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Comparison of statistical 
approaches to predicting 
norovirus laboratory reports 
before and during COVID‑19: 
insights to inform public health 
surveillance
Nikola Ondrikova 1,2,3*, Helen Clough 1,3, Amy Douglas 4, Roberto Vivancos 3,5,6, 
Miren Itturiza‑Gomara 7, Nigel Cunliffe 1,3 & John P. Harris 5

Social distancing interrupted transmission patterns of contact‑driven infectious agents such as 
norovirus during the Covid‑19 pandemic. Since routine surveillance of norovirus was additionally 
disrupted during the pandemic, traditional naïve forecasts that rely only on past public health 
surveillance data may not reliably represent norovirus activity. This study investigates the use of 
statistical modelling to predict the number of norovirus laboratory reports in England 4‑weeks ahead 
of time before and during Covid‑19 pandemic thus providing insights to inform existing practices in 
norovirus surveillance in England. We compare the predictive performance from three forecasting 
approaches that assume different underlying structure of the norovirus data and utilized various 
external data sources including mobility, air temperature and relative internet searches (Time Series 
and Regularized Generalized Linear Model, and Quantile Regression Forest). The performance of 
each approach was evaluated using multiple metrics, including a relative prediction error against 
the traditional naive forecast of a five‑season mean. Our data suggest that all three forecasting 
approaches improve predictive performance over the naïve forecasts, especially in the 2020/21 season 
(30–45% relative improvement) when the number of norovirus reports reduced. The improvement 
ranged from 7 to 22% before the pandemic. However, performance varied: regularized regression 
incorporating internet searches showed the best forecasting score pre‑pandemic and the time series 
approach achieved the best results post pandemic onset without external data. Overall, our results 
demonstrate that there is a significant value for public health in considering the adoption of more 
sophisticated forecasting tools, moving beyond traditional naïve methods, and utilizing available 
software to enhance the precision and timeliness of norovirus surveillance in England.

In recent years, research on forecasting of infectious diseases and use of externally sourced data has grown 
 considerably1–3. This has boosted the development of new modelling methods specifically targeting the challenges 
of using public health surveillance  data4. In terms of external data sets, two popular choices across countries and 
pathogens are weather data such as air temperature, and digital data such as relative internet  searches5,6. The 
importance of forecasting applications and use of externally sourced data in public health was further underlined 
by the Covid-19 pandemic. For example, mobility data played an important role in understanding the impact of 
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Covid-19 prevention and control measures on human  behaviour7. The transmission patterns and seasonality of 
pathogens unrelated to the cause of the pandemic such as those causing gastrointestinal infections were altered by 
the  pandemic8. Additionally, temporal disruption to pathogen reporting hindered interpretation of the historical 
data that are used for comparison with an ongoing season to highlight changes in  activity9.

Norovirus is a highly infectious viral agent causing short but intense symptoms of diarrhoea and  vomiting10. 
The majority of reported norovirus infections in England originate from outbreaks in closed and semi-closed 
settings such as care homes and  hospitals10,11. However, the surveillance system underestimates sporadic cases of 
norovirus infections, with 239 to 346 community cases for every laboratory-confirmed  report12. The number of 
laboratory-confirmed cases of norovirus significantly decreased during the pandemic and this impact was more 
pronounced compared with a less outbreak-driven  pathogen8,9. Previous research highlighted the importance of 
contact patterns and person-to-person transmission in the context of norovirus  prediction13.

Currently, unusual activity of norovirus in England is highlighted by comparing the latest activity to histori-
cal data. Multiple sources of activity are available such as local outbreak reporting and laboratory-confirmed 
reporting. Additionally, the UK Health Security Agency (UKHSA) monitors circulating norovirus strains and 
captures real-time levels of gastrointestinal symptoms via syndromic surveillance. However, potential drawbacks 
of these approaches include (1) norovirus-specific reporting and strain monitoring has a built-in delay due to 
the time necessary to process stool samples; and (2) real-time syndromic surveillance inevitably contains false 
signals since it measures symptoms which can be attributed to gastrointestinal pathogens other than norovirus.

Externally sourced data have been used for norovirus  prediction14,15, but more comprehensive evaluation 
of norovirus forecasting in England is lacking. This study investigates the predictive performance of three fore-
casting approaches with various covariates compared with the currently used naïve forecast of a week-based 
five-season mean before and during the Covid-19 pandemic. The three approaches cover popular choices in 
terms of family of methods (e.g. time series, regularized regression, algorithms) and data sources such as air 
temperature data and relative internet searches. Additionally, we test the statistical significance of the predic-
tive performance improvement that can be achieved by the inclusion of Central England Temperature, Google 
Trends and Community Mobility data.

Methods
Data and pre‑processing
Norovirus laboratory reports
We utilized weekly laboratory reports of norovirus infections that are routinely collected in England. The national 
data between Week 27, 2009 to Week 26, 2021 were extracted from the Second-Generation Surveillance  System16. 
Data spans from summer (week 27) to summer (week 26) since norovirus reporting reaches peak activity in 
winter. While this data set is already curated, we added a zero entry in case no reports were received on a given 
week. The laboratory data are characterized as (1) non-negative integers, the minimum number of reports is 
zero, (2) autoregressive, current number of reports depends on the reports from previous weeks, (3) seasonal, 
visible peak in winter, (4) heteroskedastic, predictive error tends to be higher during the winter peak of norovirus 
activity, and (5) overdispersed, variance in the data is higher than expected.

Additionally, further categorical indicators were derived from the data based on exploratory analysis. Specifi-
cally, we indicate the week of Christmas holidays (Week 52), the initial weeks of the pandemic in England and 
the ongoing impact of the pandemic. We also used the laboratory data to fit norovirus seasonality with Fourier 
terms and calculate a three-week moving mean. As the laboratory data are inherently delayed due to the time 
required for a sample to reach diagnostic laboratories and to be tested and reported, it is common practice to not 
use the number of reports from the previous week. The smoothing via three-week moving mean allows leveraging 
of the available, but uncertain data point and increase of its reliability by combining with two datapoints prior.

Central England temperature
Central England Temperature (CET) is a time series indicating air temperature in England and is provided by 
Hadley Centre under the Met Office, a national meteorological service for the UK. Previous research suggests 
the Central England Temperature has a strong relationship with norovirus laboratory  data14, but the variable 
has not been evaluated in the predictive modelling setting. We downloaded the daily data from the Met Office 
 website17. Daily time series were aggregated to weekly level by calculating the mean value using “Zoo” R  package18 
and lagged (i.e. delayed) by three weeks to match the real-world setting where norovirus laboratory data lagged 
by one or two weeks are not available.

Community mobility data
Community Mobility data is a time series starting from  17th February 2020. It captures the change in the number 
of visitors to public spaces in the time of the Covid-19 pandemic. Six categories of public spaces are available: 
Residential, Grocery and Pharmacy Stores, Retail and Recreation, Transit Stations and Workplaces. Due to a 
strong seasonal pattern in park visits, we excluded this category from the analysis. Note that the data captures 
only users who enabled sharing of their location history with Google.

Data can be extracted from Covid-19 Community Mobility Reports Google provides in pdf format. We used 
a pre-processed and smoothed version of the time series from Our World in  Data19 downloadable in a csv format 
and better suited for dynamic analysis. Similar to the CET time series, mobility data were adjusted to weekly 
granularity by calculating a mean across daily values and lagged by three weeks. Additionally, further experimen-
tation was necessary to determine handling of the missing data points before February 17, 2020. We considered 
two alternatives, (1) replacing missing data with random sequence based on the random noise component from 
the individual time series between June 2021 and June 2022, and (2) extracting seasonal component and the 
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mean of the random noise component. To extract seasonality and random noise, each mobility time series was 
decomposed using a decompose function from the “stats” R  package20. The two options were compared in the 
Count Time Series GLM model described later. The lower AIC indicated the option with the seasonal compo-
nent (AIC = 5758.79) filled the missing values better in comparison to the option without seasonal component 
(AIC = 6104.98). Figure 1 shows the mobility data time series alongside norovirus laboratory reports.

Relative search volumes
For relative internet searches we used public application programming interface (API) for R implemented in 
“gtrendsR”  package21, which allowed us to access and download Google Trends results programmatically. Google 
trends offer relative internet search volumes, which means that selecting a different period can result in different 
values for a particular week. Therefore, to faithfully represent the real-world setting, the data for the prediction 
assessment were extracted week-by-week, i.e. the data is downloaded as a fresh set of data every week when 
predictions are produced.

Search term selection was conducted in an automated manner described  here22. Briefly, we downloaded 
norovirus-related search terms by first extracting internet searches for the keywords “norovirus” and “stomach 
bug” and continuing with all the related search terms provided by Google Trends. We then repeated the same 
process for all the related search terms. Finally, the time series for the identified search terms were lagged by three 
weeks, merged with the national norovirus laboratory reports and Pearson’s correlation coefficient was calculated. 
Search terms including a number and those weakly correlated with laboratory report (coefficient < 0.20) were 
removed. The selection period ranged from September 2014 and 2019 and resulted in 14 search terms: "symp-
toms norovirus", "norovirus how long", "symptoms of norovirus", "norovirus incubation", "norovirus treatment", 
"what is norovirus", "norovirus outbreak", "sickness bug", "stomach bug", "norovirus first symptoms", "norovirus", 
"stomach flu", "flu symptoms" and "gastric flu".

Statistical analysis
The goal of the statistical analysis is to predict the number of norovirus laboratory reports 4 weeks ahead follow-
ing the last report in the time of pandemic. We selected three approaches for comparison based on the statistical 
characteristics of the laboratory data and the ability to incorporate additional data sources—generalized linear 
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Figure 1.  Norovirus laboratory reports and imputed Community Mobility Data.
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model (GLM) for count time series, Regularized GLM with Cross Validation and Quantile Regression Forest. 
The response variable is the same in all the approaches—the weekly time series of norovirus reports in England. 
However, not all the approaches use all of the data sources or newly created explanatory variables described in 
the Data and Pre-processing section. This is summarized in Table 1.

After the data is imported and prepared for the analysis, we split the merged data set into two sections: train-
ing and testing. To estimate the error, we dynamically extend the training data in a stepwise fashion, week-by-
week. Testing data are then the 4 following data points. This means that the training iteration always started in 
Week 27, 2009, but ended in different weeks. For example, the first iteration of the training data ended in Week 
38, 2017, the second in Week 39, 2017 and the last iteration ended in Week 19, 2021. Equivalent testing data 
ranges were Weeks 39–42, 2017 for the first evaluation iteration, Weeks 40–43, 2017 for the second and Weeks 
20–23, 2021 for the last. We only evaluated the period between calendar weeks 40 to 20 which is more difficult 
to predict as it includes the high season due to outbreaks. Note the difference between the calendar weeks and 
the training/testing data weeks. In the real-world setting, the predictions generated on the  40th calendar week, 
could only use data up-until week 38 due to reporting delay and so the 1-week-ahead forecast is a hindcast, 
2-weeks-ahead is a nowcast and the 3 and 4-week-ahead predictions are true forecasts. During this procedure, 
we kept track of the prediction type (1-week-ahead, 2-weeks-ahead, etc.) and the norovirus season (e.g. Week 
27, 2017–Week 26, 2018).

Finally, predictions from the testing data are evaluated against the observed norovirus laboratory reports with 
two metrics: weighted interval score (WIS)23 implemented in “scoringUtils”  package24 and Pearson Correlation 
Coefficient from “stats”  package20 . WIS assess the forecasting approaches based on prediction intervals and the 
lower the score the better. Pearson coefficient indicates trend of point predictions and higher values indicate 
better trend prediction. The results are presented for each of the four prediction types. The result section also 
provides pre-pandemic, early pandemic and post-pandemic onset aggregations with and without the inclusion 
of a particular externally sourced data. A permutation test is used to assess statistical difference between the WIS 
metric across the pre-, early and post-pandemic onset aggregations with and without CET, Google Trends and 
mobility data within each modelling framework.

To compare modelling forecasts to the naïve forecast, we use relative Mean Absolute Error (rMAE) that assess 
point-prediction accuracy. Naïve forecasts are calculated as a mean of historical values across previous 5 years 
for a given week, i.e. five-season mean. For example, five-season mean for a week 40, 2020 would be calculated 
as a mean of week 40 from years 2019, 2018, 2017, 2016 and 2015.

Generalized linear model for count time series
Generalized Linear Model (GLM) for count time series is a simplified name for Integer-valued Generalized 
Autoregressive Conditional Heteroskedasticity (IN-GARCH)25 models. These models are based on generalized 
linear regression (GLM) utilising quasi conditional maximum likelihood estimation to fit a negative binomial 
distribution that can account for overdispersion. The method is implemented in R in the “tscount”  package26. 
The main advantage of this implementation is the convenience of straight forward specification. We can con-
sider the seasonal and autoregressive nature of the norovirus laboratory reports by regressing on past values. 
Therefore, we did not use pre-fitted Fourier terms seasonality and three-week moving mean as explanatory 
variables. However, CET, the community mobility data, linear trend and categorical indicators for Christmas 
and pandemic were included.

Regularized GLM with cross‑validation
Regularisation is a commonly used method to extract a signal from a high number of explanatory variables as 
it shrinks coefficients of less relevant covariates. The regularization parameter is selected through a process of 
cross-validation. The parameter achieving the lowest prediction error on the validation/testing portion of the 
data is selected for the regularization. The implementation from the “mpath” R  package27 fits a negative binomial 
model via penalized maximum likelihood where the penalized log-likelihood is maximized. We used this method 

Table 1.  List of variables and modelling approaches.

List of variables Variable type

Modelling approaches

Time series GLM Regularized GLM Quantile regression forest

Count of norovirus laboratory reports Outcome/target ✓ ✓ ✓

 3-week rolling mean Covariate/feature ✓ ✓

 Seasonal pattern fitted with Fourier terms Covariate/feature ✓ ✓

Central England Temperature Covariate/feature ✓ ✓ ✓

Google Trends Covariate/feature ✓ ✓ ✓

Google Community Mobility Covariate/feature ✓ ✓ ✓

Categorical indicators:

 Christmas (week 52 every year) Covariate/feature ✓

 Early Covid-19 pandemic (weeks 12 to 26, 2020) Covariate/feature ✓

 Covid-19 pandemic (week 12, 2020–week 26, 2021) Covariate/feature ✓
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to extract the relevant signal from relative search volumes from Google Trends, mobility and air temperature 
data to predict the number of norovirus laboratory reports. As this method does not assume a sequential nature 
of the data, we included a 3-week rolling mean and pre-fitted seasonality derived from norovirus laboratory 
reports to account for autocorrelation and seasonality. Categorical variables were excluded as this is not a time-
series model. Prediction intervals were derived from a GLM following Negative Binomial distribution without 
regularization implemented in “MASS”  package28.

Quantile regression forest
Quantile regression forest is a nonlinear method that does not assume a specific data distribution. As the random 
forest, at its core is a high number of binary decision trees built from bootstrapped data samples. Individual 
predictions from the trees are then aggregated. Additionally, the trees choose random predictors at every split. 
Quantile regression forest is a generalisation of random forest. The main advantage is that it provides approxima-
tions of the full conditional distribution compared with a mean value provided by random forest. We used the 
implementation of the method in “quantregForest” R  package29. The explanatory variables used in this model 
include CET and mobility data. Similarly, to Regularized regression, categorical variables were excluded and 
autocorrelation and seasonality were handled by pre-fitted seasonality and 3-week moving mean.

Results
In this section, forecasting performance of each approach is presented for each forecasting horizon and model 
type based on which external dataset was included in a stepwise fashion. We consider three periods, the first 
norovirus season during the pandemic (week 40, 2020–week 20, 2021), the early Covid-19 pandemic and end 
of norovirus season 2019–2020 (week 12–week 20, 2020) and the pre-pandemic period (week 40, 2017–week 
11, 2020). We tested the differences between models within forecasting approaches weighted interval scores for 
all period using permutation test.

Comparison of predictive performance during the 2020/21 norovirus season (Fig. 2) indicates that includ-
ing Google Community Mobility data significantly improved the WIS of Quantile Regression Forest (p < 0.001) 
and Negative Binomial GLM (p < 0.010) compared to model versions with no external data. Count Time Series 
GLM did not benefit from inclusion of mobility or CET data during this period (Supplementary Table 1). In 
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Figure 2.  Comparison of predictive performance across forecasting approaches: the first norovirus season 
during the Covid-19 pandemic (week 40, 2020–week 20, 2021).
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terms of trend prediction, QRF with mobility data showed the strongest coefficient across predictive horizon 
(0.40 > ρ > 0.24). Regularized Negative Binomial GLM showed the weakest correlation.

In contrast, the correlations of predicted and observed values are the strongest for the Regularized GLM dur-
ing the early period of the pandemic, while QRF shows the weakest association (Fig. 3). This pattern is present in 
the weighted interval scores too. Regularized GLM models with CET and Google trends data provide significantly 
lower WIS for the 1–2 week forecasts (p < 0.009) and the inclusion of mobility data provides similar performance 
to the baseline Regularized GLM. However, Time series GLM nowcast and 1–2 week forecasts benefit from CET 
and mobility data significantly (p < 0.045).

Even in the pre-pandemic period (Fig. 4), seasonal components of the mobility variables improve the accuracy 
and showed stronger correlation for the Time Series GLM-based approach, particularly for the future horizon 
(3–4 weeks ahead). Additionally, the weighted interval score improved significantly when CET and mobility 
seasonal component were added for all predictive horizons (p = 0.000). Concerning Regularized GLM approach, 
WIS also improves with every addition of external data sets significantly (p = 0.000) compared to the model 
without externally sourced data. On the other hand, adding external data to the QRF approach does not provide 
significantly different predictive performance compared to the basic model.

Inclusion of CET and seasonal component of mobility variables on top of Google Trends, shows only a small 
reduction in WIS (Fig. 4). In contrast, the trend prediction is impacted negatively when externally sourced data 
are integrated into the Regularized GLM model.

Finally, we compare all point-predictions from the forecasting models to the naïve forecast in the form of 
five-season mean (Supplementary Table 2). All models tend to regress to the historical mean as the time passes, 
i.e. the 4-weeks ahead forecasting MAE tends to be closer to the five-season MAE. During 2020/21 norovirus 
season, models with mobility data showed lower MAE by 45% (QRF), 35% (Regularized GLM), 30% (Time 
Series GLM) on average across forecasting horizons. However, the improvement of point-prediction accuracy 
against five-season mean is lower for the 4-weeks ahead forecast across models and approaches during the same 
period—0–30% (QRF), 0–31% (Regularized GLM), 0–8% (Time Series GLM).

Relative MAE for the pre-pandemic period shows that approaches with seasonal components of mobility 
data improve the point accuracy compare to the five-season mean by 7% (QRF), 22% (Regularized GLM), 17% 
(Time Series GLM) on average across forecasting horizons.
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Figure 3.  Comparison of predictive performance across forecasting approaches: early Covid-19 pandemic 
period and the end of norovirus season 2019–2020 (week 12–week 20, 2020).
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Discussion
Predictions of confirmed norovirus infections can provide a timely indicator of current and near-future norovirus 
activity. Our study underscores the utility of applying statistical modelling and integrating externally sourced 
data into norovirus surveillance, especially in the context of the COVID-19 pandemic. By comparing three dis-
tinct statistical approaches, we demonstrated that each method outperformed the naïve forecast, traditionally 
used in norovirus surveillance in England. Our results highlight the need for adaptable forecasting models. The 
relative point-prediction improvement of our models reached 30–45% compared to the naïve forecast during 
the 2020/21 norovirus season which was impacted by the pandemic. This is expected considering the naïve 
forecast is based on historical seasonal mean, even if reduced by 90% in scale. However, we demonstrated that 
forecasting approaches explored in this study can improve the point-prediction between 7 and 22% on average 
across the 4-week forecasting horizons even before the pandemic. This suggests, that with norovirus laboratory 
reports returning to their previous seasonal pattern, statistical models from this study are likely to provide point-
prediction improvement over the historical seasonal mean after the Covid-19 pandemic.

The results focused on the first norovirus season following the Covid-19 pandemic indicate that the Count 
Time Series GLM approach provides the best performance when no external data is used. Its predictive scores 
were very similar to those from Regularized GLM incorporating air temperature, internet searches and mobil-
ity data. However, the Time Series GLM approach showed improved predictions when Community Mobility 
variables were included as covariates early in the pandemic. Further, our findings show that even the backfilled 
mobility data based on seasonal component improved predictive performance of GLM-based models during the 
pre-pandemic period when the real-time data was not available. Quantile Regression Forest showed the poorest 
predictive performance for the period of early pandemic suggesting this approach is not sensitive to sudden 
changes in the data. Including mobility variables in QRF in the first norovirus season after the pandemic onset 
improved the forecasting scores and predicted the trend better than the other two approaches.

In the period before the Covid-19 pandemic, Regularized GLM with Negative Binomial distribution showed 
the best predictive performance in terms of forecasting score and showed 35% improvement in the point-
prediction when compared to the naïve forecast (five-season mean). While the performance improved when 
we included the Google Trends variables as covariates, the improvement became incremental with inclusion 
of further variables—Central England Temperature, seasonal component of Mobility data. Conversely, trend 
prediction deteriorated when external data sources were incorporated. Therefore, it is important to consider the 
specific practical application of a forecasting model. Given the challenges of acquiring and selecting relevant 
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Figure 4.  Comparison of predictive performance across forecasting approaches: Covid-19 pre-pandemic 
period (week 40, 2017–week 11, 2020).
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Google Trends data, the effort required in some instances might outweigh the benefits for enhancing norovirus 
forecasting in England.

The improvement in predictive performance through mobility data underlines the importance of societal, 
economic and cultural trends for predicting highly contagious pathogens. Decreased mixing in public places 
can have a long-term impact on infections driven by contact patterns, including decreased levels of norovirus 
infections. Early in the Covid-19 pandemic, norovirus laboratory reports decreased with reduced mobility, likely 
due to genuinely decreased  transmission8,9. As Covid-19 control measures were relaxed, exploratory analysis of 
the mobility data still suggests a shift in the visit frequencies to workplaces, groceries, pharmacies, etc. People 
spend 5% more time in residential areas and less in transport stations and workplaces compared with before the 
pandemic. A report from McKinsey Global institute suggests that the remote working trend might slow down 
but persist in advanced  economies30. Thus, we can expect the changes in levels of mixing to continue and conse-
quently impact norovirus transmission. Additionally, the remote work trend concerns mainly white-collar work, 
which has the potential to further exacerbate existing health inequalities regarding gastrointestinal  infections31.

Previous studies showed that short-term forecasting successfully delivered more accurate predictions than 
traditional and easy-to-obtain naive forecasts such as mean across the past seasons for a given  week4,32. How-
ever, the accuracy of long-term forecasts was similar to the naïve forecasts. We also observed this effect with all 
approaches. Therefore, it is essential to differentiate between application contexts and whether long- or short-term 
forecasting can bring most benefits. Naïve forecasts such as the five-season mean remain better suited in contexts 
where long-term disease activity pattern needs to be considered. However, the relatively more accurate short-term 
predictions of highly contagious infection agents such as norovirus can be helpful in weekly or monthly capacity 
planning at hospitals. Also, it is important to note the difference between explanatory or descriptive modelling 
and predictive  modelling33. Long -term contexts may still utilize statistical modelling to improve understanding 
of the underlaying process generating surveillance data but in the short-term, when the predictive performance 
of the models is the goal, machine learning approaches can be more  suitable34. Our results demonstrate that the 
predictive performance of the Quantile Regression Forest and Regularized GLM benefited from external data 
more than the time series approach during the first norovirus season after the Covid-19 pandemic onset. On the 
other hand, Time Series GLM allowed for time dependent categorical indicators to be specified such as weeks 
of the Covid-19 pandemic onset and so no external data were required to achieve good predictive performance.

Developing a process to estimate pathogen activity that relies on externally produced data carries risks from 
the public health perspective. Thus, the effort required to adapt a modelling approach and pre-process the exter-
nal data would be in vain if the external data set became unavailable. This is exemplified with the community 
mobility data when in October 2022, Google stopped producing new reports. However, the results show that 
our approximation of respective Community Mobility variables improve the prediction of norovirus laboratory 
reports from the Time Series GLM in the period before the Covid-19 pandemic. This suggests that the combina-
tion of seasonality and noise derived from the available data could be used to fill in missing time points, serving 
as a continuation of the real-time data in upcoming seasons. In this manner, we can account for the disruption 
in norovirus activity during the pandemic while also addressing the absence of data after it became unavailable. 
Nonetheless, further research is needed to confirm the effectiveness of this approach. Additionally, a variety of 
private mobility data sources similar to the one used in this study can be accessed via Development Data Partner-
ship  Organisation35. Considering the improvements achieved by using Community Mobility data from Google 
specifically, this data set should be included in the Development Data Partnership for public health benefit.

In terms of limitations, the forecasting approach leveraging Google Trends could be further refined if the 
search-term selection is repeated at the beginning of every season, since the specific terms can change as lan-
guage and public familiarity with a particular pathogen  change22. Additionally, the study was undertaken before 
norovirus laboratory report counts had rebounded to pre-pandemic levels. Nonetheless, recent data from the 
2022/23  season36 imply a return to previous norovirus activity patterns, suggesting the applicability of insights 
gained from pre-pandemic and pandemic models. Moreover, the study highlights that existing software offers 
good options for norovirus forecasting that can supplement the naïve forecast currently used in norovirus surveil-
lance practice. Future research could focus on understanding what methods predicted the rebound in norovirus 
laboratory reports most accurately.

In conclusion, this study describes the potential of externally sourced data to improve the accuracy of noro-
virus forecasting in England. The results demonstrate that incorporating mobility data and derived data signals 
can significantly improve the accuracy of some forecasting models, particularly during the Covid-19 pandemic. 
However, different forecasting approaches forecast norovirus reports more accurately across investigated time 
periods. While Regularized GLM showed the best predictions before the pandemic, the Count Time Series GLM 
without any externally sourced data displayed the strongest forecasting score in the first norovirus season after 
the Covid-19 pandemic onset. Finally, our research suggests that there is significant value for public health in 
considering the adoption of more sophisticated forecasting tools, moving beyond traditional naïve methods, 
and utilizing available software to enhance the precision and timeliness of norovirus surveillance in England.

Data availability
Routine surveillance data cannot be shared publicly because the provision of the data is dependent on the 
intended use. The R code and synthetic data are available at https:// doi. org/ 10. 5281/ zenodo. 10032 003. Public 
API to acquire Google Trends and the Our World in Data website providing access to Community Mobility 
Data are  referenced19,21.
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