also found 
that aneuploidy and immune cell densities and activations contributed to differences in PANoptosis 
clusters. In individual cancers, we identified important roles for barrier gene pathway activation (in 
SKCM) and the somatic mutation profiles of driver oncogenes as well as hedgehog signaling pathway 
activation (in LGG). By identifying these genetic and molecular factors, we can possibly improve the 
prognosis for at risk‑stratified patient populations based on the PANoptosis phenotype in LGG, KIRC 
and SKCM. This not only advances our mechanistic understanding of cancer but will allow for the 
selection of optimal treatment strategies.

One of the founding hallmarks of cancer is the ability to resist cell  death1,2. Several regulated cell death (RCD) 
pathways have been  identified3, with the three most well characterized RCD pathways being apoptosis, pyrop-
tosis and necroptosis. Though these have generally been thought of as segregated pathways, extensive context-
dependent crosstalk among RCD molecular components  exists4–8, thereby creating a knowledge gap in our 
mechanistic understanding of RCD. Studies to address this gap led to the identification of  PANoptosis4–7,9–17, a 
unique innate immune inflammatory RCD pathway that is driven by caspases and RIPKs and regulated by PANo-
ptosome complexes. PANoptosis plays a key role in cancer and cancer therapies. For example, IRF1-dependent 
PANoptosis inhibits the development of colorectal cancer in murine  models18, and cotreatment of TNF-α and 
IFN-γ induces PANoptotic cell death in human cancer  cells5. Recently, a comprehensive transcriptomic analy-
sis using publicly available data from The Cancer Genome Atlas (TCGA) enabled a better understanding of 
the prognostic implications of PANoptosis on overall survival (OS) and identified a PANoptosis gene set with 
therapeutically relevant  markers19.

The PANoptosis gene set is defined as 27 genes including cytosolic sensors and adaptors (e.g., NLRs), effectors 
(e.g., caspases) and upstream  regulators19, and tumor samples cluster into PANoptosis High and PANoptosis 
Low groups. Tumors in the PANoptosis High cluster highly express most of the 27 PANoptosis genes, which may 
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indicate these tumors experience enhanced cell death; in contrast, tumors in the PANoptosis Low cluster have 
low average expression of PANoptosis genes. The PANoptosis phenotype is significantly associated with OS for 
low grade gliomas (LGG), kidney renal cell carcinoma (KIRC) and skin cutaneous melanoma (SKCM). Specifi-
cally, the PANoptosis High cluster is associated with significantly reduced OS in LGG and KIRC (highest hazards 
ratio and P-value << 0.001) and significantly improved OS in SKCM (lowest hazards ratio and P-value << 0.001)19. 
While transcriptomic profiling was used to differentiate the PANoptosis  clusters19, the role of genetic, genomic, 
tumor microenvironment and molecular pathway functional characteristics in differentiating the PANoptosis 
clusters for these cancers (LGG, KIRC and SKCM), where PANoptosis phenotype was prognostically the most 
relevant, has not yet been elucidated.

To address this gap, we performed comparative analysis of distinct genetic and molecular factors between 
PANoptosis High and Low clusters for each of these cancers. Our goal was to elucidate the biological traits that 
drive the difference between the PANoptosis clusters in LGG, KIRC and SKCM cancers. Analyses included 
comparing somatic mutations in driver  oncogenes20, assessing non-silent mutation rate and neoantigen  load21, 
analyzing aneuploidy and microsatellite instability  scores22 and performing deconvolution of bulk RNA-Seq data 
to identify different cell type compositions. We also contrasted the activation profiles of oncogenic  pathways23 
between the PANoptosis clusters. The PANoptosis scores were then correlated with pathway activations across 
cancer cell  lines24 and in different cell types in a single cell transcriptomics dataset for a melanoma case  study25. 
We observed that aneuploidy, differences in immune cell densities and activations as well as activation of onco-
genic pathways were associated with the differences between PANoptosis clusters for LGG, KIRC and SKCM. 
Together, these results identify distinct biological characteristics which differentiate the PANoptosis clusters in 
LGG, KIRC and SKCM and advance our understanding of cancer disease mechanisms. Targeting or manipulating 
these genetic and molecular components may improve survival for patients with LGG and KIRC belonging to the 
PANoptosis High cluster, patients with SKCM belonging to the PANoptosis Low cluster, and could potentially 
help additional patient populations.

Methods
Data acquisition, filtering and normalization
RNA-Seq data from TCGA 26 were downloaded and processed using TCGA biolinks (v2.22.3). The RNA-Seq 
data for low grade gliomas (LGG) and kidney renal cell carcinoma (KIRC) consisted of 516 and 533 solid pri-
mary tumor (TP) samples, respectively. Due to the lack of TP samples in skin cutaneous melanoma (SKCM), 
metastatic samples (TM) were included in the SKCM dataset allowing for a total of 469 tumor samples. Gene 
symbols were converted to the official HGNC gene symbols, and genes without gene symbols or gene informa-
tion were excluded. This resulted in p = 18,268 genes for each cancer type. The samples were quantile normalized 
using preprocessCore (v1.56.0) and  log2 transformed for further analysis. The processed and quality controlled 
RNAseq datasets for LGG, KIRC and SKCM were obtained from  Mendeley27.

Cancer cell lines
A total of 1,377 cancer cell lines along with their expression profiles were downloaded from DepMap portal 
(DepMap Public 21Q3). These cell lines belong to the Cancer Cell Line  Encyclopedia24. The cell lines were fil-
tered to include only those cell lines for which the primary disease associated was low grade glioma, renal cell 
carcinoma or melanoma, resulting in 35, 16 and 34 cancer cell lines, respectively. These cancer cell lines had 
inherent diversity in terms of the age, gender, cancer type (primary or metastasis) of the patients as well as their 
sample collection site.

Single cell transcriptomics
Single cell transcriptomics datasets for the SKCM cancer type (SKCM scRNA-Seq) were downloaded from the 
GEO Accession viewer under accession ID  GSE7205625. The SKCM scRNA-Seq consisted of single cells derived 
from six patients each with at least 50 malignant cells as well as their corresponding non-malignant (immune and 
endothelial) cells. The dataset consisted of a total of 3,700 cells. The Seurat (v4.1.1) package in  R28 with default 
normalization steps was used to process the dataset. These steps include normalizing using the ‘LogNormalize’ 
method with a scale factor of 10,000 followed by selection of the top 3,000 genes with maximum variance using 
the ‘vst’ method and scaling the dataset. Principal Component Analysis (PCA)29 was then performed, with the 
number of principal components set to the default setting of 30. Then, the Unified Manifold Approximation 
and Projection (UMAP)30 method was run, resulting in the 2D coordinates for the single cells and allowing 
visualization of the SKCM dataset. The metadata for the cluster labels of the single cells were available and used 
for annotating the single cell clusters.

PANoptosis clusters
An unsupervised consensus clustering based on a gene set of 27 PANoptosis  genes19 was separately performed 
for each cancer type using the ConsensusClusterPlus (v.1.58.0) R package. This methodology has previously 
been shown to be successful in identifying optimal prognostic clusters for pancancer immunologic constant of 
 rejection23,31–34, pancancer  PANoptosis19 and gastric cancer pyroptosis-related  signatures35. With the intent to 
compare cancer samples with a highly active PANoptosis phenotype against those having a relatively inactive 
PANoptosis phenotype, the cluster with the highest average expression of PANoptosis genes was designated 
as PANoptosis High, while the cluster with the lowest average expression of PANoptosis genes was designated 
PANoptosis Low; the remaining tumor samples were classified as PANoptosis Medium.
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For LGG, the dataset consisted of 100 PANoptosis High and 145 PANoptosis Low tumor samples from TCGA. 
Similarly, for KIRC and SKCM cancers, the dataset comprised 270 and 146 PANoptosis High and 198 and 48 
PANoptosis Low samples, respectively.

PANoptosis score
Tumor samples (bulk RNA-Seq from TCGA and cancer cell lines from CCLE) were annotated with a PANoptosis 
score, defined as the single sample gene set enrichment score (ssGSEA) obtained from the GSVA (v1.42.0) R 
 package36 using the ‘gsva’ function with the kernel density parameter set as ‘Gaussian’. To estimate the PANoptosis 
score for each cell in the single cell transcriptomics dataset, the ‘enrichIt’ function from escape (v1.6.0) package 
in  R37 was used. The ‘enrichIt’ function implements ssGSEA specific to single cell transcriptomic data.

Somatic mutation analysis
The somatic mutation analysis  data38 were downloaded along with variant annotations from the Genomic Data 
Commons (GDC)39 portal. A list of 291 high-confidence driver genes was  obtained20 which were frequently 
mutated in pancancer. The maftools (v2.12.0) R  package40 was used, in particular the ‘subsetMaf ’, ‘getGene-
Summary’, ‘oncoplot’ and ‘plotmafSummary’ functions, to obtain and plot summary information comparing 
different types of somatic mutations in the driver oncogenes between the PANoptosis High and Low clusters for 
each cancer type. The aggregate somatic mutations in the driver oncogenes (top 20 most mutated genes) were 
compared between PANoptosis High and Low clusters using the Chi-square  test41 to determine if the mutation 
profiles were independent in PANoptosis High and Low clusters for each of LGG, KIRC and SKCM cancers.

Moreover, mutation (non-silent mutation) rates and predicted neoantigen counts for TCGA patient samples 
were collected from a recent immunogenic  analysis21. Mutation rate and single nucleotide variant (SNV) neoanti-
gen counts were  log10-transformed and their distribution across PANoptosis clusters was plotted using the ggplot2 
(v3.3.6) R package using the ‘geom_boxplot’ function. Differences between the PANoptosis High and Low clus-
ters were calculated using the non-parametric Wilcoxon rank-sum  test42 with multiple-testing correction using 
Bonferroni  method43. We used the Bonferroni correctedP-value < 0.05 to determine statistically significance.

Aneuploidy and microsatellite instability
Aneuploidy scores for each of the three cancer types were calculated as previously  described22. Briefly, each 
tumor was scored for the presence of aneuploid chromosome arms after accounting for tumor ploidy, where 
aneuploidy is a surrogate measure for genomic  instability31. The precomputed aneuploidy scores for each can-
cer type were then compared with the PANoptosis scores via a linear model. PANoptosis and aneuploidy score 
associations were evaluated by a linear model in R using the ‘lm’ function independently for each cancer type. 
The significance of association as determined by the linear model, independent of the direction of association, 
was also calculated for each cancer.

For analysis of microsatellite instability (MSI), the MSIsensor model along with the scores for all TCGA 
 samples44 were used. The differences between the PANoptosis High and Low clusters were calculated using the 
non-parametric Wilcoxon rank-sum test with Bonferroni corrected i.e. multiple testing adjusted P-value < 0.05 
to determine statistically significance.

Tumor microenvironment deconvolution
To deconvolve the tumor samples belonging to PANoptosis High and Low clusters obtained from TCGA bulk 
RNA-Seq samples, the immunedeconv (v2.1.0) R  package45 was implemented using the ‘deconvolute’ function 
with the method set as ‘quantiseq’ and parameter ‘arrays’ set to FALSE, suggesting that it does not perform quan-
tile normalization. Quantile-normalized non-log2 transformed TPM gene expression was provided as input to 
obtain the different cell type fractions for each tumor  sample46.

ESTIMATE analysis
ESTIMATE47 is tool for predicting tumor purity and the presence of infiltrating stroma and immune cells in 
tumor samples using gene expression data. The ESTIMATE algorithm also uses ssGSEA to generate three scores 
including stroma score (presence of stroma in tumor sample), immune score (infiltration of immune cells in 
tumor sample) and estimate score (tumor purity). Scores were downloaded from TCGA tumor  samples48, and a 
Wilcoxon rank-sum test was performed to compare the distribution of each of these scores between the PANo-
ptosis High and Low clusters for the cancers of interest. The data were plotted as a boxplot using ‘geom_boxplot’ 
function from ggplot2 package in R.

Gene set enrichment analysis
To determine the enrichment of specific gene sets, either reflecting the immune cell types or specific oncogenic 
pathways, a single sample gene set enrichment analysis (ssGSEA) was performed using the ‘gsva’ method with 
kernel density function parameter set to Gaussian kernel. To estimate the PANoptosis pathway and other onco-
genic pathway activity for each cell in the single cell transcriptomics dataset, the ‘enrichIt’ function from escape 
(v1.6.0) package in  R37 was used.

Immune cell-specific signatures were used as gene  sets49 using ssGSEA to estimate and compare immune 
cell activations between PANoptosis High and Low clusters for each of the three cancers of interest. Gene sets 
used to determine activation of specific tumor-related pathways were obtained from multiple sources. Initially 
24 hallmark  pathways50 were selected, as they were regularly dysfunctional (positively or negatively activated) 
in cancer. Subsequently, non-redundant pathways from Ingenuity Pathway Analysis (IPA) platform were added 



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:20962  | https://doi.org/10.1038/s41598-023-48098-1

www.nature.com/scientificreports/

to this  collection31, resulting in the inclusion of 21 IPA pathways. Finally, several pathways were included that 
have previously been hypothesized to associate with cancer immune phenotypes, including Hypoxia/Adenosine 
immune cell suppression, immunogenic cell death, NOS1 signature, PI3Kgamma signature and SHC1/pSTAT3 
 signatures51, barrier  genes52, the proliferation gene  signature53 and genes upregulated in MAPK-mutated breast 
 cancer54, resulting in a total of 54 oncogenic pathways. Here, the term ‘activity’ is analogous to ‘enrichment’. 
The functional differences in terms of pathway activities between the PANoptosis High and Low clusters were 
compared for LGG, KIRC and SKCM cancers using Wilcoxon rank-sum test with Bonferroni corrected P-values 
highlighted as asterisks.

Pathway activity and correlation matrix
The average and difference in activity across immune cell types and oncogenic pathways between PANoptosis 
High and Low clusters for LGG, KIRC and SKCM cancers were plotted using the ComplexHeatmap (v2.10.0) 
R  package55. The correlation between the activity of oncogenic pathways and PANoptosis scores for the bulk 
RNA-Seq from TCGA, the cell lines from CCLE and single cell transcriptomics was calculated using the Pearson 
correlation and plotted using ComplexHeatmap. The significance of correlations was estimated using the ‘cor.
test’ function with the method parameter set as Pearson correlation. The significance of difference in activity 
between PANoptosis High and Low clusters was estimated using Wilcoxon rank-sum test (‘wilcox.test’ function) 
and adjusted for multiple testing using the Bonferroni correction method.

Flowchart and study reproducibility
A flow chart highlighting the study design including comparative analysis of distinct genetic, genomic, tumor 
microenvironment and pathway characteristics between the PANoptosis High versus Low clusters for each 
cancer is illustrated at Supp. Fig. 1.

All the scripts and data required to reproduce the analysis findings are available at: https:// data. mende ley. 
com/ datas ets/ 7x237 xf2m3/1 along with a README.txt file to replicate the results.

Results
Comparison of somatic mutations in genes between PANoptosis high and low clusters
High and low expression of PANoptosis genes are associated with significant differences in OS for patients with 
LGG, KIRC and SKCM, but the molecular mechanisms driving these differences remain unclear. To determine 
whether somatic mutations in driver oncogenes contributed to the difference between the PANoptosis High and 
Low clusters for LGG, KIRC and SKCM cancers, we performed a comprehensive somatic mutation analysis. 
We first compared the total somatic mutations of high-confidence driver oncogenes, a set of 291 frequently 
mutated genes in  cancer20, using a Chi-square test of independence between the PANoptosis High and Low 
clusters for LGG (Fig. 1A), KIRC (Fig. 1B) and SKCM (Fig. 1C). The null hypothesis for the Chi-square test 
was that there should be no difference in the distribution of somatic mutation profiles between PANoptosis 
High and Low clusters. We observed that LGG was the only cancer type where the null hypothesis was rejected 
(P-value = 5.11 ×  10–32); the total somatic mutations in the driver oncogenes between PANoptosis High and 
Low clusters were significantly different in LGG (Fig. 1A). For both KIRC (P-value = 0.481, Fig. 1B) and SKCM 
(P-value = 0.334, Fig. 1C), the differences in somatic mutations in PANoptosis High and Low clusters were not 
significant. We also compared the somatic mutations in PANoptosis genes between the PANoptosis High and 
Low clusters for LGG (Supp. Fig. 2A), KIRC (Supp. Fig. 2B) and SKCM (Supp. Fig. 2C) cancers, but owing to 
small numbers of mutations in these genes, we could not perform the Chi-square test. These results suggested 
that mutations in PANoptosis genes could not significantly drive the differences between PANoptosis High and 
Low clusters.

Among the high-confidence driver oncogenes, the difference between the PANoptosis High and Low clusters 
for LGG was driven by CIC, NOTCH1, EGFR, NF1, IDH2 and PTEN oncogenes (Fig. 1A and Supp. Table 1). 
CIC, NOTCH1 and IDH2 genes were frequently mutated in the PANoptosis Low cluster with a high number of 
frame shift deletions, missense and in-frame deletion variants (Supp. Table 1). EGFR and NF1 genes were more 
frequently mutated in the PANoptosis High cluster, with a high number of missense mutations, frame shift dele-
tions and nonsense mutations (Supp. Table 1). Moreover, the median number of nonsense mutations per tumor 
sample (as well as the total number) in the driver oncogenes was higher in the PANoptosis High cluster, where 
there was worse survival, versus the PANoptosis Low cluster for LGG; all other variants had similar frequency 
(Supp. Fig. 3).

For KIRC, we observed several missense mutations, frame shift deletions and nonsense mutations in both 
PANoptosis High and Low tumor samples (Supp. Fig. 4 and Supp. Table 2). The oncogenes VHL, PBRM1, 
SETD2, BAP1 and MTOR were among the most frequently mutated oncogenes for both PANoptosis High and 
Low clusters (Supp. Fig. 4 and Supp. Table 2), thereby suggesting limited contribution of somatic mutations in 
driving the differences between PANoptosis High and PANoptosis Low clusters for KIRC.

Similarly, for the SKCM cancer type, we observed large numbers of missense, nonsense and splice site somatic 
mutations (Supp. Fig. 5 and Supp. Table 3). Additionally, oncogenes such as BRAF, SYNE1, NEB, AHNAK2, NRAS 
and FBN2 were frequently mutated for both the PANoptosis High and PANoptosis Low clusters (Supp. Fig. 5 and 
Supp. Table 3), resulting in a P-value = 0.334 for the Chi-square test of independence (Fig. 1C). In comparison to 
LGG and KIRC cancers, a myriad of oncogenes was frequently mutated in SKCM (Supp. Table 3).

Taken together, these results highlight that somatic mutation profiles of driver oncogenes were significantly 
different and could contribute to the differences in PANoptosis High versus PANoptosis Low clusters for LGG, 
but not for KIRC or SKCM.

https://data.mendeley.com/datasets/7x237xf2m3/1
https://data.mendeley.com/datasets/7x237xf2m3/1
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Comparison of genomic alterations between PANoptosis high and low clusters
We next investigated the role of genomic alterations such as neoantigen count, aneuploidy and MSI in PANoptosis 
High and PANoptosis Low clusters. It has previously been shown that the mean neoantigen count, also referred 
to as the tumor mutation burden (TMB), for each cancer type strongly correlates with the mean mutation rate in 
TCGA 23,31. While the mean non-silent mutation (NSM) rate was significantly higher in PANoptosis High tumors 
for LGG (∆μ(NSM) = 0.20), KIRC (∆μ(NSM) = 0.12) and SKCM (∆μ(NSM) = 1.98) cancers, the absolute differ-
ence in mutation rate was much smaller for LGG and KIRC in comparison to SKCM (Fig. 2A). Similarly, the TMB 
was significantly higher in PANoptosis High tumors for LGG (∆μ(TMB) = 0.11) and SKCM (∆μ(TMB) = 0.46) 
cancer types, where the absolute difference in TMB was much smaller for LGG compared to SKCM (Fig. 2B). 
However, these differences failed to explain the divergent association of PANoptosis with survival (PANoptosis 
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Figure 1.  Comparison of somatic mutations in driver genes between PANoptosis High and PANoptosis Low 
clusters. (A–C) Total somatic mutations in the top 20 most mutated driver oncogenes compared using Chi-
square test for LGG (A), KIRC (B) and SKCM (C) cancers. The class of somatic variants including Missense, 
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Figure 2.  Comparison of genomic stability measures between PANoptosis High and PANoptosis Low clusters 
for LGG, KIRC and SKCM. (A) Boxplot of log transformed non-silent mutation rate per PANoptosis cluster 
for each cancer type of interest. The non-silent mutation rate for each tumor sample was highlighted along with 
the boxplot as jitters. (B) Boxplot of log transformed single nucleotide variation (SNV) neoantigen counts per 
PANoptosis cluster. The SNV neoantigen counts for each tumor sample were highlighted along with the boxplot 
as jitters. (C) Pearson correlation between aneuploidy score and PANoptosis score for each of the three cancer 
types. (D) Boxplot of MSIsensor score per PANoptosis cluster. The MSIsensor scores for each tumor sample 
were highlighted along with boxplot as jitters. For (A,B,D), the statistical significance reported was based on 
Bonferroni-corrected significance of difference estimated via a non-parametric Wilcoxon rank-sum test with 
*P-value ∈ (1e−2, 0.5*1e−2]; ***P-value < 1e−3; ns, not significant.
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High beneficial for SKCM and detrimental for LGG and KIRC), as the mutation rate and SNV neoantigen counts 
were consistently higher in PANoptosis High clusters for LGG, KIRC and SKCM cancer types.

Additionally, we analyzed the association between genomic instabilities, including aneuploidy and micros-
atellite instability (MSI), with respect to the PANoptosis groups. We compared the individual tumor aneuploidy 
score and the PANoptosis score across cancer samples for each cancer type. Aneuploidy  scores22 had a significant 
positive association with the PANoptosis scores for LGG (R = 0.23, P-value = 0.00022) and KIRC (R = 0.022, 
P-value = 0.65) and a negative association for SKCM (R =  − 0.13, P-value = 0.04) (Fig. 2C). This suggests that 
there are more chromosomal instabilities in PANoptosis High tumor samples for LGG, and more chromosomal 
instabilities in PANoptosis Low tumor samples for SKCM. This aligned well with the divergent prognostic asso-
ciation of PANoptosis phenotype for LGG in comparison to SKCM.

We further analyzed MSI, a pattern of hypermutation that occurs at the genomic microsatellites or towards 
the end of chromosomes and is caused by defects in the mismatch repair system. Mismatch repair deficiency 
leads to high MSI, and has been shown to be beneficial for  immunotherapy56. We compared the MSIsensor scores 
obtained from  MSIsensor44 between the PANoptosis clusters for LGG, KIRC and SKCM cancers (Fig. 2D). We 
observed no significant difference in the MSIsensor scores between the PANoptosis High and Low groups for 
all three cancers.

Taken together, these results indicate that non-silent mutation rate and SNV neoantigen count may play a 
role in driving the difference between the PANoptosis clusters for SKCM, while aneuploidy could possibly play 
a role in the divergent association of PANoptosis with OS in LGG and SKCM cancers.

Comparison of tumor microenvironment composition and activation between PANoptosis 
clusters
To further analyze the biological factors contributing to the differences between the PANoptosis High and Low 
groups in LGG, KIRC and SKCM, we compared the fraction of different cell type populations between the 
PANoptosis clusters through the quanTIseq  method57. The tumor samples belonging to PANoptosis High and 
Low clusters obtained from TCGA were bulk RNA-Seq samples that require deconvolution to attain a better 
picture of the tumor microenvironment and its potential contribution to the differences between the PANoptosis 
High and Low clusters. While many deconvolution techniques  exist58–60, quanTIseq was used here because it is 
specifically designed for RNA-Seq data, has high agreement with the cell fractions computed with flow cytometry 
for both immune and uncharacterized cells and allows for a comparison of immune cell type fractions across 
samples, thereby overcoming limitations encountered by other  methods45.

Gene expression profiles and the signature matrix specific to 11 cell  types45 were used to deconvolute the 
abundance of different immune cell types in tumor samples using the quanTIseq  method45. We found that 
similar cell fractions (CF) of B cells, monocytes, myeloid dendritic cells, neutrophils, NK cells, CD4 + T cell 
(non-regulatory) and cancer-relevant cells were observed between PANoptosis High and Low clusters in LGG, 
KIRC and SKCM cancers, indicating that these cell populations are similar with respect to PANoptosis pheno-
type (Fig. 3A). However, increased M2 macrophages (∆μ(CF) = 0.04), commonly deemed as pro-tumorigenic 
 macrophages61, and increased myeloid dendritic cells (∆μ = 0.046), frequently considered to promote tumorigen-
esis and  immunosuppression62, were observed in PANoptosis High tumor samples compared to PANoptosis Low 
samples for LGG (Fig. 3A). Similarly, increased M1 macrophage (∆μ(CF) = 0.093), historically regarded as anti-
tumorigenic61, as well as increased infiltrating cytotoxic CD8 + T cell (∆μ(CF) = 0.091) and B cell (∆μ(CF) = 0.026) 
fractions, and decreased monocyte (∆μ(CF) =  − 0.077) fractions, which are often immunosuppressive, were 
observed in the PANoptosis High group in comparison to PANoptosis Low cluster for SKCM (Fig. 3A). For 
KIRC, increased cytotoxic CD8 + T cell (∆μ(CF) = 0.051) fractions were observed but no significant difference 
existed in regulatory Tregs (∆μ(CF) = 0.01) or non-regulatory CD4 + T cell (∆μ(CF) = 0.01) fractions between 
PANoptosis High vs Low clusters (Fig. 3A). It has previously been shown that a higher population of exhausted/
polarized CD8 + T cells was associated with higher grades of renal cell carcinoma and worse survival  prognoses63.

Using gene expression signatures specific to 24 cell  types49, we estimated the cell activations (CA) of different 
immune cell types using a ssGSEA method for each sample and compared the immune CA between PANoptosis 
High vs Low clusters for LGG, KIRC and SKCM. For LGG, KIRC and SKCM, we observed increased activation 
of cytotoxic T cells, dendritic cells (DC and iDC), macrophages, monocytes, neutrophils, NK CD56dim cells, 
NKT, pDC, T cells, T helper cells and T-regulatory (Treg) cells in the PANoptosis High samples compared to 
PANoptosis Low samples (Fig. 3B). However, in SKCM, there were significantly differentially activated B cells 
(∆μ(CA) = 0.62, Bonferonni corrected P-value = 2.8 ×  10−22) and Th1 cells (∆μ(CA) = 0.56, Bonferroni corrected 
P-value = 1.69 ×  10−26) as well as cytotoxic cells (∆μ(CA) = 0.85, Bonferroni corrected P-value = 1.25 ×  10−26) and 
NK CD56dim cells (∆μ(CA) = 0.77, Bonferroni corrected P-value = 7.3 ×  10−24), which suggests more overall 
anti-tumor immune cell infiltration in the PANoptosis High versus PANoptosis Low samples for SKCM (Fig. 3B).

Finally, we compared the differences in tumor purity (ESTIMATE method), immune and stroma scores 
between the PANoptosis High and PANoptosis Low clusters for LGG, KIRC and SKCM cancers to determine 
whether these scores could contribute to the differences between the two clusters. The ESTIMATE, immune and 
stroma scores were significantly higher in PANoptosis High samples when compared to PANoptosis Low samples 
for each of the three cancers, suggesting a more immune-infiltrated tumor and a microenvironment with tumors 
of higher purity for samples belonging to the PANoptosis High cluster (Supp. Fig. 6). However, these differences 
could not explain the divergent prognosis of PANoptosis with survival (PANoptosis High beneficial for SKCM 
and detrimental for LGG and KIRC).

Taken together, these results suggested that immune cell type density and activations in the tumor micro-
environment contribute to the significant differences in the PANoptosis High versus PANoptosis Low clusters, 
specifically for LGG and SKCM.
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Comparison of activations of oncogenic pathways between PANoptosis High versus PANop‑
tosis Low clusters
To examine the tumor intrinsic differences between PANoptosis High and PANoptosis Low clusters of LGG, 
KIRC and SKCM, we compared the enrichment of 54 oncogenic pathways between the groups. Pathway activa-
tions (PA) were estimated using the ssGSEA method on bulk RNA-Seq profiles (Supp. Fig. 7) and compared 
with the PANoptosis score for all tumor samples of each cancer type using the Pearson correlation (Fig. 4A). 
Moreover, we estimated the average and difference in activity (∆Activity) of the samples belonging to PANoptosis 
High and PANoptosis Low clusters, where the difference in activity was compared using Wilcoxon rank-sum 
test (Fig. 4B). Many pathways were differentially enriched between the two PANoptosis groups. For example, 
apoptosis, Immunogenic Cell Death (ICD), KRAS signaling up, p38 MAPK signaling, PI3K Akt mTOR signaling 

Figure 3.  Comparison of cell type fractions and cell type activation between PANoptosis High versus 
PANoptosis Low groups for LGG, KIRC and SKCM. (A) Cell type fractions in PANoptosis High and 
PANoptosis Low clusters for LGG, KIRC and SKCM cancers estimated using quanTIseq deconvolution 
method on bulk RNA-Seq gene expression profiles. (B) Heatmap of enrichment (activation) values for cell type 
specific immune-signature using the ssGSEA method. The difference in activity profiles of cell types between 
PANoptosis High versus PANoptosis Low samples were highlighted as ∆Activity, and significance in difference 
was estimated using a Wilcoxon rank-sum test with ***P-value < 1e−3. Samples from the PANoptosis High 
group are depicted below the red bar and samples from the PANoptosis Low group are depicted below the blue 
bar.
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and TNFR1 signaling pathways had significant positive correlations with the PANoptosis score (R > 0.25, Bon-
ferroni corrected P-value < 1 ×  10−5, Fig. 4A) as well as a significant positive difference in enrichment between 
PANoptosis High and PANoptosis Low clusters for LGG, KIRC or SKCM individually (Fig. 4B). The apoptosis 
and ICD pathways had positive average activation in the PANoptosis High cluster and negative average activa-
tion in the PANoptosis Low cluster (Fig. 4B) for all three cancers; these pathways can be considered as valida-
tion of the PANoptosis phenotype since many of the genes in the PANoptosis gene set are also present in these 
pathways. However, these differences (positive in all three cancers) could not explain the divergent association 
of PANoptosis phenotype with survival.

We observed that there were several immunosuppressive pathways including angiogenesis (∆μ(PA) = 0.473, 
P-value = 3.35 ×  10−36), epithelial mesenchymal transition (∆μ(PA) = 0.489, P-value = 7.43 ×  10−29), hypoxia 
(∆μ(PA) = 0.275, P-value = 3.46 ×  10−27) and TGF beta signaling (∆μ(PA) = 0.345, P-value = 3.05 ×  10−28) which 
were distinctly activated (or positively correlated with PANoptosis score) in the PANoptosis High cluster as 
compared to the PANoptosis Low cluster for LGG (Fig. 4A,B). Similarly, several immunoregulatory path-
ways such as MAPK up genes (∆μ(PA) =  − 0.429, P-value = 2.33 ×  10−25), NOS1 signature (∆μ(PA) =  − 0.338, 
P-value = 5.94 ×  10−8), and telomere extension by telomerase (∆μ(PA) =  − 264, P-value = 5.12 ×  10−8) were dis-
tinctly activated (or negatively correlated with PANoptosis score) in the PANoptosis Low cluster when com-
pared to the PANoptosis High group for LGG (Fig. 4A,B). Furthermore, barrier genes (∆μ(PA) =  − 0.274, 
P-value = 3.34 ×  10−4), UVA-induced MAPK signaling (∆μ(PA) = 0.255, P-value = 2.40 ×  10−17) and hypoxia/
adenosine immune cell suppression (∆μ(PA) = 0.65, P-value = 2.24 ×  10−15) pathways were differentially enriched 
between the PANoptosis High and PANoptosis Low groups for SKCM cancer. Finally, the proliferation pathway 
was significantly differentially (positively) activated for LGG (∆μ(PA) = 0.271, P-value = 2.26 ×  10−4) and KIRC 
(∆μ(PA) = 0.345, P-value = 9.02 ×  10−12) and was also negatively activated for SKCM (∆μ(PA) =  − 0.08), thereby 
aligning with the divergent prognostic association of PANoptosis (PANoptosis High was detrimental for LGG 
and KIRC and beneficial for SKCM) for the three cancers of interest (Fig. 4B). Proliferation plays a prognostic 

Figure 4.  Comparison of oncogenic pathway activity between PANoptosis High versus PANoptosis Low 
tumors (bulk RNA-Seq) for LGG, KIRC and SKCM. (A) Pearson correlation coefficient between the PANoptosis 
activity and enrichment scores of the 54 oncogenic  pathways23 for each of the three cancer types. The 
correlation co-efficient (R) was considered significant if |R|> 0.25 with ***P-value < 1e−5. (B) Heatmap of the 
average activation across bulk RNA-Seq tumor profiles for the oncogenic pathway estimated using ssGSEA for 
PANoptosis High and Low clusters for LGG, KIRC and SKCM cancers. The difference in average activity of 
oncogenic pathways between PANoptosis High versus PANoptosis Low groups was highlighted as ∆Activity and 
the significance in difference was estimated using a Wilcoxon rank-sum test with *P-value ∈ (1e−2, 0.5*1e−2]; 
**P-value ∈ (1e−3, 1e−2]; ***P-value < 1e−3. Samples from the PANoptosis High group are depicted below the 
red bar and samples from the PANoptosis Low group are depicted below the blue bar.
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role in cancer independent of the immune  contexture23,31, and we observed that tumor samples with high average 
proliferation activity correlated with worse survival (Supp. Fig. 8).

In addition to primary tumors, mechanistic information about cancer disease processes is often studied in 
cancer cell lines. While these cell lines have been the cornerstone of cancer research in experimental settings 
(in vitro systems), they have distinct genetic, genomic and functional properties compared to the primary 
tumors from which they were derived. This can make it difficult to translate in vitro findings into preclinical 
 models64–66. There is lack of immune and stromal cells in established cell lines when compared to patient pro-
files, and what is observed in patient profiles might not always correlate with the observations from cell lines. 
Thus, we aimed to determine if any of the pathway activations (PA) and differences that we observed in primary 
tumor profiles for LGG, KIRC and SKCM aligned with the cancer cell lines obtained from CCLE (Fig. 5). We 
estimated the PANoptosis score and correlated it with the PA for all cancer cell lines belonging to glioma, kidney 
and melanoma lineages (Fig. 5A). The PA for each cell line was determined using the ssGSEA method on the 
gene expression profile associated with the cell line (Fig. 5B). We observed that the barrier genes pathway was 
significantly negatively correlated (R =  − 0.467, P-value = 0.006) with the PANoptosis score for melanoma, an 
observation consistent with primary tumor samples (Fig. 4B) and unique to melanoma (SKCM) cancer. Similarly, 
the mTORC1 signaling pathway (Fig. 5A) was positively correlated with the PANoptosis score for the cell lines 
belonging to each of the three cancers of interest, aligning with the observation from TCGA bulk RNA-Seq data 
(Fig. 4A). However, there were certain pathways such as hedgehog signaling (R = 0.371, P-value = 0.03 for LGG 
and R = 0.588, P-value = 0.02 for KIRC), oxidative phosphorylation (R = 0.353, P-value = 0.04 for LGG), Wnt beta 

Figure 5.  Comparison of oncogenic pathway activity and its correlation with PANoptosis scores of cancer cell 
lines for LGG, KIRC and SKCM. (A) Pearson correlation coefficient between the PANoptosis score and activity 
scores of the 54 oncogenic  pathways23 across the cancer cell lines from CCLE for each of the three cancer types. 
The correlation co-efficient (R) was considered significant if |R|> 0.25 with *P-value ∈ (1e−3, 0.5*1e−2]. (B) For 
each cancer cell line, the PANoptosis score was estimated using the ssGSEA method. Heatmap of the pathway 
activities determined using ssGSEA across the cancer cell lines for LGG, KIRC and SKCM cancers is shown.



11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:20962  | https://doi.org/10.1038/s41598-023-48098-1

www.nature.com/scientificreports/

catenin (R = 0.434, P-value = 0.01) and KRAS signaling up (R = -0.503, P-value = 0.05) which were specifically sig-
nificantly correlated with the PANoptosis score across cancer cell lines (Fig. 5A) with contrasting correlation pat-
terns to PANoptosis phenotype when compared to corresponding patient-derived tumors from TCGA (Fig. 4A).

Taken together, these results suggest that there are specific pathways whose activations could explain the dif-
ferences between the PANoptosis clusters specifically for LGG and SKCM cancers. In particular, the proliferation 
pathway from bulk RNA-Seq and hedgehog signaling pathway in cancer cell lines aligned with the difference 
in survival association of PANoptosis phenotype for LGG and KIRC (PANoptosis High had worse survival) in 
comparison to SKCM (PANoptosis High had better survival).

Comparison of activations of oncogenic pathways in melanoma single cell transcriptomics
Since, we studied the pathway activations for bulk RNA-seq and cancer cell lines, our next goal was to see how 
the pathway enrichments get impacted across different cell types in the tumor microenvironment. Hence, we 
investigated the enrichment of oncogenic pathways at the single cell resolution by analyzing a publicly available 
scRNA-Seq dataset for melanoma  (GSE7205625) as a case study. The dataset was comprised of six heterogenous 
patients as highlighted by the segregated tumor samples for individual patients in the UMAP plot (Fig. 6A). 
However, the various immune cell type including T-cells, B-cells, macrophages and NK-cells for the six patients 
clustered together (Fig. 6A). Similarly, stroma-associated endothelial cells and cancer-associated fibroblasts 
(CAF) tended to cluster together in the UMAP plot (Fig. 6A).

PA was then compared across the different cell types with the PANoptosis score for each cell (Fig. 6B). Path-
ways such as apoptosis, Myc-mediated apoptosis signaling, SHC1/pSTAT3 signature and TNFR1 signaling were 
significantly positively correlated with the PANoptosis score across multiple cell types (Fig. 6B) and aligned well 
with the PA observed in primary tumor clusters via bulk RNA-Seq in SKCM cancer (Fig. 4B). Additionally, the 
barrier genes pathway was negatively correlated with PANoptosis score across all cell types, suggesting that cells 
with a higher PANoptosis score have lower barrier gene PA. This observation was also supported by the significant 
negative difference in average pathway activity between PANoptosis High and PANoptosis Low clusters for SKCM 
cancer (Fig. 4B) and significant negative correlation (with PANoptosis score) in melanoma cancer cell lines from 
CCLE (Fig. 5A). A lower activation score for the barrier gene pathway could suggest fewer barriers to immune 
infiltration in metastatic tumor profiles, thereby enhancing survival  prognosis67. Moreover, the proliferation path-
way was negatively enriched and the KRAS signaling down pathway was positively enriched across the majority 
of cells independent of the status of PANoptosis score (Fig. 6B), thereby providing insights into dysregulation of 
these pathways in patients with metastatic melanoma for individual cells at the single cell resolution.

Taken together, these results suggest that the oncogenic PA observed here at single cell resolution generally 
aligns with the pathway enrichments observed from bulk RNA-Seq for melanoma. Pathways relevant to cell 
death, such as apoptosis and Myc-mediated apoptosis signaling, were positively correlated with PANoptosis 
scores at both bulk (Fig. 4A) and single-cell levels across multiple cell types (Fig. 6B). Additionally, the barrier 
gene pathway could be a potential pathway that can be targeted in patients with low PANoptosis scores to drive 
survival benefit, although this requires further investigation.

Discussion
A better understanding of the host-tumor relationship is imperative for developing effective therapeutic tech-
niques and accurate stratification  systems70, as it allows for a better understanding of the implications for at 
risk patient populations. In this work, we identified several contributing factors which could explain the differ-
ences between the PANoptosis clusters for LGG, KIRC and SKCM cancers. The PANoptosis High cluster had 
signficantly better survival for SKCM cancer and signficantly worse survival for LGG and KIRC cancers when 
compared to PANoptosis Low cluster for each of these three cancers.

In all three tumor types, the mutational load or TMB was usually higher in the PANoptosis High groups. In 
hypermutated tumors (SKCM—PANoptosis High cluster), abundant neoantigens are likely to facilitate immune 
 recognition71. However, neither the mutational load or TMB could align with the differential prognosis of PANo-
ptosis clusters between LGG, KIRC and SKCM cancers. In contrast, the measure of genomic instability, the ane-
uploidy  score22, did align with the differential prognosis of PANoptosis clusters for LGG and SKCM cancers. A 
majority of human solid tumors are  aneuploid72, and our findings suggest that more tumors in the PANoptosis 
High cluster for LGG and PANoptosis Low cluster for SKCM were aneuploid (Fig. 2C). Moreover,  in19, it was 
shown that the PANoptosis High cluster had a worse survival prognosis for LGG cancer, while the PANoptosis 
Low cluster had a worse survival prognosis for SKCM cancer. Thus, higher aneuploidy scores are associated with 
tumor samples belonging to groups that have worse survival for LGG and SKCM cancer types. It was shown 
 in72, that highly aneuploid cancer cells lose small chromosomes for cancer cell survival. Thus, from our analysis, 
we could suggest that cancers in PANoptosis High group of LGG and PANoptosis Low cluster of SKCM could 
preferentially lose small chromosomes to evade cell  death72, and aneuploidy could play a contributing role in 
the worse survival prognosis of the patients in that  cluster19.

By deconvoluting the bulk RNA-Seq45, we estimated significantly more M2 macrophages were present in 
the PANoptosis High cluster for LGG. The M2 macrophages are known to have tumor-promoting capabilities 
and can contribute to a worsened  prognosis73. On average, significantly more M1 macrophages and cytotoxic 
CD8 + T-cells, along with enhanced activations of B-cells, Th1 cells, cytotoxic cells and NK CD56dim cells were 
seen, suggesting an active immune-infiltrated tumor microenvironment potentially driving better survival prog-
nosis for the PANoptosis High cluster in  SKCM73.

Finally, we correlated the PANoptosis score with the enrichment of oncogenic pathways and differentiated 
their activations between the two clusters, finding associations for LGG and SKCM cancers. The differential 
activation of immunosuppressive pathways such as angiogenesis, epithelial mesenchymal transition, TGF-beta 
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signaling along with a loss in activity of anti-tumor immunity pathways such as NOS1 signature, MAPK up genes 
and telomerase extension by telomerase were multiple contributing factors for driving the difference between 
PANoptosis High and Low cluster, specifically in LGG. over, we identified that the proliferation pathway acti-
vations aligned with the differential prognostic association of PANoptosis for the three cancers. This suggests 
that tumors with high proliferative capacity tend to have worse survival prognosis in addition to the status of 
PANoptosis genes and thus should be an additional independent contributing factor for driving differential 
prognosis in these cancers (Supp. Fig. S7).

Additionally, we found that the hedgehog signaling pathway was activated in cancer cell lines with high 
PANoptosis scores (worse survival) for LGG and KIRC and low PANoptosis scores (worse survival) for SKCM. 

Figure 6.  Single-cell analysis reveals oncogenic pathways correlated with PANoptosis score across immune, 
stromal and cancer cells in melanoma dataset. (A) UMAP plot highlighting the different cell type composition 
of the melanoma single cell transcriptomic dataset. (B) Pearson correlation between PANoptosis score and 
activity scores of the 54 oncogenic pathways across the immune, stroma and cancer cell types in the scRNA-Seq 
dataset. The correlation coefficients (R) were considered significant if |R|> 0.25 with *P-value ∈ (1e−3, 0.5*1e−2]; 
**P-value ∈ (1e−5, 1e−3]; ***P-value < 1e−5. Heatmap of the pathway activities determined using ‘enrichIt’ 
function for the different immune, cancer and stroma cell types and its comparison with the PANoptosis scores 
is shown.
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In breast cancer models, inhibiting the hedgehog signaling pathway reduces immune-suppressive innate and 
adaptive cells and enriches cytotoxic immune  cells75. Thus, while the role of hedgehog signaling has been studied 
in the context of the immune microenvironment, its role in cancer cells conditioned by the PANoptosis pheno-
type requires further investigation.

Lastly, we observed that whenever the PANoptosis score was high, the barrier gene pathway had low activity 
in melanoma. This could be observed from the bulk RNA-Seq of SKCM cancers in TCGA, melanoma cancer 
cell lines in CCLE as well as in multiple cell types in a heterogenous melanoma single cell cohort. Lower activa-
tions of barrier genes suggest fewer mechanical barriers and a higher possibility of immune infiltration in the 
 microenvironment52. The loss of activation of the barrier gene pathway, together with higher activation of the 
PANoptosis pathway, could drive better survival prognosis of patients with melanoma.

One limitation of these data is the difference in proteomics of tumors between the PANoptosis clusters owing 
to a lack of such data in TCGA. However, with the creation of The Clinical Proteomic Tumor Analysis Conso-
ritum (CPTAC) such data are being collected for different cancer types including the availability of proteomic 
datasets for kidney cancer. Thus, the connection between the protein expression and PANoptosis phenotype 
might result in interesting findings and can be explored in a future follow-up work. Similarly, a comprehensive 
study focusing more on gaining insights at single-cell resolution can be undertaken as a future investigation. 
Finally, spatial transcriptional  analysis76 could also help distinguish the tumor micro-environmental composi-
tion, activations, and cell–cell communications and directly determine the impact in differential prognosis of 
the PANoptosis clusters instead of using a bulk RNA-Seq deconvolution approach.

Conclusion
Overall, our work builds upon the existing platform of using PANoptosis as a prognostic indicator and provides 
a comprehensive comparative analyses which identified the key contributing factors, including genomic altera-
tions (aneuploidy), specific immune cell compositions (M2 macrophages), immune cell activations (activated 
cytotoxic CD8 + T-cells) and oncogenic pathway activations (proliferation and barrier gene pathway activations), 
that could be modulated to improve patient outcomes for at risk populations i.e., the PANoptosis High cluster 
for LGG and KIRC, and the PANoptosis Low cluster for SKCM.

Data availability
All code and relevant data are publicly available on Mendeley (https:// doi. org/ 10. 17632/ 7x237 xf2m3.1).
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