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Computational study 
of a co‑infection model of HIV/AIDS 
and hepatitis C virus models
Fazal Dayan 1, Nauman Ahmed 2, Abdul Bariq 6*, Ali Akgül 3,4,5, Muhammad Jawaz 2, 
Muhammad Rafiq 7 & Ali Raza 5,8

Hepatitis C infection and HIV/AIDS contaminations are normal in certain areas of the world, and 
because of their geographic overlap, co-infection can’t be precluded as the two illnesses have a similar 
transmission course. This current work presents a co-infection model of HIV/AIDS and Hepatitis C 
virus with fuzzy parameters. The application of fuzzy theory aids in tackling the issues associated with 
measuring uncertainty in the mathematical depiction of diseases. The fuzzy reproduction number 
and fuzzy equilibrium points have been determined in this context, focusing on a model applicable 
to a specific group defined by a triangular membership function. Furthermore, for the model, a fuzzy 
non-standard finite difference (NSFD) technique has been developed, and its convergence is examined 
within a fuzzy framework. The suggested model is numerically validated, confirming the dependability 
of the devised NSFD technique, which successfully retains all of the key properties of a continuous 
dynamical system.

HIV and HCV are microbes that cause huge interruptions and actuation of the immune system. This significant 
impact on the host’s immune system would make individuals contaminated with HCV more susceptible to HIV 
and the impacts of the infection. Because of their geographical overlap, there is no question that co-infection 
with HCV and HIV/AIDS can alter their development, as well as the severity and rate of progression of the 
disease since every one of these two significantly affects the invulnerable immune system. Increasing the rate of 
progression of either disease in the presence of the other may play an essential role in increasing the prevalence 
of the former. Mathematical models have been critical in understanding the spread of infectious diseases that 
are directly transmissible. Mathematical modeling of infectious disease is a vital tool used by epidemiologists, 
public health officials, and academics to understand illnesses spread across populations and develop ways for 
limiting and minimizing their impact. Co-infection refers to disease by at least two different pathogenic crea-
tures. Hepatitis C is a typical co-contamination in individuals living with HIV. A HIV/AIDS and Hepatitis C 
Virus (HCV) co-infection model is a mathematical model that describes the dynamics of both diseases within 
a population where individuals can be infected with both HIV and HCV at the same time. Due to the intercon-
nections between the two diseases and the immune response, co-infection models of HIV/AIDS and HCV are 
complicated. They are an important resource for studying how co-infection influences disease development, 
transmission dynamics, and treatment effects. Such models can help to guide public health policies and provide 
methods for efficiently managing and preventing co-infections. Several confection models have been constructed, 
mathematically examined, and applied1–8, just to mention a few. Hepatitis C virus and HIV co-infection, although 
ineffectively comprehended, is a developing general wellbeing concern, essentially because of their nearby nor-
mal pathway relationship. Since the diseases are spread similarly, essentially through needle sharing and sexual 
action, many individuals are co-contaminated with HIV and HCV. HIV co-infection can expand the sexual and 
vertical transmission of HCV. HCV-incited liver infection can advance, with 20% to 30% cirrhosis9. HCV posi-
tivity was related with a 2.6-overlay expanded hazard of AIDS-characterizing ailments10, 11. A few hypothetical 
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investigations have analyzed the co-contamination of HIV and different infections like malaria, tuberculosis, 
and so forth12–17. Bhunu and Mushayabasa investigated the co-dynamics of HIV/AIDS and the hepatitis C virus 
using a deterministic model in order to assess how each disease’s dynamics was influenced by the other while 
taking treatment effects into account. The findings showed that HCV has a persistent, long-term negative impact 
on population health, regardless of HIV status, which highlights the need for stronger control strategies in areas 
with limited resources18.

The definitions of susceptibility and infectivity exhibit uncertainty due to the varying degrees of susceptibility 
and infectivity observed among individuals within the population. Discrepancies can emerge when examining 
population groups with distinct behaviors, traditions, and age brackets, leading to differences in resistance levels, 
among other factors. To adequately address these varying individual levels, it is imperative to employ more real-
istic models. When dealing with epidemic systems related to infectious diseases, a distinct approach is necessary 
to accommodate these uncertainties. These uncertainties stem from the fact that the strength of an infectious 
agent’s outbreak relies, among other factors, on the proportions of susceptible and infectious nodes within the 
network. Given that susceptibility and infectivity inherently encompass vagueness, they serve as ideal concepts 
for engaging in discussions involving fuzzy logic19. As the parameters utilized in epidemic models carry inher-
ent uncertainty, the integration of fuzzy theory becomes a viable approach. The application of fuzzy logic in the 
realm of biological systems holds significant promise, although it remains relatively underutilized.

An SI model with fuzzy theory was developed by Barros et al., in which the transmission coefficient is 
addressed as a fuzzy set20. They made a comparison between the average count of infected individuals and the 
mean alteration in virus load, subsequently conducting an analysis of the fundamental reproduction value. 
Mondal et al. directed their efforts toward plague models, wherein the fuzzy transmission coefficient concept was 
adopted, leading to the formulation of an SIS model21. Renu Verma et al. designed SEIR and SEIRHD models to 
delineate transmission pathways in the context of the Ebola outbreak. The models integrated fuzzy parameters 
and explored the existence and stability of equilibria. Significantly, the stability of these equilibrium states was 
intricately linked to the computation of the basic reproduction number, a task that was facilitated by employing 
the next-generation matrix22. Fuzzy logic was used by Ortega et al. to create predictions in the field of epide-
miology, specifically focusing on problems with infectious diseases23. A model is developed that focuses on the 
transition of the HIV-positive population to AIDS, with a particular emphasis on understanding the transmission 
dynamics from HIV to AIDS. Given the inherent uncertainty of HIV/AIDS, the transmission rate is modeled as 
a fuzzy set based on viral load24. A fuzzy-oriented approach is introduced to epidemiological models concerning 
the prevalence of HIV within a cohort of individuals engaged in injectable drug use25. A comprehensive analysis 
encompassed various fuzzy scenarios, exploring diverse user counts and different quantities of HIV test samples 
conducted annually. It’s important to note that these trial sample sizes were tailored to individual cases due to 
the fluid nature of each community’s evolving environment. Recognizing the evolving nature of communities 
over time, it’s evident that even the biological parameters utilized within mathematical models are subject to 
change26. Fuzzy models are more insightful than crisp models in this sense. Verma et al. explored a model of 
Influenza propagation characterized by an asymptotic transmission rate. The rates of disease transmission and 
mortality were treated as fuzzy sets. Through the utilization of probability measures and fuzzy expected values, 
they derived the fuzzy basic reproduction number for various subgroups of infected individuals exhibiting dif-
ferent levels of viral loads. Furthermore, a comparative analysis of the basic reproduction numbers between the 
traditional and fuzzy models was also conducted27. Renu et al. constructed a population model using interval 
values to represent the interrelationships among phytoplankton, zooplankton, and fish populations. This model 
incorporated a cyrtoid-type functional response28.

in the current work, we developed an NSFD techinque to solve a co-infection model of HIV/AIDS and Hepa-
titis C virus with fuzzy parameters29. Employing fuzzy theory aids in addressing the challenges associated with 
quantifying uncertainty in mathematical modeling of diseases. As a result, the utilization of fuzzy parameters 
assists in providing a more precise explanation for the transmission of the co-infection model involving HIV/
AIDS and Hepatitis C virus.

The novelty of the suggested approach is the creation, application, and assessment of a first-order numeri-
cal method in the NSFD conditions. This technique is designed for the co-infection model that represents the 
behavior of both Hepatitis C infection and HIV/AIDS dynamics, particularly when dealing with fuzzy param-
eters. The main advantage of this study is the introduction of fuzzy parameters into the HIV/AIDS coinfection 
model. Unlike traditional models, which frequently assume precise parameter values, the inclusion of fuzzy 
parameters allows for a more nuanced consideration of the uncertainty and imprecision inherent in real-world 
circumstances. The model can more accurately depict the complexities and variances prevalent in real-world 
systems because to this increased level of realism. The current study provides a more detailed depiction of the 
intricate connections between HIV and AIDS dynamics by using fuzzy parameters for uncertain or ambiguous 
parameter values. This research is structured as follows. “A co-infection model of HIV/AIDS and hepatitis C 
virus with fuzzy parameters” section presents some basic concepts that will be employed in this study, as well as 
a discussion of the development of a co-infection model of HIV/AIDS and HCV virus with fuzzy parameters. 
In “Mathematical analysis” section, we discussed the fuzzy reproduction number and fuzzy equilibrium analy-
sis. “Numerical modeling” section contains the presentation of numerical solution and simulation outcomes. 
“Conclusion” section summarizes the research’s concluding remarks and future directions.

A co‑infection model of HIV/AIDS and hepatitis C virus with fuzzy parameters
In this section, we present an extended co-infection model involving HIV/AIDS and Hepatitis C viruses, where 
the incorporation of fuzzy parameters is considered. To initiate, we outline some fundamental definitions that 
will serve as a foundation for this study.
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Fuzzy subset30

The membership function µS(u) : Urightarrow[0, 1] denotes a fuzzy subset S within the universe set U, where 
µS(u) represents the degree of membership of u in the fuzzy set S.

Triangular fuzzy number (TFN)30

The triplet A = (a, b, c) qualifies as a TFN when its membership function is characterized by

with a being less than or equal to b, and b being less than or equal to c.

Expected value (EV) of a TFN31

The EV of a TFN is given by

Fuzzy basic reproductive number (BRN)31

The fuzzy BRN of a TFN R0(ν) is given by

Consider the model that has been talked about by Bhunu and Mushayabasa18.

The flowchart of the studied model is shown in Fig. 1.
The fuzzy model corresponding to the above model can be expressed as

(1)µA(x) =















0, x ≤ a
x−a
b−a , a < x ≤ b
x−c
b−r , b < x ≤ c
0, c ≤ x

(2)E[A] =
a+ 2b+ c

4

(3)R
f
0 = E[R0(ν)]

(4)
dS

dt
= �− (µ+ �h + �c)S + r1Ic

(5)
dIc

dt
= �cS − (µ+ dc + r1 + δ�h)Ic

(6)
dIh

dt
= �hS + r2Ihc − (µ+ ρ1 + σ1�c)Ih

(7)
dAh

dt
= ρ1Ih + r3Ahc − (µ+ da + θ1 + σ2�c)Ah

(8)
dAt

dt
= θ1Ah + r4Atc − (µ+ da + σ3�c)At

(9)
dIhc

dt
= δhcIc + σ1�cIh − (µ+ dc + r2 + ρ2)Ihc

(10)
dAhc

dt
= ρ2Ihc + σ2�cAh − (µ+ θ2 + da + dc + r3)Ahc

(11)
dAtc

dt
= θ2Ahc + σ3�cAt − (µ+ r4 + da + dc)Atc

(12)
dS

dt
= �− (µ+ �h + �c)S + r1Ic

(13)
dIc

dt
= �cS − (µ+ dc(ν)+ r1 + δ�h)Ic

(14)
dIh

dt
= �hS + r2Ihc − (µ+ ρ1 + σ1�c)Ih
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When developing the membership function, we assumed that when the number of virus-loads in an individual 
is low, the possibility of transmission becomes low. Furthermore, there is a minimum virus-load threshold 
required for any potential transmission to occur. Furthermore, there is a specific amount of virus-load at which 
the transmission rate peaks and equals one. We assume that the contact transmission rate βc(ν) , βh(ν) , the 
mortality rates dc(ν) and da(ν) due to HCV and AIDS respectively are fuzzy numbers that rely on the viral load 
of each individual in the population. Let βc(ν) is the product of the effective contact rate for HCV infection and 
the chance of its transmission per contact and can be defined as

βh(ν) is the product of the effective contact rate for HIV infection and chance of its transmission per contact 
and can be defined as

The mortality rates dc(ν) for HCV and da(ν) for AIDS can also be treated as fuzzy numbers since these rates rise 
with the progression of disease infection. They can be defined as

(15)
dAh

dt
= ρ1Ih + r3Ahc − (µ+ da(ν)+ θ1 + σ2�c)Ah

(16)
dAt

dt
= θ1Ah + r4Atc − (µ+ da(ν)+ σ3�c)At

(17)
dIhc

dt
= δhcIc + σ1�cIh − (µ+ dc(ν)+ r2 + ρ2)Ihc

(18)
dAhc

dt
= ρ2Ihc + σ2�cAh − (µ+ θ2 + da(ν)+ dc(ν)+ r3)Ahc

(19)
dAtc

dt
= θ2Ahc + σ3�cAt − (µ+ r4 + da(ν)+ dc(ν))Atc

(20)βc(ν) =







0, ν < νm
ν−νm
ν0−νm

, νm ≤ ν ≤ ν0
1, ν0 < ν < νM

(21)βh(ν) =







0, ν < νm
ν−νm
ν0−νm

, νm ≤ ν ≤ ν0
1, ν0 < ν < νM

Figure 1.   Flowchart of the model.
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and

The mortality rates dc(ν) attributed to HCV and da(ν) associated with AIDS exhibit higher values when the viral 
load ν reaches its peak and the maximum deaths are 1 − ζ , (ζ ≥ 0) and 1 − ξ , (ξ ≥ 0).

Details of the other parameters and variables used in our model is given below:

S :  Susceptible
Ih : HIV positive-only individuals not yet showing AIDS symtoms
Ic : People infected only with hepatitis C
Ah : AIDS patients not yet on antiretroviral therapy (AT)
At : AIDS patientst on AT
Ihc : HIV positive who does not yet have symptoms of AIDS with dual HCV infection
Ahc : AIDS patients with dual HCV infection not on AT
Atc : AIDS patients with dual HCV infection on AT
� : Constant birth rate
µ : Natural death rate
�h : Force of infection associated with HIV infection, where �h =

βh(ν)[Ih+ϕIhc]
N

�c : Force of infection associated with HIV infection, where �c = βc(ν)[Ih+ηIhc]
N

r1 : Rate at which HCV infected individuals in Ic move back into the class of the susceptible
r2 : Rate at which dually infected people in class Ihc are treated for HCV to move back into class Ih
r3 : Rate at which dually infected people in class Ahc are treated for HCV to move back into class Ah

r4 : Rate at which dually infected people in class Atc are treated for HCV to move back into class At

ρ1 : Rate at which susceptibles infected with HIV enters class Ih and progress to Ah

ρ2 : Rate at which people in class Ihc progress to Ahc

θ1 : Rate at which individuals in stage Ah detected and put on treatment to enter the class At

θ2 : Rate at which AIDS patients dually infected with HCV in class Ahc are detected and put on antiretroviral 
therapy to get into class Atc

σ�c : Rate at which individuals in class Ih are infected with HCV to enter Ihc
δ�h : Rate at which HCV only infected individuals in class Ic are infected with HIV to move into class Ihc.

Mathematical analysis
HCV‑only sub model
For the HCV Sub model, Ih = Ah = At = Ihc = Ahc = Atc = 0 , So the system of Eqs. (12–19) reduces to

Fuzzy equilibrium analysis
This model has a virus free equilibrium point (VFE) and two endemic equilibrium (EE) points.

Case 1. If ν < νm , then βc(ν) = 0 and �c = 0 . Substituting it the in Eq. (25), we get Ic = 0 and from Eq. (24) 
we get S = �

µ
 . Therefore, we obtain:

This scenario is known as the VFE point, describes a situation in which the hepatitis C virus is not present 
in the population. From a biological perspective, the disease is considered eradicated when the virus level in 
the population falls below the threshold required for disease transmission.
Case 2. If νm ≤ ν ≤ ν0 , then βc(ν) = ν−νm

ν0−νm
 and from Eq. (25), we have

By putting �c = βc(ν)Ic
N  in Eq. (26) it becomes

(22)dc(ν) =

{

(1−ζ )−ǫ0
νm

, 0 ≤ ν ≤ νm
1− ζ , νm < ν

(23)da(ν) =

{

(1−ξ)−ǫ0
νm

, 0 ≤ ν ≤ νm
1− ξ , νm < ν

(24)
dS

dt
= �− (µ+ �h + �c)S + r1Ic

(25)
dIc

dt
= �cS − (µ+ dc(ν)+ r1 + δ�h)Ic

E0c =

(

�

µ
, 0, 0, 0, 0, 0, 0, 0

)

.

(26)�cS − (µ+ dc(ν)+ r1)Ic = 0
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since Ic  = 0 , ⇒ βc(ν)
N S − (µ+ dc(ν)+ r1) = 0

We put the value of Ic in Eq. (24) and obtained

We achieve the point of equilibrium point

where S∗ = �

βc(ν)(1−
1

R∗c
)+µ−r1(R∗c−1)

 and I∗c = (R∗
c − 1)S.

Case 3. If ν0 < ν < νM , then β(ν) = 1 and we obtain

where S∗∗ = �

(1− 1

R∗∗c
)+µ−r1(R∗∗c −1)

 and I∗∗c = (R∗∗
c − 1)S.

Fuzzy BRN
The BRN of the HCV only sub model is given by

As Rc depends on the viral load ν , we examine it across various levels of viral quantities as follows:

Case 1. If ν < νm , then βc(ν) = 0 and Rc(ν) = 0.
Case 2. If νm ≤ ν ≤ ν0 , then βc(ν) = ν−νm

ν0−νm
 and Rc(ν) = βc(ν)

µ+dc(ν)+r1
.

Case 3. If ν0 < ν < νM , then βc(ν) = 1 and Rc(ν) = 1
µ+dc(ν)+r1

 . The relationship between the BRN Rc(ν) , 
and the viral load, indicated as ν , is such that Rc(ν) rises as the viral burden rises. This function is specifically 
defined as a fuzzy variable. As a result, the expected value of Rc(ν) is similarly well defined, allowing it to be 
represented as a TFN as 

 Now by using Eqs. (2) and (3), we find the fuzzy BRN as follows: 

Stability analysis of equilibria
Suppose

The Jacobean of the system (33–34) is

The Jacobean of the system (33–34) at VFE point is

βc(ν)Ic

N
S − (µ+ dc(ν)+ r1)Ic = 0

Ic

[

βc(ν)

N
S − (µ+ dc(ν)+ r1)

]

= 0

(27)⇒ Ic = (R∗
c − 1)S

(28)S =
�

βc(ν)(1−
1
R∗c
)+ µ− r1(R∗

c − 1)
.

E∗c = (S∗, I∗c , 0, 0, 0, 0, 0, 0)

E∗∗c = (S∗∗, I∗∗c , 0, 0, 0, 0, 0, 0)

(29)Rc =
βc(ν)

µ+ dc(ν)+ r1

(30)Rc(ν) =

(

0,
βc(ν)

µ+ dc(ν)+ r1
,

1

µ+ dc(ν)+ r1

)

(31)R
f
c = E[Rc(ν)]

(32)R
f
c =

2βc(ν)+ 1

4(µ+ dc(ν)+ r1)

(33)A1 = �− (µ+ �h + �c)S + r1Ic

(34)A2 = �cS − (µ+ dc(ν)+ r1 + δ�h)Ic

J =





−βc(ν)

�

I2c
(S+Ic)2

�

− µ − βc(ν)

�

S2

(S+Ic)2

�

+ r1

βc(ν)

�

I2c
(S+Ic)2

�

βc(ν)

�

S2

(S+Ic)2

�

− (µ+ dc(ν)+ r1)



 = 0

J(S0, I0c ) =

[

−µ r1
0 − (µ+ dc(ν)+ r1)

]

= 0
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The steady-state will be locally asymptotically stable iff absolute eigenvalues of the above Jacobean matrices are 
less than the unity i.e |�i| < 1 , i = 1, 2 . From the above Jacobean matrix we obtain the eigenvalue �1 = −µ < 1 
and �2 = −(µ+ dc(ν)+ r1) < 1 . Since all eigenvalues are smaller than unity, this verifies the intended outcome

Now we study the stability of EE points E∗c  and E∗∗c  respectively. The Jacobean of the system (33–34) at EE 
point E∗c  is

where Rc(ν) = βc(ν)
µ+dc(ν)+r1

.

Due to the negative trace and positive determinant, the steady state E∗c  can be confirmed as locally asymptoti-
cally stable.

The Jacobean of the system (33–34) at EE point E∗∗c  is

where Rc(ν) = 1
µ+dc(ν)+r1

.
Again, the trace of the above matrix is negative and the determinant is positive, hence the steady state E∗∗c  is 

locally asymptotically stable.

HIV‑only sub model
For the HIV sub model, Ic = Ihc = Ahc = Atc = 0 so the system of equations (12–19) reduces to

Fuzzy equilibrium analysis
This sub model has a VFE point and two EE points. 

Case 1. If ν < νm , then βh(ν) = 0 and �h = 0 . In this case, we obtain: 

 This is the VFE point, signifying that HIV is not present in the population. The disease is deemed eliminated 
biologically when the viral level falls below the minimum threshold required for disease transmission within 
the population.
Case 2. If νm ≤ ν ≤ ν0 , then βc(ν) = ν−νm

ν0−νm
 and we get 

 where 

J(S∗, I∗c ) =







−βc(ν)

�

1− 1
Rc

�2

− µ r1 −
βc(ν)

R2c

βc(ν)

�

1− 1
Rc

�2
βc(ν)

R2c
− (µ+ dc(ν)+ r1)






= 0

trace[J(S∗, I∗c )] = −βc(ν)

(

1−
2

Rc

)2

− (2µ+ dc(ν)+ r1) < 0

det[J(S∗, I∗c )] = µ(µ+ dc(ν)+ r1)

(

(1−
1

Rc
)(1+

(µ+ dc(ν))Rc

µ
(1−

1

Rc
)

)

> 0

J(S∗∗, I∗∗c ) =







−

�

1− 1
Rc

�2

− µ r1 −
1
R2c

�

1− 1
Rc

�2
1
R2c

− (µ+ dc(ν)+ r1)






= 0

(35)
dS

dt
= �− (µ+ �h)S

(36)
dIh

dt
= �hS − (µ+ ρ1)Ih

(37)
dAh

dt
= ρ1Ih − (µ+ da(ν)+ θ1)Ah

(38)
dAt

dt
= θ1Ah − (µ+ da(ν))At

E0h =

(

�

µ
, 0, 0, 0, 0, 0, 0, 0

)

.

E∗h = (S∗, 0, I∗h ,A
∗
h,A

∗
t , 0, 0, 0),
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Case 3. If ν0 < ν < νM , then β(ν) = 1 and we obtain 

 where 

The equilibrium points E∗h and E∗∗h  are referred to as EE points. These points arise when the virus surpasses 
the minimum threshold and continues to exist within the population.

Fuzzy BRN
We utilize the approach of the next generation matrix technique to compute the reproduction number, which 
is expressed as

Since Rh depends on the quantity of virus ν , we study it for various virus quantities.

Case 1. If ν < νm , then βh(ν) = 0 and Rh(ν) = 0.
Case 2. If νm ≤ ν ≤ ν0 , then βh(ν) = ν−νm

ν0−νm
 and Rh(ν) = βh(ν)

µ+ρ1
.

Case 3. If ν0 < ν < νM , then βh(ν) = 1 and Rh(ν) = 1
µ+ρ1

 . The disease-dependent function Rh(ν) correlates 
positively with the disease parameter ν , and its definition includes a fuzzy variable. As a result, the EV of Rh(ν) 
is well defined, and its representation can be written as a TFN, as follows: 

 Now by using Eqs. (2) and (3), we find the fuzzy BRN as follows: 

Stability analysis of equilibria
Suppose

Jacobean of the system (43)–(46) at VFE is

S∗ =
�(µ+ da(ν)+ ρ1)

[µ(µ+ da(ν)+ ρ1)+ (µ+ ρ1)(µ+ da(ν))(Rh − 1)]

I∗h =
�(µ+ da(ν))(Rh − 1)

[µ(µ+ da(ν)+ ρ1)+ (µ+ ρ1)(µ+ da(ν))(Rh − 1)]

A∗
h =

�ρ1(µ+ da(ν))(Rh − 1)

(µ+ da(ν)+ θ1)[µ(µ+ da(ν)+ ρ1)+ (µ+ ρ1)(µ+ da(ν))](Rh − 1)

A∗
t =

�θ1ρ1(Rh − 1)

(µ+ da(ν)+ θ1)[µ(µ+ da(ν)+ ρ1)+ (µ+ ρ1)(µ+ da(ν))](Rh − 1)

E∗∗c = (S∗∗, 0, I∗∗h ,A∗∗
h ,A∗∗

t , 0, 0, 0),

S∗∗ =
�(µ+ da(ν)+ ρ1)

[µ(µ+ da(ν)+ ρ1)+ (µ+ ρ1)(µ+ da(ν))(Rh − 1)]

I∗∗h =
�(µ+ da(ν))(Rh − 1)

[µ(µ+ da(ν)+ ρ1)+ (µ+ ρ1)(µ+ da(ν))(Rh − 1)]

A∗∗
h =

�ρ1(µ+ da(ν))(Rh − 1)

(µ+ da(ν)+ θ1)[µ(µ+ da(ν)+ ρ1)+ (µ+ ρ1)(µ+ da(ν))](Rh − 1)

A∗∗
t =

�θ1ρ1(Rh − 1)

(µ+ da(ν)+ θ1)[µ(µ+ da(ν)+ ρ1)+ (µ+ ρ1)(µ+ da(ν))](Rh − 1)

(39)Rh =
βh(ν)

µ+ ρ1

(40)Rh(ν) =

(

0,
βh(ν)

µ+ ρ1
,

1

µ+ ρ1

)

(41)R
f
h = E[Rh(ν)]

(42)R
f
h =

2βh(ν)+ 1

4µ+ ρ1

(43)A3 = �− (µ+ �h)S

(44)A4 = �hS − (µ+ ρ1)Ih

(45)A5 = ρ1Ih − (µ+ da(ν)+ θ1)Ah

(46)A6 = θ1Ah − (µ+ da(ν))At
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Here �1 = −µ < 1 , �2 = −(µ+ ρ1) < 1 , �3 = −(µ+ da(ν)+ θ1) < 1 and �4 = −(µ+ da(ν)) < 1 . Since all 
eigenvalues are smaller than unity, this verifies the intended outcome

Now we study the stability of the EE points E∗h and E∗∗h  respectively. The Jacobean of the system (43–46) at 
the EE E∗h is

Since the algebraic form of the solution of the Eigenvalues of the above Jacobean matrix is quite complicated, 
therefore we calculate it numerically. Here �1 = −0.3114+ 0.2909i , �2 = −0.3114− 0.2909i , �3 = −1.0649 
and �4 = −0.8330 . Since all the eigenvalues of EE point E∗h are negative, therefore, the EE point E∗h is locally 
asymptotically stable.

The Jacobean of the system (43–46) at EE E∗∗h  is

Again, we calculate the eigenvalues numerically which are given as: �1 = −0.2338+ 0.2543i , 
�2 = −0.2338− 0.2543i , �3 = −0.8330 and �4 = −0.5761 . This proves that the EE point E∗∗h  is also locally 
asymptotically stable.

Numerical modeling
In this section, we will investigate a novel approach, the NSFD technique, which relies on Micken’s theory for 
the solutions of the dynamic systems (24, 25) and (35–38).

NSFD scheme for HCV only sub model
NSFD scheme for the system (24, 25) is

We are concentrating on a model in a fuzzy environment of a specific group of people with a triangular member-
ship function. We examine it for various levels of viruses.

Case 1. If ν < νm , then βc(ν) = 0 and the above system becomes

Case 2. If νm ≤ ν ≤ ν0 , then βc(ν) = ν−νm
ν0−νm

 and the above system becomes

Case 3. If ν0 < ν < νM , then βc(ν) = 1 and the above system becomes

J(S0, I0h ,A
0
h,A

0
t ) =







−µ 0 0 0

0 − (µ+ ρ1) 0 0

0 ρ1 − (µ+ da(ν)+ θ1) 0

0 0 − θ1 − (µ+ da(ν))






= 0

J(E∗h) =











∂A3

∂S (E∗h)
∂A3

∂Ih
(E∗h)

∂A3

∂Ah
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∂A3
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∂A5
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∂S (E∗h)
∂A6

∂Ih
(E∗h)

∂A6

∂Ah
(E∗h)

∂A6

∂At
(E∗h)











J(E∗∗h ) =











∂A3

∂S (E∗∗h ) ∂A3

∂Ih
(E∗∗h ) ∂A3

∂Ah
(E∗∗h ) ∂A3

∂At
(E∗∗h )

∂A4

∂S (E∗∗h ) ∂A4

∂Ih
(E∗∗h ) ∂A4

∂Ah
(E∗∗h ) ∂A4

∂At
(E∗∗h )

∂A5

∂S (E∗∗h ) ∂A5

∂Ih
(E∗∗h ) ∂A5

∂Ah
(E∗∗h ) ∂A5

∂At
(E∗∗h )

∂A6

∂S (E∗∗h ) ∂A6

∂Ih
(E∗∗h ) ∂A6

∂Ah
(E∗∗h ) ∂A6

∂At
(E∗∗h )











(47)Sn+1 =
(Sn +�h+ hr1I

n
c )(S

n + Inc )

Sn + Inc + h(βc(ν)Inc + µ(Sn + Inc ))

(48)In+1
c =

Inc (S
n + Inc )+ βc(ν)I

n
c S

n

(Sn + Inc )(1+ h(µ+ dc(ν)+ r1))

(49)Sn+1 =
(Sn +�h+ hr1I

n
c )(S

n + Inc )

Sn + Inc + hµ(Sn + Inc )

(50)In+1
c =

Inc (S
n + Inc )

(Sn + Inc )(1+ h(µ+ dc(ν)+ r1))

(51)Sn+1 =
(Sn +�h+ hr1I

n
c )(S

n + Inc )

Sn + Inc + h(βc(ν)Inc + µ(Sn + Inc ))

(52)In+1
c =

Inc (S
n + Inc )+ βc(ν)I

n
c S

n

(Sn + Inc )(1+ h(µ+ dc(ν)+ r1))
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Convergence analysis of the NSFD scheme
Convergence analysis examines whether the numerical solution obtained by a numerical method approaches the 
true solution of the underlying mathematical problem. The eigenvalues of the Jacobean matrix at an equilibrium 
point are important in determining the system’s convergence behavior. If all of the eigenvalues of the Jacobean 
have magnitudes strictly less than one, the system’s trajectories will converge towards the equilibrium point over 
time. If any eigenvalue has a magnitude greater than one, the related trajectories will diverge from the equilibrium 
point. In such instances, the system will fail to converge to equilibrium, and the behavior may become chaotic 
or unpredictable. In this part, we will discuss the convergence of the NSFD scheme for the above model. The 
system (47, 48) can be written as

Jacobean of the system (55, 56) is

Case 1. If ν < νm , then βc(ν) = 0 and the above Jacobean matrix becomes

Here �1 = hr1
1+hµ and �2 = 1

1+h(µ+dc(ν)+r1)
 . Since both eigenvalues of the above Jacobean matrix are less than 

1, therefore, the proposed scheme is unconditionally convergent.
Case 2. If νm ≤ ν ≤ ν0 , then βc(ν) = ν−νm

ν0−νm
 and the Jacobean of the system (55, 56) becomes

where

and

Case 3. If ν0 < ν < νM , then βc(ν) = 1 and the Jacobean of the system (55, 56) becomes

where

(53)Sn+1 =
(Sn +�h+ hr1I

n
c )(S

n + Inc )

Sn + Inc + h(Inc + µ(Sn + Inc ))

(54)In+1
c =

Inc (S
n + Inc )+ Inc S

n

(Sn + Inc )(1+ h(µ+ dc(ν)+ r1))

(55)A7 =
(Sn +�h+ hr1I

n
c )(S

n + Inc )

Sn + Inc + h(βc(ν)Inc + µ(Sn + Inc ))

(56)A8 =
Inc (S

n + Inc )+ βc(ν)I
n
c S

n

(Sn + Inc )(1+ h(µ+ dc(ν)+ r1))

J =

[

∂A7

∂S
∂A7

∂Ic
∂A8

∂S
∂A8

∂Ic

]

J(E0h) =

[

1
1+hµ

hr1
1+hµ

0 1
1+h(µ+dc(ν)+r1)

]

J(E∗h) =

[

∂A7

∂S (E∗h)
∂A7

∂Ic
(E∗h)

∂A8

∂S (E∗h)
∂A8

∂Ic
(E∗h)

]

∂A7

∂S
(E∗h) =

(S∗ + I∗c )
2 + h(S∗ + I∗c )(βc(ν)I

∗
c + µ(S∗ + I∗c ))+ hβc(ν)I

∗
c (S

∗ +�h+ hr1I
∗
c )

[S∗ + I∗c + h(βc(ν)I∗c + µ(S∗ + I∗c ))]
2

,

∂A7

∂Ic
(E∗h) =

hr1(S
∗ + I∗c )

2 + h2r1(S
∗ + I∗c )(βc(ν)I

∗
c + µ(S∗ + I∗c ))− hβc(ν)S

∗(S∗ +�h+ hr1I
∗
c )

[S∗ + I∗c + h(βc(ν)I∗c + µ(S∗ + I∗c ))]
2

,

∂A8

∂S
(E∗h) =

hβc(ν)I
∗
c
2(1+ h(µ+ dc(ν)+ r1))

[(S∗ + I∗c )(1+ h(µ+ dc(ν)+ r1))]2

∂A8

∂Ic
(E∗h) =

(S∗ + I∗c )
2(1+ h(µ+ dc(ν)+ r1))+ hβc(ν)S

∗2(1+ h(µ+ dc(ν)+ r1))

[(S∗ + I∗c )(1+ h(µ+ dc(ν)+ r1))]2

J(E∗∗h ) =

[

∂A7

∂S (E∗∗h ) ∂A7

∂Ic
(E∗∗h )

∂A8

∂S (E∗∗h ) ∂A8

∂Ic
(E∗∗h )

]
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and

The MATLAB database was used to plot the principal eigenvalues of the Jacobeans J1 and J2 , which are shown 
in Fig. 2a and b. The fact that all of these greatest eigenvalues are less than one verifies the intended assertion.

NSFD scheme for HIV only sub model
NSFD scheme for the system (35–38) is

Again, we investigate the model across varying viral quantities, given our concentration on a specific demo-
graphic within a fuzzy context through a triangular membership function.

Case 1. If ν < νm , then βh(ν) = 0 and the above system becomes

∂A7

∂S
=

(S∗∗ + I∗∗c )2 + h(S∗∗ + I∗∗c )(I∗∗c + µ(S∗∗ + I∗∗c ))+ hI∗∗c (S∗∗ +�h+ hr1I
∗∗
c )

[S∗∗ + I∗∗c + h(I∗∗c + µ(S∗∗ + I∗∗c ))]2
,

∂A7

∂Ic
=

hr1(S
∗∗ + I∗∗c )2 + h2r1(S

∗∗ + I∗∗c )(I∗∗c + µ(S∗∗ + I∗∗c ))− hS∗∗(S∗∗ +�h+ hr1I
∗∗
c )

[S∗∗ + I∗∗c + h(I∗∗c + µ(S∗∗ + I∗∗c ))]2
,

∂A8

∂S
=

(hI∗∗c
2(1+ h(µ+ dc(ν)+ r1))

[(S∗∗ + I∗∗c )(1+ h(µ+ dc(ν)+ r1))]2

∂A8

∂Ic
=

(S∗∗ + I∗∗c )2(1+ h(µ+ dc(ν)+ r1))+ hS∗∗2(1+ h(µ+ dc(ν)+ r1))

[(S∗∗ + I∗∗c )(1+ h(µ+ dc(ν)+ r1))]2

(57)Sn+1 =
(Sn + h�)(Sn + Inh + An

h + An
t )

(Sn + Inh + An
h + An

t )+ h(µ(Sn + Inh + An
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t )+ βh(ν)I
n
h )

(58)In+1
h =

Inh [(S
n + Inh + An

h + An
t )+ hβh(ν)S

n)]

(Sn + Inh + An
h + An

t )(1+ h(µ+ ρ1))

(59)An+1
h =

An
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n
h

1+ h(µ+ da(ν)+ θ1)

(60)An+1
t =

An
t + hθ1A

n
h

1+ h(µ+ da(ν))
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h + An

t )
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Figure 2.   Eigen values of the Jacobean matrices corresponding to HCV only sub model (a) at the EE point 
(Case 2) (b) at the EE point (Case 3).
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Case 2. If νm ≤ ν ≤ ν0 , then βh(ν) = ν−νm
ν0−νm

 and the above system becomes

Case 3. If ν0 < ν < νM , then βh(ν) = 1 and the above system becomes

Convergence analysis of NSFD scheme
In this part, we will discuss the convergence of NSFD scheme for the above model. The system (57)–(60) can 
be written as

The Jacobean matrix corresponding to (73)–(76) is

Case 1. The above Jacobean matrix at VFE is

(63)An+1
h =

An
h + hρ1I

n
h

1+ h(µ+ da(ν)+ θ1)

(64)An+1
t =

An
t + hθ1A

n
h

1+ h(µ+ da(ν))

(65)Sn+1 =
(Sn + h�)(Sn + Inh + An

h + An
t )

(Sn + Inh + An
h + An

t )+ h(µ(Sn + Inh + An
h + An

t )+ βh(ν)I
n
h )

(66)In+1
h =

Inh [(S
n + Inh + An

h + An
t )+ hβh(ν)S

n)]

(Sn + Inh + An
h + An

t )(1+ h(µ+ ρ1))

(67)An+1
h =

An
h + hρ1I

n
h

1+ h(µ+ da(ν)+ θ1)

(68)An+1
t =

An
t + hθ1A

n
h

1+ h(µ+ da(ν))
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(Sn + h�)(Sn + Inh + An

h + An
t )

(Sn + Inh + An
h + An

t )+ h(µ(Sn + Inh + An
h + An
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h + An
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(71)An+1
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n
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n
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1+ h(µ+ da(ν))

(73)K =
(Sn + h�)(Sn + Inh + An

h + An
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From the above Jacobean matrix we obtain the eigenvalue �1 = 1
1+hµ < 1 , �2 = 1

1+h(µ+ρ1)
< 1 , 

�3 =
1

1+h(µ+da(ν)+θ1)
< 1 and �4 = 1

1+h(µ+da(ν))
< 1 . Since all the eigenvalues of Jacobean at VFE are less 

than one, therefore, the proposed numerical scheme will converge to VFE if Rh < 1 irrespective of the step 
size taken. Hence the VFE is stable if Rh < 1.
Case 2. The Jacobean matrix corresponding to case 2 can be written as

where

Case 3. The Jacobean matrix corresponding to case 3 can be written as
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The principal eigenvalues for the Jacobians J(E∗h) and J(E∗∗h ) were plotted using the MATLAB database and 
are shown in Fig. 3a and b, respectively. The anticipated claim is supported by the finding that these largest 
eigenvalues are all less than unity.
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2) (b) at the EE point (Case 3).
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Before closing this section, we provide some numerical simulations for the co-infection model of HIV/AIDS 
and Hepatitis C viruses with fuzzy parameters.

Figure 4a,b show the convergence of the NSFD method to the true equilibrium points of the continuous model 
at step sizes, h = 1 and h = 100 at the first endemic equilibrium point. The figures show that the NSFD method 
remains convergent and retains the essential properties of the continuous dynamical system like positivity and 
boundedness.

The compartment of the HCV-infected subpopulation at the first EE point for case 2 is shown in Fig. 5a,b 
using the suggested NSFD approach with step sizes of h = 1 and h = 100 . The demonstrated results highlight the 
method’s positive behavior and convergence. Due to this result, we may conclude that the suggested technique 
successfully represents the true dynamics of the disease at the first EE point.

Figure 6a,b show the compartment of the subpopulation HCV infected population at step sizes h = 1 and 
h = 100 respectively at the second EE point. The developed NSFD method converges to the true equilibrium 
points of the continuous model at different step sizes. This shows that the NSFD method preserves all the essential 
properties of the continuous dynamical system for case 3.

Figure 7 shows how the compartment representing the HIV-positive group converges at the DFE point. The 
shown outcomes demonstrate the convergence of the NSFD technique as the time step increases to h = 1 and 
h = 100 , while maintaining the significant properties of the continuous dynamical system.

Figure 8a and b show the compartment indicating the HIV-infected subpopulation’s positivity and con-
vergence at the initial EE point. The graphs demonstrate how the NSFD technique effectively retains all of the 
fundamental properties of the continuous dynamical system when the time step grows to h = 1 and h = 100.
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Figure 4.   The portions of HCV infected population for case 1 (a) at h = 1 (b) h = 100.
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Figure 5.   The portions of HCV infected population for case 2 (a) at h = 1 (b) h = 100.
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Figure 6.   The portions of HCV infected population for case 3 (a) at h = 1 (b) h = 100.
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Figure 7.   The portions of HIV infected population for case 1 (a) at h = 1 (b) h = 100.
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In Fig. 9a and b, the behavior of the compartment of the subpopulation HIV infected population at step sizes 
h = 1 and h = 100 respectively for the second EE point have been shown. The figures show the positivity and 
convergence of the method again. In epidemic models, convergence and positivity are crucial characteristics. 
Evidently, the presented graphs show that for all equilibrium points, the proposed NSFD approach achieves 
convergence towards the real equilibrium points throughout a range of step sizes. This demonstrates that the 
approach is an effective tool for studying the model’s long-term behavior. We also determined that the method 
is suited for studying disease dynamics epidemic models based on this behavior. It can also be concluded from 
this behavior that the NSFD technique is capable of reflecting the dynamics of the studied model under fuzzy 
settings. Some conventional standard techniques that exist in the literature can produce chaos and misleading 
variations for particular discretization constraints37, 38.

Conclusion
HIV and HCV co-infection presents a significant medical problem. Both viruses can be spread via common 
methods, such as unprotected sex and needle sharing, rendering particular populations more vulnerable. When 
a person is infected with both viruses, the interactions between them might hasten illness progression and com-
plicate therapy. HIV affects the immune system, making infection resistance more difficult. HCV predominantly 
affects the liver and has the potential to cause chronic liver disease. When both viruses are present, their effects 
can amplify. Coinfection frequently accelerates the progression of liver disease, increases the risk of opportunistic 
infections, and increases the possibility of serious consequences. Mathematical modeling is critical in under-
standing and managing HIV and HCV coinfection. Fuzzy parameters play an important role in mathematical 
models, particularly in situations where there is uncertainty or imprecision in the data or parameters used in 
the model. It allows for a more realistic representation of real-world scenarios and aids in making well-informed 
decisions based on a range of potential outcomes. In this research, we have explored a co-infection model involv-
ing HIV/AIDS and Hepatitis C virus, incorporating fuzzy parameters. Our approach considers the uneven 
transmission of the diseases among infected individuals, where the level of disease transmission varies based on 
the individual’s virus quantity. Likewise, the disease-induced mortality differ among individuals. Rather, they 
differ among each individual within the population. This is where the introduction of the fuzzy model brings a 
notable advantage, offering a more adaptable and well-balanced perspective compared to the conventional crisp 
system. The incorporation of fuzzy theory proves valuable in addressing uncertainties inherent in mathematical 
disease modeling. Fuzzy variables, being contingent on virus load linked to the viral quantities, are examined 
across varying viral levels. With this in mind, we investigated the fuzzy equilibrium points of the analyzed model 
while accounting for virus amount in the population. Our findings revealed that the VFE point is reached when 
the viral abundance in the population remains below the threshold required for disease transmission. However, 
as virus load over the lowest thresholds required for transmission, the EE points are reached. We estimated the 
basic reproduction number and studied its variations with different viral amounts using next-generation matrix 
methods, giving the fuzzy basic reproduction number.

Furthermore, we have formulated an NSFD scheme applicable to both the HIV-Only Sub model and the HCV 
Only Sub Model. We subjected these schemes to analysis across varying viral load levels. Given that ensuring the 
positivity of solutions in dynamic population models is a primary objective, the introduced numerical technique 
maintains this positivity, as demonstrated in this article. The resilience of the devised approach is demonstrated 
by the fact that it constantly maintains positivity not just for different viral amounts but also when dealing with 
both small and large step sizes. Another critical attribute for dynamic population models is convergence. In this 
regard, the developed scheme maintains convergence at both the VFE and EE points. In the future, this study 
could be expanded in a variety of ways, including combining fuzzy stochastic, fuzzy delayed, and fuzzy fractional 
dynamic elements, as well as considering saturated incidence, treatment effects, and delays with fuzzy parameters. 
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Figure 9.   The portions of HIV infected population for case 3 (a) at h = 1 (b) h = 100.
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Furthermore, the NSFD modeling theory might be extended to include age-structured fuzzy epidemic models 
and investigate a variety of other possibilities.

Data availability
The datasets analyzed during the current study are available from the first author upon reasonable request.
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