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Hypergraph reconstruction 
from uncertain pairwise 
observations
Simon Lizotte 1,2, Jean‑Gabriel Young 1,3,4 & Antoine Allard 1,2,4*

The network reconstruction task aims to estimate a complex system’s structure from various data 
sources such as time series, snapshots, or interaction counts. Recent work has examined this problem 
in networks whose relationships involve precisely two entities—the pairwise case. Here, using 
Bayesian inference, we investigate the general problem of reconstructing a network in which higher-
order interactions are also present. We study a minimal example of this problem, focusing on the case 
of hypergraphs with interactions between pairs and triplets of vertices, measured imperfectly and 
indirectly. We derive a Metropolis-Hastings-within-Gibbs algorithm for this model to highlight the 
unique challenges that come with estimating higher-order models. We show that this approach tends 
to reconstruct empirical and synthetic networks more accurately than an equivalent graph model 
without higher-order interactions.

Networks are a simple yet powerful model for the intricate structure of complex systems, in which interactions 
between any pair of the system’s constituting elements can be directly interpreted as edges between the corre-
sponding vertices of a graph. In typical network analyses, these pairwise interactions will initially be unknown 
as we cannot observe them directly; one must instead define a model of what is and is not an interaction and put 
this model to the data to identify the relevant network. For instance, we might define a pollinator and a plant 
species as interacting if a pollinator prefers a particular species over others. This definition will then let us infer 
a plant-pollinator interaction network by observing how often each pollinator visits each plant and processing 
the data with an appropriate statistical model1,2.

Numerous methods have been proposed to perform this critical step of the network analysis process, com-
monly called graph reconstruction, network inference and network reverse engineering. They span a broad range 
of statistical and machine learning techniques and are often tailored to the specific field for which they have been 
developed3. Gene regulatory networks, for instance, have been reconstructed with methods ranging from random 
forests4 and support vector machine algorithms5 to methods based on Pearson correlation in temporal windows6, 
hypothesis testing7, least angle regression8 and ordinary differential equations9. Bayesian frameworks based on 
genomic features10 or random-walk-based algorithms11 have been used to estimate protein-protein interaction 
networks; while brain networks have been measured with a vast range of methods like cross-frequency phase 
synchronization12, Granger causality13, and matrix-regularized network learning frameworks14. More general 
methods have also been developed to reconstruct diverse datasets15–19.

While useful, graphs are fundamentally limited to encoding dyadic connections and higher-order interactions 
aren’t always reducible to a set of pairwise ties20,20,21. For example, empirical evidence shows that accounting 
for such higher-order interactions can enhance models of cortical dynamics22, of biodiversity23–25, and of social 
group formation26. If they are to reap the benefits of such representations, network science methods should be 
able to handle higher-order interactions whenever dyadic relationships are insufficient.

There has been significant recent progress in adapting network science methods to higher-order 
representations27, but the reconstruction of higher-order structures has only been tackled more recently. Prior 
work construct simplicial complexes from cliques of a given graph28,29 or from proximity of vertices in a latent 
metric space30,31, use network data to make inferences about possible higher-order structures32, filters on incom-
plete hyperedge data33 or apply expectation maximization on binary time series to retrieve edges and 2-sim-
plices34. And although higher-order interactions of a network can be seen as form of overlapping communities35, 
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community detection is generally interested in mesoscale or large-scale communities. Hence, no method to date 
can simultaneously handle reconstruction and uncertainty in the pairwise measurements.

This paper introduces a general Bayesian framework to infer higher-order structural interactions from imper-
fect pairwise measurements. We illustrate its use with a minimal example of this problem, focusing on the case of 
hypergraphs with interactions between pairs and triplets of vertices, measured imperfectly and indirectly. Instead 
of providing a point estimate, this framework offers a distribution of the possible hypergraphs compatible with 
all the available observations. The range of structures provided by this distribution allows us to compute error 
bars for various network measurements and the outcomes of network processes36. We also present a network 
model that encodes the projection of hyperedges as different types of pairwise interactions, and use it to analyze 
the impact correlations induced by higher-order interactions can have on the inference outcome. To this end, 
we consider a real-world dataset as well as synthetic observations obtained from empirical hypergraphs. Finally, 
we investigate and discuss the limitations of these two frameworks.

Methods
Let us assume that we possess some measurements X = [xij]i,j=1,...,n of the pairwise interactions of the units of 
a complex system composed of n elements. In general reconstruction problems, these observations could take 
on many forms, such as time series correlation of brain regions37 or the direct observation of the presence (or 
absence) of edges in a networked system15, to name only two examples. To keep our presentation of the methods 
concrete, we will focus on the case where xij is an integer number of observed interactions for vertices i and j. Our 
objective is to infer the interactions in a hidden latent structure S under the assumption that these interactions 
shape the observed behavior of the system (i.e., the measurements). This latent structure could be any type of 
structural representation such as graphs, simplicial complexes, or hypergraphs.

We expect the observation data to be uncertain, meaning that remeasuring the system could lead to differ-
ent values X for the same underlying structure S . For instance, two pairwise observations xij and xrs could be 
identical even if the pair (i, j) interacts in S while (r, s) does not. To account for these fluctuations, we develop 
a Bayesian inference framework, a fully probabilistic approach producing a probability distribution over the 
different structures S compatible with the data X.

Data model
Our framework first requires to specify the likelihood P(X|S ,µ) , which expresses how the observations X are 
related to the latent structure S and any additional parameters of the observation processes µ . We assume that 
the structure S encodes three types of symmetrical interactions: each pair (i, j) can interact weakly ( ℓij = 1 ), 
interact strongly ( ℓij = 2 ) or not interact ( ℓij = 0 ). For instance, measurements X of a social network could be 
the number of conversations recorded between acquaintances ( ℓij = 1 ), friends ( ℓij = 2 ) or strangers ( ℓij = 0).

Supposing that two distinct measurements xij and xrs are not correlated, and that every xij is the outcome of 
numerous independent observations of an ongoing measurement process with constant success rate µℓij deter-
mined by the interaction type, the likelihood is a product of Poisson distributions

where µ = (µ0,µ1,µ2) . Figure 1 illustrates the distribution of pairwise observations modeled by Eq. (1).
Note that we make these assumptions to provide the most simple illustration of our inference framework 

for pedagogical purposes. In fact, any particular empirical dataset will require its own data model determined 
through iterative experimentation38; the Bayesian inference process for a particular empirical dataset rarely 
generalizes to other datasets19.

Structural models
The next step is to specify the latent structural model P(S|φ) , which is a prior probability on each interaction 
ℓij conditioned on some additional hyperparameters collectively denoted by φ . This distribution encodes our 
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Figure 1.   Illustration of a typical distribution of pairwise interactions X produced by the data model. The 
frequencies of the pairwise interactions are shown in gray. The contribution of each type of interaction to the 
likelihood is shown in red.
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hypothesis on the structure of interactions of the system before we make any measurements. For instance, we 
might expect person i to be more likely to develop a friendship with person j than with person k because i and 
j live in the same neighborhood.

To highlight the role of latent higher-order interactions in the reconstruction procedure (or lack thereof), 
we consider two models for the structure S : a hypergraph model ( S = H ) and a categorical-edges model with 
a graph structure ( S = G).

Hypergraph model
We define the hypergraph structure H = (V ,E,T) as a set of vertices V with 2-edges E and 3-edges T. We limit 
the size of the hyperedges to 3 for the sake of simplicity, although larger hyperedges could easily be considered 
by adapting the data model in Eq. (1) accordingly. We opt for a simple hypergraph model in which the existence 
of each hyperedge is conditionally independent from the others. Denoting as p (q) the probability of existence 
of 3-edges (2-edges), the prior probability of H is

where φH = {p, q} are the structure hyperparameters, h1 = |E| is the number of 2-edges and h2 = |T| is the 
number of 3-edges.

We connect this structure to the data model by assigning a type ℓij to each pair of vertices as

where � is the set of pairs covered by a 3-edge

To make further progress, we must make a few arbitrary choices since the full model—the joint distribution 
of the data and latent structure—can be re-parametrized in ways that do not affect the distribution over labels 
and, therefore, over data. These symmetries will cause identifiability problems when we use the model to make 
inferences about latent hypergraphs, so we address them immediately.

First, since the mapping from hypergraph to labels is lossy, the presence of some hyperedges can be hidden 
by others. For example, if vertices i and j are connected by both a 2-edge and a 3-edge (see Fig. 2a), then the 
pairwise interaction will be considered of type ℓij = 2 , as if the 2-edge did not exist—removing them does not 
affect the interaction type and consequently does not change the value of the likelihood given at Eq. (1). 3-edges 
can also hide other 3-edges, as depicted in Fig. 2b. Hence, we must bear in mind that we will only be able to make 
inferences about “visible” hyperedges.

Second, the full model is susceptible to label-switching and thus needs additional adjustments. Indeed, while 
a non-interacting pair ( ℓij = 0 ) and a pair of vertices connected by a 2-edge ( ℓij = 1 ) are associated with different 
distributions of observations because they have distinct means µ0 and µ1 , it is possible to change the structure H 
and the parameters µ in a way that will not affect the overall likelihood of a dataset X. This can be done by replac-
ing every non-interacting pair of H by a 2-edge and vice-versa while also swapping the value of µ0 and µ1 . We 
address this label-switching symmetry it in a standard way by imposing that µ0 < µ1 or, equivalently, by think-
ing of non-interacting pairs as associated with a smaller expected number of interactions than interacting pairs.

The label ℓij = 2 can also technically be exchanged with the labels ℓij = 0 and ℓij = 1 , but because they are 
inherited from a latent hypergraph that correlates multiple pairs of vertices, the problem will only manifest itself 
in very specific situations. Namely, every 2-edge has to belong to at least one triangle formed by two other 2-edges 
or projected 3-edges (this worst-case hypergraph is described in “When are the hyperedges most relevant”). 
Since a vanishing fraction of hypergraphs exhibit this specific configuration, imposing µ1 < µ2 is unnecessary 
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Figure 2.   Examples of structural configurations with hidden hyperedgess. The presence or absence of the (a) 
2-edge and (b) 3-edge shown in red does not alter the type of pairwise interaction ℓij of the vertices, which is 
the same for all configurations. Hence, the likelihood in Eq. (1) has the same value, and we say that these red 
hyperedges are hidden by the other 3-edges.
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to disambiguate most configurations. That said, in practice, we found it useful to impose µ0 < µ2 . Type-1 and 
type-2 interactions are typically sparse, which means that type 0 interactions are dense. Non-interacting pairs 
could therefore seem to form many triangles and could be interpreted as the projection of 3-edges. Imposing 
µ0 < µ2 avoids any confusion.

Categorical‑edges model
Our second model involves graphs with categorical edges G = (V ,E1,E2) defined as a set of vertices V, of weak 
edges E1 , and of strong edges E2 . The types of interaction are then

Much like in the hypergraph case, we adopt an agnostic model and assume a priori that the categorical edges are 
placed randomly according to a simple two-step generative process: strong edges are created independently with 
probability q2 and weak edges are created independently in the remaining unconnected pairs with probability q1

where φG = {q1, q2} , m1 = |E1| and m2 = |E2| are the number of weak edges and strong edges respectively.
There are no hidden edges in this model but the label switching problem is now three-fold: ℓij = 0 can be 

swapped with ℓij = 1 , but also ℓij = 0 with ℓij = 2 and ℓij = 1 with ℓij = 2 . Similarly to the hypergraph model, 
we address this issue by imposing µ0 < µ1 < µ2 since there is no correlation to distinguish ℓij = 1 and ℓij = 2 . 
Hence, we suppose that non-interacting pairs are less frequently measured than interacting pairs and that weak 
interactions are less frequently measured than the strong ones.

Posterior distributions
Combining the quantities defined above, the Bayes formula yields the posterior distribution P(S ,µ,φ|X) of 
each structural model

where P(µ,φ) is a conjugate prior distribution (see Sect. S1 in Supplementary Material for details) and P(X) is 
a normalization factor that needs not to be specified.

Combining Eqs. (2) and (6) with (7) yields the following posterior distributions

and

which both weight every structure-parameters tuple (S,µ,φ) according to their compatibility with the observa-
tions X and their prior probabilities.

Equations (8) and (9) are not closed forms of known distributions, with the main complication being due to 
the presence of edge labels ℓij in the likelihood. Hence, any meaningful use of these posterior distributions will 
require the generation of samples from it, which in turn will be used to estimate statistics such as percentiles, 
the average and the variance of various functions f (S ,µ,φ) . To this end, we have derived Metropolis-within-
Gibbs algorithms whose "details are discussed in Sect. S2 in Supplementary Material." The algorithms are initial-
ized from a heuristic for all simulations as described in Sect. S2. A C++/Python implementation is available at 
https://​github.​com/​Dynam​icaLab/​hyper​graph-​bayes​ian-​recon​struc​tion. The algorithms return a series of tuples 
{(St ,µt ,φt)}t=1,...N sampled according to Eq. (7) for each structural model.
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Results
Case study: Zachary’s Karate Club
We first illustrate the framework with a simple case study based on Zachary’s Karate Club39. Our goal will be to 
recover the latent structure of this system, encoded as a hypergraph H, given synthetic data X generated with the 
likelihood of Eq. (1) and µ = (0.01, 20, 30) . This µ makes it fairly easy to discern non-interacting pairs but leads 
to some overlap between the two other types of interactions, which will allow us to highlight the influence of 
higher-order interactions on the accuracy on the inference (see Fig. 1 which illustrates the distribution of pairwise 
measurement for this choice of parameters). The structure of the original Karate Club only contains dyadic obser-
vations which makes for an uninteresting test of our method, so we add the 3-edges that are found by a separate 
hypergraph inference technique32. (We break down any hyperedge larger than 3 vertices into multiple 3-edges.) 
We show the original graph and associated hypergraph in Fig. 3a,b—we use the latter throughout our case study.

With this hypergraph structure fixed, we generate a synthetic dataset X and approximate its associated pos-
terior distribution using samples generated with the Metropolis-within-Gibbs algorithms. From these samples, 
we derive two estimators of the structure: the maximum a posteriori (MAP) estimator

corresponding to the latent structure that maximizes the posterior distribution, and the edge-wise estimator 
ŜEW that only contains the weak/strong edges or 2-edges/3-edges with a marginal posterior probability above 
0.5, e.g., for the hypergraph model

where P(e|X) is the marginal probability that interaction e is present. We complement these structural estimators 
with an estimator of the type of each pairwise interaction, the maximum marginal estimator 

where

 is the most likely type of interaction type for vertices i and j (ties are broken by choosing a type at random).
Figure 3c,d show ŜMAP and ŜEW for both models fitted to the same realization of the data X. In both cases, 

we see that our inference framework reconstructs the original structure quite accurately, though both estimators 

(10)ŜMAP = argmax
S

P(S|X),

(11)ŜEW = {e| e ∈ E ∪ T , P(e|X) > 0.5},

(12a)ŜMM = {ℓ̂ij | i, j ∈ V},

(12b)ℓ̂ij = argmax
ℓij∈{0,1,2}

P(ℓij|X)

Figure 3.   Inference process on a small dataset. (a) Original network of Zachary’s karate club39. (b) Hypergraph 
representation of the Zachary’s karate club, see main text. (c) Illustration of the structure corresponding to the 
estimators ŜMAP and ŜEW for the categorical-edges model. Strong edges are shown in orange. (d) Same as (c) but 
using the hypergraph model. (e) Confusion matrix built using the ŜMM estimators for the interaction types. (f) 
Same as (e) but using the hypergraph model. The inference was done on synthetic observations generated using 
µ = (0.01, 20, 30) . The maximum a posteriori (MAP) structure maximizes the posterior distributions (Eqs. (8) 
and (9)), while the edge-wise structure contains the edges and hyperedges that exist in at least half of the 500 
samples of the posterior distributions. The estimator for the type of interaction, noted ℓ̂ij , is used to build the 
confusion matrix. It corresponds to the most likely type of interaction for vertices i and j.
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miss a few 3-edges. While some of them are genuine errors, quite a few missing 3-edges are simply hidden and 
thus unrecoverable (as defined in “Structural models”).

Since these hidden interactions are an artifact of our framework and are therefore irrelevant, we focus on 
predicting the pairwise interaction types ℓij which ignore hidden interactions by construction. Figure 3e,f show 
that both the hypergraph and the categorical-edges model accurately infer the interaction types with the confu-
sion matrix, a generalization of statistical errors (type I and type II errors) for multiple classes. The element crs 
of this matrix denotes the number of times a pairwise interaction of type ℓij = r has been predicted as ℓ̂ij = s 
by the maximum marginal estimator ŜMM . Hence, a perfect reconstruction corresponds to a diagonal matrix. 
The major difference between both confusion matrices is that the categorical-edges model uses weak edges and 
strong edges somewhat interchangeably, which results in reconstruction errors that go both ways. In contrast, 
the hypergraph model has no false positive 3-edges. This is due to the restrictive nature of 3-edges: each type-2 
pairwise interaction must be associated with at least two other type-2 pairwise interactions (as long as the 3-edge 
is not hidden). As a result, our framework will err on a more conservative side when assigning larger hyperedges: 
the framework will assign ℓij = 1 unless there is sufficient evidence in the neighborhood of vertices i and j that 
supports a 3-edge. This additional neighborhood information is what allows the hypergraph model to have a 
smaller sum of off-diagonal elements in the confusion matrix, meaning that it more accurately retrieves the 
interaction types.

Case study: dolphin interactions
We now apply our framework on observations of 13 male bottlenose dolphins interacting together in a shallow 
lagoon as they swim40.

We first observe that the pairwise observations frequencies shown in Fig. 4b roughly mimic those of the like-
lihood in Fig. 1, which suggests that the data model introduced in “Data model” is appropriate for this dataset. 
Looking at Fig. 4a, we also observe that the most frequent pairwise interactions appear in triads of dolphins (i.e. 
xij , xik and xjk for dolphins i, j and k) except for dolphins 8 and 9. This suggests that the assumptions behind our 
hypergraph model are plausible.

Figure 4c,d show that both models predict the same pairwise interactions, but that some inferred types differ. 
Although dolphins 8 and 9 interacted very frequently, the hypergraph model predicts that they have a type-1 
interaction since neither interacted with other dolphins and are therefore unlikely to participate in a 3-edge. 
In contrast, the categorical-edges model predicts that the pair is a type-2 interaction since it was observed 
many times. Similarly, the hypergraph model predicts that dolphins 0 and 1 have a type-1 interaction while the 
categorical-edges model predicts a type-2 interaction. This is because the interactions with other dolphins (i.e., 
x0k and x1k for k  = 0, 1 ) have not been observed frequently enough and, as a result, it is unlikely that a 3-edge 
connects these dolphins.

Figure 4.   Inference of empirical observations of the interactions of a group of dolphins from Ref.40. (a) 
Frequency of each pairwise observation. (b) Histogram of the pairwise observations. (c) MAP estimator of the 
hypergraph model. (d) MAP estimator of the categorical-edges model. Although observed more frequently, the 
pair (8, 9) and the pair (0, 1) are inferred as 2-edges (type-1 interaction) in the hypergraph model compared 
to being classified as type-2 interactions in the categorical-edges model. This is due to the hypergraph 
model hypothesis which specifies that type-2 interactions must appear as triangles of very frequent pairwise 
observations (or less frequent if µ2 < µ1 ). The MAP estimators were obtained from a sample of size 500 for 
each model.
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For these reasons, the model selection for this dataset is partly guided by the interpretation: if we judge that 
frequent interactions are mostly explained by triads, then it makes sense to consider pairs of dolphins (0, 1) and 
(8, 9) as type-1 interactions; otherwise, it makes sense to consider them as type-2 interactions.

Our framework is expected to yield similar results for any empirical dataset whose distribution of pairwise 
observations is similar to a mixture of Poisson distribution (see Figs. 1 and 4b). Otherwise, the likelihood in 
Eq. (1) should be adjusted accordingly, as explained previously.

Comparison to alternative approaches
We compare the performance of our inference framework to other approaches on a broader collection of syn-
thetic and empirical hypergraphs. For the empirical hypergraphs, we select a network of crimes41, a network 
of sexual contacts42, a plant–pollinator network43 and a network of languages44. The original networks are all 
bipartite, so we again adapt them to our purpose by interpreting one of the two vertex types as hyperedges: 
individuals are vertices and crimes are hyperedges, sex workers are vertices and hyperedges are their clients, 
pollinators are vertices and the plants they pollinate are hyperedges, vertices are countries and hyperedges are 
languages spoken. We ignore hyperedges with more than five vertices to keep a sufficient number of 2-edges in 
the hypergraph, we project 4-edges and 5-edges to cliques of 3-edges, and we remove any isolated vertex. We 
also include the hypergraph derived from Zachary’s Karate Club above.

We complement these empirical datasets with hypergraphs generated using the three computer models, 
namely (i) the superimposed stochastic block model45 (two unequal communities of 30 and 70 vertices with 
connection probabilities of q11 = 0.05 , q12 = q21 = 0.001 and q22 = 0.02 for 2-edges, and of p1 = 0.005 and 
p2 = 0.0001 for 3-edges inside communities and pout = 0.00001 outside communities), (ii) a triangle-edge con-
figuration model of 100 vertices46 (with degrees drawn from independent geometric distributions of means 2 and 
3 for 2-edges and 3-edges, respectively), and (iii) the β-model for layered hypergraphs47 (with vertex propensities 
of 2-edges and 3-edges drawn from normal distributions of averages −4.5 and −5 and of standard deviations 
2.5 and 2, respectively).

In addition to our Bayesian models, we study 3 alternative reconstruction approaches based on existing 
methods: 1) place a weak edge if xij ≥ t1 and place a strong edge if xij ≥ t2 (Threshold ×2 ); 2) place an edge if 
xij ≥ t1 and infer the hypergraph with Ref.32 (Threshold + Bayesian); 3) infer the graph with Ref.19 and infer 
the hypergraph with Ref.32 (Bayesian ×2 ). Here, the hyperedges obtained using Ref.19 are projected onto 3-edges 
to remain consistent with our framework. To maximize the accuracy of these methods and to keep a systematic 
approach, we set the thresholds t1 and t2 to the theoretical values minimizing the number of misclassified edge 
types in the limit of large n, which is the intersection of two weighted Poisson distributions with weights ψ1 and ψ2 
and parameters �1 and �2 respectively (assuming �1 < �2 without loss of generality and 0 < ψ1,ψ2 < 1 ). We find 

 where

is a point located in the interval (e.g., 
[

⌊t1⌋, ⌊t1 + 1⌋
]

 ) where the two weighted Poisson distributions intersect. 
The marginal prior probability P(ℓij = k) for edge-type k is set to the proportion of interactions of type k in the 
ground truth hypergraph and the parameters µ are set to the values used to generate the synthetic observations.

As before, we generate a series of synthetic observations with the likelihood in Eq. (1) and µ = (0.01, 40, 50) , 
and then sample the posterior distribution to compute the confusion matrices of both models. We summarize 
our results using the fraction of misclassified type-1 and type-2 interactions, a quantity we call the relative 
reconstruction error

where crs are the elements of the confusion matrix. This quantity similar to 1−F1-score, but it considers both true 
positives and true negatives (see Appendix S3 A for details).

The results are reported in Fig. 5 where we see that the hypergraph model performs at least as well as the 
categorical-edges model. We also observe that although the methods based on that of Ref.32 sometimes work 
better, the hypergraph model is never far behind. In fact, we find that overall the hypergraph model shows a 
good and consistent performance compared to the other methods, thereby making it more reliable. The following 
section explores the factors influencing the performance of the hypergraph model.

When are the hyperedges most relevant
To gain better insights on the factors influencing the performance of the hypergraph model, we consider two 
extreme cases: a “best-case hypergraph’ and a “worst-case hypergraph”.

In the best-case hypergraphs, groups of 3 vertices can only be connected by a 3-edge. This means that vertices 
(i, j, k) can form a triangle in projected pairwise interactions only if ℓij = ℓik = ℓjk = 2 . As a result, there is no 

(13a)t1 = z

(

µ0, P(ℓij = 0);µ1, P(ℓij = 1)

)

(13b)t2 = z

(

µ1, P(ℓij = 1);µ2, P(ℓij = 2)

)

,

(14)z(�1,ψ1; �2,ψ2) =
�2 − �1 − lnψ2 + lnψ1

ln �2 − ln �1

(15)ǫ =
c10 + c12 + c20 + c21

c10 + c11 + c12 + c20 + c21 + c22
,
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ambiguity on whether or not triangles are a mix of 2-edges and projected 3-edges, and 3-edges can be distin-
guished from triangles of non-interacting pairs since they have greater pairwise measurements. This effectively 
makes the neighborhood of any pair of vertices very informative on its type of interaction. We generate such 
hypergraphs by removing the 2-edges that do not respect the imposed constraint from a hypergraph generated 
with the prior (2) (see Fig. 6).

10−3 10−2 10−1 100

Error

Zachary [39]
(E∆ = 0)

Crimes [41]
(E∆ = 0)

Sex. contacts [42]
(E∆ = 0)

Plant-poll. [43]
(E∆ = 0.8)

Languages [44]
(E∆ = 0)

Hyper. SBM [45]
(E∆ = 0.2)

Hyper. CM [46]
(E∆ = 0.32)

β-model [47]
(E∆ = 0.7)

Best-case
(E∆ = 0)

Worst-case
(E∆ = 1)

Categorical
Hypergraph
Bayesian×2

Threshold
+Bayesian
Threshold×2

Figure 5.   Error of different reconstruction approaches for observations generated both from synthetic and 
empirical structures. In the simulations, we sample 500 points from the posterior distribution of our Bayesian 
models, sample 200 points from the posterior distribution of Ref.19 and perform 50, 000 swaps of Ref.32 
algorithm. Points represent the median and errors bars the first and third quartiles for 100 observation matrices 
generated with µ = (0.01, 40, 50) . Values shown in the figure are bounded below at 0.001 (as the error can be 
null). The numerical values of this figure are presented in Table S1 of Sect. S3 in Supplementary Material.

Figure 6.   Illustration of the generation of the best-case and worst-case hypergraphs. (a) The best-case 
hypergraphs are obtained by first generating a random hypergraph using Eq. (2) and then removing any 2-edge 
that creates a triangle when projecting the hypergraph onto the pairwise interactions. While there are many 
ways to remove 2-edges to respect this constraint, the position of the remaining 2-edges is not important 
and we therefore only seek to find one solution. (b) The worst-case hypergraphs are generated from a graph 
with isolated cliques of 2-edges and in which each triangle can be promoted to a 3-edge with a given probability.
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The worst-case hypergraphs only contain 2-edges if they form a triangle in the projection. In other words, 
ℓij = 1 is only possible if there exists another vertex k such that ℓikℓjk > 0 . As a result, the only difference between 
a type-1 and type-2 interaction (i, j) is its pairwise observation xij ; the neighborhood of a pairwise observation 
is uninformative. To produce these worst-case hypergraphs, we generate graphs with isolated cliques of 2-edges 
where each triangle is promoted randomly to a 3-edge (see Fig. 6).

To estimate how much a given hypergraph resembles the best-case or the worst-case, we compute the propor-
tion of 2-edges inside projected triangles

where 1 is the indicator function. The closer E� is to 0, the closer the hypergraph is to a best-case hypergraph, 
and the closer the E� is to 1, the closer the hypergraph is to a worst-case hypergraph.

Revisiting Fig. 5, we see that E� is related to the error ǫ and that errors for each hypergraph range between 
the best-case and the worst-case. However, the proportions ρk of pairs predicted as type k, defined as

also play a role in ǫ : when a type of interaction is being observed at a similar rate to another, models will most 
likely favor the type with the largest proportion as it leads to a better fit.

Figure 5 also shows that empirical hypergraphs are generally closer to a best-case hypergraph than to a worst-
case. This is due to the sparsity of interactions of empirical complex systems: we expect that most 2-edges are not 
part of projected 3-edges. For that reason, the hypergraph model works better than the categorical-edges graph 
model for the majority of systems. And when the hypergraph model errs, both models tend to err as confirmed 
by the last two lines of Fig. 5.

Impact of data means
To complete our analysis, we study the impact of the parameters µ on the reconstruction by varying µ1 while 
keeping µ0 = 0.01 and µ2 = 50 fixed, for the two families of extreme hypergraphs described above (with n = 100 
vertices). Doing so allows us to identify the regimes in which the hypergraph model displays a better perfor-
mance. In addition to the relative reconstruction error ǫ , we also consider two additional summary statistics: 
the entropy S of the label distribution, and the sums of residuals Rk.

We define the entropy of the label distribution as

We use log3 instead of the standard log2 in information theory for interpretability: the entropy is 0 if only one 
type of interaction exists and is 1 if the three types are uniformly represented (i.e., ρ0 = ρ1 = ρ2 =

1
3 ). Since 

the empirical datasets are sparse, most pairs of vertices do not interact, meaning that S is small. Nevertheless, 
comparing entropy values allows us to detect when a model completely ignores a type of interaction.

The sums of residuals Rk are defined as

where X̃ = [x̃ij]i,j=1,...,n is an observation matrix generated synthetically from the posterior-predictive 
distribution19,48. For each sample point S̃ , µ̃ ∼ P(S ,µ|X) , we generate predictive matrices X̃ from the likeli-
hood (1). This is known as a form of posterior–predictive check, and it quantifies the goodness of fit of a model 
by checking that the fitted model can adequately reproduce the original data. The statistics Rk will reveal biases 
in the fitted model, with Rk ≈ 0 only when the predicted pairwise observations x̃ij are on average equal to the 
pairwise observations xij for the interactions of type k.

Figures 7 and 8 show that the relative reconstruction error generally increases as µ1 approaches µ0 or µ2 . 
This behavior is expected because there is a greater overlap between the corresponding Poisson distributions in 
the observations X. When this overlap is large, interaction types are represented similarly in the observations 
X, which makes them difficult to infer. Figures 7 and 8 also show that the entropy generally decreases and stabi-
lizes to a lower plateau as µ1 approaches µ2 . This is due to a similar phenomenon: with the increasing overlap, 
models favor one type of interaction over the other to the point where one type of interaction disappears. Once 
the interaction types have “merged”, the entropy remains constant.

For the best-case hypergraph, we clearly see in Fig. 7 that the hypergraph model overall outperforms the 
categorical-edges graph model. Figure 7a shows that the hypergraph model makes very little reconstruction 
errors for all sets of parameters. This translates to a higher entropy, as seen in Fig. 7b, and to a smaller predic-
tive bias in Fig. 7c. We conclude that the worse performance observed for the categorical-edges graph model is 
explained by weak and strong edges ending up being interchangeable because of their pairwise nature. Without 
the information from the neighborhood that 3-edges imply, the interaction type of a pair ℓij must be deduced 
from its observation xij alone.

(16)E� =
1

h1

∑

(i,j)∈E

1−
∏

k∈V

1 [(i, k), (j, k) �∈ � ∪ E],

(17)
ρk =

c0k + c1k + c2k
(

n
2

) ,

(18)S = −

2
∑

k=0

ρk log3 ρk .

(19)Rk =
∑

i<j

(xij − x̃ij)δk,ℓij ,
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Figure 7.   Impact of the measurement rate ( µ1 ) of type-1 interactions on the reconstruction of a best-case 
hypergraph. (a) Relative reconstruction error ǫ . (b) Entropy S. (c) Sums of residuals Rk . The observations were 
generated with µ0 = 0.01 , µ2 = 50 and various µ1 using the hypergraph model (blue) and the categorical-edges 
graph model (orange). The hypergraph model displays (a) a smaller reconstruction error (b) a larger entropy 
and (c) lower residuals than the categorical-edges graph model, which indicates a better reconstruction. The 
different statistics are estimated with a sample of size 500. Symbols represent the median, light colored shadings 
are percentiles 2.5 and 97.5 and dark colored shadings are percentiles 25 and 75 of the metrics for 200 synthetic 
observations. Residuals were evaluated using 200 predictive observation matrices and the best-case hypergraph 
was generated using p = 0.00017 and q = 0.019.
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Figure 8.   Impact of the measurement rate ( µ1 ) of type-1 interactions on the reconstruction of a worst-case 
hypergraph (see Fig. 7 for details). While the categorical-edges graph has a similar performance to the best-
case hypergraph (Fig. 7), the hypergraph model cannot distinguish 3-edges from 2-edges with triangles, which 
results in a worse reconstruction. This is seen with (a) a larger reconstruction error (b) a smaller entropy and (c) 
larger residuals. The worst-case hypergraph was constructed from 20 isolated 5-cliques in which triangles were 
promoted to 3-edges with probability 0.19.
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For the worst-case hypergraph, Fig. 8 illustrates that the categorical-edges graph model slightly outperforms 
the hypergraph model. We believe this is due to the prior distribution of the 3-edge probability p: because there 

are 
(

n
3

)

 possible 3-edges compared to 
(

n
2

)

 possible 2-edges, there is a much larger number of 3-edges than 

strong edges for the same probability. In this worst-case setting, 3-edges are almost indistinguishable from 
2-edges since triangles are mixture of 2-edges and projected 3-edges. Thus, there is no improvement brought by 
the hypergraph model, which suggests that this hypergraph representation is not appropriate.

We note that because the Poisson distribution is under-dispersed, the overlap between the edge-type distribu-
tions in the data model decreases when the system is observed for a longer time period (i.e. increasing τ when 
µ1 = τ�1 and µ2 = τ�2 with �1 and �2 being the measurement rates of the interaction types). As a result, the 
reconstruction error for both Bayesian models converges to 0 in the limit of large time periods.

Conclusion
Mounting evidence collected in recent years support that the behavior of many complex systems require taking 
into account high-order interactions. However, many of the tools of this rapidly expanding field have yet to find 
practical applications still as measurements of higher-order systems remains challenging to this day.

We presented a minimal Bayesian inference framework that makes progress in this direction, by reconstruct-
ing hypergraphs from uncertain observations of their pairwise projection. Using synthetic and empirical datasets, 
we illustrated the impact that taking into account high-order interactions has on the accuracy of the reconstruc-
tion. Notably, we identified the regimes where high-order interactions yield fewer reconstruction errors, due to 
the fact that hyperedges require the use of local information contained in the neighborhood of vertices.

Although the inference framework introduced here is fairly general, we illustrated it using simple data and 
hypergraph models to avoid obfuscating its presentation unnecessarily. Thus, future work should be done to 
apply our framework to hypergraphs with hyperedges larger than 3-edges, and to non-Poissonian data models 
tailored to other empirical datasets. Doing so will require to treat carefully the way higher-order interactions 
are assumed to be encoded in the pairwise observation data; as we have shown, insufficient pairwise informa-
tion may lead to undetectable hyperedges. A partial solution worth investigating involves the use of simplicial 
complexes, a more restricted higher-order structure in which a hyperedge of size k implies every hyperedge of 
size k − 1 . Yet, how to connect pairwise interactions to such higher-order interactions remains an open question 
and is a testament to the bright future Bayesian inference of higher-order interactions has over the coming years.

Data availability
All empirical datasets used are available from the cited references.

Code availability
A C++/Python implementation of our algorithms is available at https://​github.​com/​Dynam​icaLab/​hyper​graph-​
bayes​ian-​recon​struc​tion.
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